Statistical analysis of spatio-temporal and multi-dimensional data from a network of sensors

Yiye JIANG

Université de Bordeaux Institut de Mathématiques de Bordeaux

A (10) × (10)

- Graph learning with auto-regressive (AR) models
 from matrix-variate time series
 - from multivariate distributional time series
- Operation of scalar time series on a graph

(本語) を注える 注入

Data and problems

- Q Graph learning with auto-regressive (AR) models
 from matrix-variate time series
 - from multivariate distributional time series
- Operation of scalar time series on a graph
- 4 Conclusion and perspectives

A (10) × (10)

Data recorded over a network of sensors such as traffic analysis, brain network analysis, social network, and citation network.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data recorded over a network of sensors such as traffic analysis, brain network analysis, social network, and citation network.

Data we consider in this thesis:

• Spatio-temporal: Observations along time per sensor (node).

・四ト ・ヨト ・ヨト

Data recorded over a network of sensors such as traffic analysis, brain network analysis, social network, and citation network.

Data we consider in this thesis:

- Spatio-temporal: Observations along time per sensor (node).
- 3 diverse forms: Observation per sensor (node) per time is scalar/vector/distribution.

- 4 回 ト 4 回 ト

Data illustration: scalar observation

Figure 1: Monthly climatological records of weather stations in California. A value $x_{it} \in \mathbb{R}$ is recorded on each station (sensor/node) i, at each time t. In this example, x_{it} is the average temperature.

・ロト ・ 同ト ・ ヨト ・ ヨト

Data illustration: vectorial observation

Figure 2: Monthly climatological records of weather stations in California. A vector $\mathbf{x}_{it} \in \mathbb{R}^4$ is recorded on each station (sensor/node) i, at each time t. In this example, \mathbf{x}_{it} is the vector of: min/max/avg temperature, and precipitation.

- 4 回 ト 4 回 ト

Data illustration: distributional observation

Figure 3: Annual records of age distributions of EU countries. A distribution $\mu_{it} \in \mathcal{P}([0, 1])$ is recorded on each node i, at each time t. In this example, μ_{it} is an age distribution. Time is represented by color instead of x-axis. Lighter curves correspond to the distributions from more recent years.

э

イロン イ理 とく ヨン イヨン

• Main goal: identifying the dependency structure between these random processes

 Main goal: identifying the dependency structure between these random processes ⇒ graph learning

• Main goal: identifying the dependency structure between these random processes \implies graph learning from vectorial $(\mathbf{x}_{it})_t$ and distributional $(\boldsymbol{\mu}_{it})_t$ processes.

イロト イヨト イヨト -

- Main goal: identifying the dependency structure between these random processes \implies graph learning from vectorial $(\mathbf{x}_{it})_t$ and distributional $(\boldsymbol{\mu}_{it})_t$ processes.
- Second goal: understanding the predictability of each process, for scalar x_{it} data.

イロト イヨト イヨト -

- Main goal: identifying the dependency structure between these random processes ⇒ graph learning from vectorial (x_{it})_t and distributional (µ_{it})_t processes.
- Second goal: understanding the predictability of each process, for scalar x_{it} data. \longrightarrow the details are not considered in this presentation.

イロト イヨト イヨト イヨト

Graph learning with auto-regressive (AR) models from matrix-variate time series

- from multivariate distributional time series
- 3 Predictability of scalar time series on a graph
- 4 Conclusion and perspectives

Causal graph and vector auto-regressive model

For $(x_{it})_t \in \mathbb{R}$, i = 1, ..., N, the VAR Models have been widely adapted in literature to learn their causality (Granger) dependency.

$$VAR(1): \mathbf{x}_t - \mathbf{u} = A(\mathbf{x}_{t-1} - \mathbf{u}) + \mathbf{z}_t,$$
(1)

where $\mathbf{x}_t = (\boldsymbol{x}_{1t}, \dots, \boldsymbol{x}_{Nt})$, $\boldsymbol{\mathsf{u}} = \mathbb{E}\mathbf{x}_t$, and \mathbf{z}_t is white noise.

When VAR (1) is stationary, the sparsity structure of $A \stackrel{\text{adj. mat.}}{\iff} \mathcal{G}$.

Contribution of the thesis:

$$\mathcal{G} \text{ of } (\boldsymbol{x}_{it})_t \in \mathbb{R} \to \begin{cases} \mathcal{G} \text{ of } (\mathbf{x}_{it})_t \in \mathbb{R}^F + \text{online inference}, \\ \mathcal{G} \text{ of } (\boldsymbol{\mu}_{it})_t \in \mathcal{W}_2(\mathbb{R}). \end{cases}$$

<ロト <回ト < 回ト < 回ト = 三日

Table of Contents

Graph learning with auto-regressive (AR) models from matrix-variate time series from multivariate distributional time series

$$(\mathbf{x}_{it})_t \in \mathbb{R}^F, \ i = 1, \dots, N \iff (\mathbf{X}_t)_t \in \mathbb{R}^{N \times F},$$

3

イロン イ理 とく ヨン イヨン

$$(\mathbf{x}_{it})_t \in \mathbb{R}^F, \ i = 1, \dots, N \iff (\mathbf{X}_t)_t \in \mathbb{R}^{N \times F},$$

where \mathbf{X}_t 's row ~ spatial (node-wise) dim, col ~ feature dim.

イロン イ理 とく ヨン イヨン

$$(\mathbf{x}_{it})_t \in \mathbb{R}^F, \ i = 1, \dots, N \iff (\mathbf{X}_t)_t \in \mathbb{R}^{N \times F},$$

where \mathbf{X}_t 's row ~ spatial (node-wise) dim, col ~ feature dim. We propose the matrix-variate AR for $(\mathbf{X}_t)_t$:

$$\mathbf{x}_t - \mathbf{u} = A(\mathbf{x}_{t-1} - \mathbf{u}) + \mathbf{z}_t,$$

where $\mathbf{x}_t = \mathsf{vec}(\mathbf{X}_t) = (oldsymbol{x}_{ift})_{i,f}$,

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$(\mathbf{x}_{it})_t \in \mathbb{R}^F, \ i = 1, \dots, N \iff (\mathbf{X}_t)_t \in \mathbb{R}^{N \times F},$$

where \mathbf{X}_t 's row ~ spatial (node-wise) sim, col ~ feature dim. We propose the matrix-variate AR for $(\mathbf{X}_t)_t$:

$$\mathbf{x}_t - \mathbf{u} = A(\mathbf{x}_{t-1} - \mathbf{u}) + \mathbf{z}_t, \text{ with } A = A_F \oplus A_N, \qquad (1')$$

where $\mathbf{x}_t = \mathsf{vec}(\mathbf{X}_t) = (x_{ift})_{i,f}$, $A_{\mathrm{N}} \in \mathbb{R}^{N \times N}$, $A_{\mathrm{F}} \in \mathbb{R}^{F \times F}$, and

 $A_{\rm F} \oplus A_{\rm N} := A_{\rm F} \otimes I_N + I_F \otimes A_{\rm N}.$

イロト 不得下 イヨト イヨト 二日

$$(\mathbf{x}_{it})_t \in \mathbb{R}^F, \ i = 1, \dots, N \iff (\mathbf{X}_t)_t \in \mathbb{R}^{N \times F}$$

where \mathbf{X}_t 's row ~ spatial (node-wise) sim, col ~ feature dim. We propose the matrix-variate AR for $(\mathbf{X}_t)_t$:

$$\mathbf{x}_t - \mathbf{u} = A(\mathbf{x}_{t-1} - \mathbf{u}) + \mathbf{z}_t$$
, with $A = A_F \oplus A_N$, (1')

where $\mathbf{x}_t = \mathsf{vec}(\mathbf{X}_t) = (\boldsymbol{x}_{ift})_{i,f}$, $A_{\mathrm{N}} \in {\rm I\!R}^{N \times N}$, $A_{\mathrm{F}} \in {\rm I\!R}^{F \times F}$, and

 $A_{\rm F} \oplus A_{\rm N} := A_{\rm F} \otimes I_N + I_F \otimes A_{\rm N}.$

KS endows the matrix representation of the vector Model (1'):

$$\mathbf{X}_t - \mathsf{U} = A_{\mathrm{N}}(\mathbf{X}_{t-1} - \mathsf{U}) + (\mathbf{X}_{t-1} - \mathsf{U})A_{\mathrm{F}}^\top + \mathbf{Z}_t,$$

 $A_{\rm N}\sim$ spatial dependency, $A_{\rm F}\sim$ feature dependency.

Yiye JIANG

Moreover, the vector representation implies

$$A \stackrel{\mathsf{adj. mat.}}{\Longleftrightarrow} \mathcal{G} \text{ of } (\boldsymbol{x}_{ift})_t,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Moreover, the vector representation implies

$$A \stackrel{\mathsf{adj. mat.}}{\Longleftrightarrow} \mathcal{G} \text{ of } (x_{ift})_t,$$

then the KS structure in A furthermore implies

$$\mathcal{G} = \mathcal{G}_N \Box \mathcal{G}_F, \text{ where } \mathcal{G}_N \overset{\text{adj. mat.}}{\longleftrightarrow} A_N \text{ and } \mathcal{G}_F \overset{\text{adj. mat.}}{\longleftrightarrow} A_F.$$

個 ト イヨ ト イヨト

Moreover, the vector representation implies

$$A \stackrel{\mathsf{adj. mat.}}{\Longleftrightarrow} \mathcal{G} \text{ of } (\boldsymbol{x}_{ift})_t,$$

then the KS structure in A furthermore implies

$$\mathcal{G} = \mathcal{G}_N \Box \mathcal{G}_F, \text{ where } \mathcal{G}_N \overset{\text{adj. mat.}}{\longleftrightarrow} A_N \text{ and } \mathcal{G}_F \overset{\text{adj. mat.}}{\longleftrightarrow} A_F.$$

Cartesian product of subgraphs. Subgraphs are **retained** in every section of the other dimension.

Moreover, the vector representation implies

 $A \stackrel{\text{adj. mat.}}{\iff} \mathcal{G} \text{ of } (\boldsymbol{x}_{ift})_t,$

then the KS structure in A furthermore implies

 $\mathcal{G} = \mathcal{G}_N \square \mathcal{G}_F, \text{ where } \mathcal{G}_N \overset{\text{adj. mat.}}{\longleftrightarrow} A_N \text{ and } \mathcal{G}_F \overset{\text{adj. mat.}}{\longleftrightarrow} A_F.$

Cartesian product of subgraphs. Subgraphs are **retained** in every section of the other dimension. For nodes on right as $(x_{ift})_t$, \forall fixed f, Subgraph of $(x_{ift})_t = \mathcal{G}_N$, \forall fixed i, Subgraph of $(x_{ift})_t = \mathcal{G}_F$.

Moreover, the vector representation implies

 $A \stackrel{\mathsf{adj. mat.}}{\Longleftrightarrow} \mathcal{G} \text{ of } (\boldsymbol{x}_{ift})_t,$

then the KS structure in A furthermore implies

 $\mathcal{G} = \mathcal{G}_N \square \mathcal{G}_F, \text{ where } \mathcal{G}_N \overset{\text{adj. mat.}}{\longleftrightarrow} A_N \text{ and } \mathcal{G}_F \overset{\text{adj. mat.}}{\longleftrightarrow} A_F.$

Cartesian product of subgraphs. Subgraphs are **retained** in every section of the other dimension. For nodes on right as $(x_{ift})_t$, \forall fixed f, Subgraph of $(x_{ift})_t = \mathcal{G}_N$, \forall fixed i, Subgraph of $(x_{ift})_t = \mathcal{G}_F$.

 $\mathcal{G}_N =$ spatial graph of $(\mathbf{x}_{it})_t$, $\mathcal{G}_F =$ feature graph.

イロト 不得下 イヨト イヨト 二日

Constraint set $\mathcal{K}_{\mathcal{G}}$

Due to the model identifiability and application reasons, we employ a more sophisticated structure for A. The complete MAR(1) is

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_\mathcal{G},$$

where $\mathbf{x}_t = \mathsf{vec}\left(\mathbf{X}_t\right)$, and

$$\begin{split} \mathcal{K}_{\mathcal{G}} &= & \big\{\mathsf{M} \in \mathrm{I\!R}^{NF \times NF} : \exists \, \mathsf{M}_{\mathrm{F}} \in \mathrm{I\!R}^{F \times F}, \mathsf{M}_{\mathrm{N}} \in \mathrm{I\!R}^{N \times N}, \text{ such that}, \\ & \text{offd}(\mathsf{M}) = \mathsf{M}_{\mathrm{F}} \oplus \mathsf{M}_{\mathrm{N}}, \text{ with, } \text{diag}(\mathsf{M}_{\mathrm{F}}) = 0, \text{ diag}(\mathsf{M}_{\mathrm{N}}) = 0, \\ & \mathsf{M}_{\mathrm{F}} = \mathsf{M}_{\mathrm{F}}^{\top}, \text{ } \mathsf{M}_{\mathrm{N}} = \mathsf{M}_{\mathrm{N}}^{\top} \big\}, \end{split}$$

・ロト ・四ト ・ヨト ・ヨト

Constraint set $\mathcal{K}_{\mathcal{G}}$

Figure 4: $\mathcal{K}_{\mathcal{G}}$ for N = 3, F = 2. M (left), M_N (right upper), M_F (right bottom).

3

イロン イ団 と イヨン イヨン

Matrix AR(1)

The complete MAR(1) is

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_{\mathcal{G}},$$

where $\mathbf{x}_t = \mathsf{vec}\left(\mathbf{X}_t\right)$, we assume $\mathbb{E}\mathbf{x}_t = 0$ for now, and

$$\begin{split} \mathcal{K}_{\mathcal{G}} &= & \big\{\mathsf{M} \in \mathrm{I\!R}^{NF \times NF} : \exists \, \mathsf{M}_{\mathrm{F}} \in \mathrm{I\!R}^{F \times F}, \mathsf{M}_{\mathrm{N}} \in \mathrm{I\!R}^{N \times N}, \text{ such that}, \\ & \text{offd}(\mathsf{M}) = \mathsf{M}_{\mathrm{F}} \oplus \mathsf{M}_{\mathrm{N}}, \text{ with, } \text{diag}(\mathsf{M}_{\mathrm{F}}) = 0, \text{ diag}(\mathsf{M}_{\mathrm{N}}) = 0, \\ & \mathsf{M}_{\mathrm{F}} = \mathsf{M}_{\mathrm{F}}^{\top}, \text{ } \mathsf{M}_{\mathrm{N}} = \mathsf{M}_{\mathrm{N}}^{\top} \big\}, \end{split}$$

3

ヘロト ヘロト ヘヨト ヘヨト

Matrix AR(1)

The complete MAR(1) is

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_{\mathcal{G}},$$

where $\mathbf{x}_t = \mathsf{vec}\left(\mathbf{X}_t\right)$, we assume $\mathbb{E}\mathbf{x}_t = 0$ for now, and

$$\begin{split} \mathcal{K}_\mathcal{G} &= & \big\{\mathsf{M} \in {\rm I\!R}^{NF \times NF} : \exists \, \mathsf{M}_{\rm F} \in {\rm I\!R}^{F \times F}, \mathsf{M}_{\rm N} \in {\rm I\!R}^{N \times N}, \text{ such that}, \\ & \mathsf{offd}(\mathsf{M}) = \mathsf{M}_{\rm F} \oplus \mathsf{M}_{\rm N}, \text{ with, } \mathsf{diag}(\mathsf{M}_{\rm F}) = 0, \; \mathsf{diag}(\mathsf{M}_{\rm N}) = 0, \\ & \mathsf{M}_{\rm F} = \mathsf{M}_{\rm F}^\top, \; \mathsf{M}_{\rm N} = \mathsf{M}_{\rm N}^\top \big\}, \end{split}$$

 $\mathbf{z}_t \in \mathbb{R}^{NF} \sim \text{IID}(0, \Sigma)$ is white noise with a non-singular covariance structure Σ and bounded fourth moments, with $\|A\|_2 < 1$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sparse estimators of $A_{\rm N}$

MAR(1):

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_{\mathcal{G}}.$$

3

イロト イヨト イヨト イヨト

from matrix-variate time series

Sparse estimators of $A_{\rm N}$

MAR(1):

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_{\mathcal{G}}.$$

• In low dimension: \hat{A}_{OLS} projected onto linear subspace $\mathcal{K}_{\mathcal{G}}$. CLT \rightarrow nullity test on \hat{A}_N .

イロン イ理 とく ヨン イヨン

from matrix-variate time series

Sparse estimators of $A_{\rm N}$

MAR(1):

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_{\mathcal{G}}.$$

- In low dimension: \widehat{A}_{OLS} projected onto linear subspace $\mathcal{K}_{\mathcal{G}}$. CLT \rightarrow nullity test on \widehat{A}_N .
- In high dimension, we propose the novel Lasso

$$\mathbf{A}(t,\lambda) = \operatorname*{arg\,min}_{\boldsymbol{A}\in\boldsymbol{\mathcal{K}_{\mathcal{G}}}} \frac{1}{2t} \sum_{\tau=1}^{t} \|\mathbf{x}_{\tau} - A\mathbf{x}_{\tau-1}\|_{\ell_{2}}^{2} + \lambda_{t} F \|A_{\mathbf{N}}\|_{\ell_{1}},$$

・ロト ・四ト ・ヨト ・ヨト

from matrix-variate time series

Sparse estimators of $A_{\rm N}$

MAR(1):

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_{\mathcal{G}}.$$

- In low dimension: \widehat{A}_{OLS} projected onto linear subspace $\mathcal{K}_{\mathcal{G}}$. CLT \rightarrow nullity test on \widehat{A}_N .
- In high dimension, we propose the novel Lasso

$$\mathbf{A}(t,\lambda) = \operatorname*{arg\,min}_{\boldsymbol{A} \in \mathcal{K}_{\mathcal{G}}} \frac{1}{2t} \sum_{\tau=1}^{t} \|\mathbf{x}_{\tau} - A\mathbf{x}_{\tau-1}\|_{\ell_{2}}^{2} + \lambda_{t} F \|A_{N}\|_{\ell_{1}},$$

• Off-line: for example, the proximal gradient descend,

イロン イ理 とくほと イロン
Sparse estimators of $A_{\rm N}$

MAR(1):

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_{\mathcal{G}}.$$

- In low dimension: \widehat{A}_{OLS} projected onto linear subspace $\mathcal{K}_{\mathcal{G}}$. CLT \rightarrow nullity test on \widehat{A}_N .
- In high dimension, we propose the novel Lasso

$$\mathbf{A}(t,\lambda) = \operatorname*{arg\,min}_{\boldsymbol{A} \in \boldsymbol{\mathcal{K}}_{\mathcal{G}}} \frac{1}{2t} \sum_{\tau=1}^{t} \|\mathbf{x}_{\tau} - A\mathbf{x}_{\tau-1}\|_{\ell_{2}}^{2} + \lambda_{t} F \|A_{N}\|_{\ell_{1}},$$

- Off-line: for example, the proximal gradient descend,
- Online: Given \mathbf{x}_{t+1} , $\mathbf{A}(t, \lambda_t) \rightarrow \mathbf{A}(t+1, \lambda_{t+1})$.

イロン イ理 とくほと イロン

Sparse estimators of $A_{\rm N}$

MAR(1):

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{z}_t, \ A \in \mathcal{K}_{\mathcal{G}}.$$

- In low dimension: \widehat{A}_{OLS} projected onto linear subspace $\mathcal{K}_{\mathcal{G}}$. CLT \rightarrow nullity test on \widehat{A}_N .
- In high dimension, we propose the novel Lasso

$$\mathbf{A}(t,\lambda) = \operatorname*{arg\,min}_{\boldsymbol{A} \in \boldsymbol{\mathcal{K}}_{\mathcal{G}}} \frac{1}{2t} \sum_{\tau=1}^{t} \|\mathbf{x}_{\tau} - A\mathbf{x}_{\tau-1}\|_{\ell_{2}}^{2} + \lambda_{t} F \|A_{N}\|_{\ell_{1}},$$

• Off-line: for example, the proximal gradient descend,

• Online: Given \mathbf{x}_{t+1} , $\mathbf{A}(t, \lambda_t) \rightarrow \mathbf{A}(t+1, \lambda_{t+1})$.

 $\lambda_t \to \lambda_{t+1}, \mathbf{A}(t, \lambda_t) \to \mathbf{A}(t, \lambda_{t+1}), \mathbf{A}(t, \lambda_{t+1}) \to \mathbf{A}(t+1, \lambda_{t+1}).$

・ロト ・四ト ・ヨト ・ヨト

Homotopy algorithms and optimality conditions

$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^d} L(\boldsymbol{\theta}), \ L(\boldsymbol{\theta}) = \frac{1}{2t} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{\ell_2}^2 + \lambda \|\boldsymbol{\theta}\|_{\ell_1},$$

Algo: $\theta^*(\lambda_1) \rightarrow \theta^*(\lambda_2)$ relies on **Optimality condition** of minimizer θ^* :

$$\frac{\partial L(\theta)}{\partial \theta} = 0 \iff \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{\theta}^* - \mathbf{y}) + \lambda \mathbf{w} = 0, \ \mathbf{w} = \partial \| \boldsymbol{\theta}^* \|_{\ell_1}.$$

Homotopy algorithms and optimality conditions

$$\boldsymbol{\theta}^* = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^d} L(\boldsymbol{\theta}), \ L(\boldsymbol{\theta}) = \frac{1}{2t} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{\ell_2}^2 + \lambda \|\boldsymbol{\theta}\|_{\ell_1},$$

Algo: $\theta^*(\lambda_1) \rightarrow \theta^*(\lambda_2)$ relies on **Optimality condition** of minimizer θ^* :

$$\frac{\partial L(\theta)}{\partial \theta} = 0 \iff \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{\theta}^* - \mathbf{y}) + \lambda \mathbf{w} = 0, \ \mathbf{w} = \partial \| \boldsymbol{\theta}^* \|_{\ell_1}.$$

Unique $\boldsymbol{\theta}^* = (\boldsymbol{\theta}_1^*, 0)$ at λ , $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_0)$, $\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_0)$:

$$\begin{cases} \boldsymbol{\theta}_1^* = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \mathbf{w}_1), \\ \lambda \mathbf{w}_0 = \mathbf{y} - \mathbf{X}_0^\top \mathbf{X}_1 \boldsymbol{\theta}_1^*. \end{cases}$$

Continuity \implies (8) is the explicit form of all lasso solutions in a neighbourhood of λ , which ends with the critical values.

Sub-gradients under the structure constraint

$$\min_{A \in \mathcal{K}_{\mathcal{G}}} \frac{1}{2t} \sum_{\tau=1}^{t} \|\mathbf{x}_{\tau} - A\mathbf{x}_{\tau-1}\|_{\ell_{2}}^{2} + \lambda F \|A_{N}\|_{\ell_{1}}$$
$$? \frac{\partial L(A)}{\partial A} \text{ while } A \in \mathcal{K}_{\mathcal{G}}$$

3

イロン イ団 と イヨン イヨン

Sub-gradients under the structure constraint

Lasso above becomes

$$\min_{A^{0} \in \mathbb{R}^{NF \times NF}} \frac{1}{2t} \sum_{\tau=1}^{t} \left\| \mathbf{x}_{\tau} - \sum_{k \in K} \langle U_{k}, A^{0} \rangle U_{k} \mathbf{x}_{\tau-1} \right\|_{\ell_{2}}^{2} + \lambda \left\| \sum_{k \in K_{N}} \langle U_{k}, A^{0} \rangle U_{k} \right\|_{\ell_{1}}$$

Yiye JIANG

Sub-gradients under the structure constraint

$$\frac{\partial L(A^0)}{\partial A^0} = 0 \Longrightarrow$$
 The optimality condition of $A \in \mathcal{K}_{\mathcal{G}}$:

$$\mathsf{Proj}_{\mathrm{DF}}\left(\mathbf{A}\widehat{\mathbf{\Gamma}}_{t}(0)-\widehat{\mathbf{\Gamma}}_{t}(1)
ight)=0,$$

$$\operatorname{Proj}_{K_{\mathrm{N}}^{1}}\left(\mathbf{A}\widehat{\mathbf{\Gamma}}_{t}(0)-\widehat{\mathbf{\Gamma}}_{t}(1)\right)+\lambda I_{F}\otimes \mathbf{W}^{1}=0,$$

$$\operatorname{Proj}_{K_{\mathrm{N}}^{0}}\left(\mathbf{A}\widehat{\boldsymbol{\Gamma}}_{t}(0)-\widehat{\boldsymbol{\Gamma}}_{t}(1)\right)+\lambda I_{F}\otimes \boldsymbol{W}^{0}=0,$$

where $\widehat{\Gamma}_t(0) = \sum_{\tau=1}^t \mathbf{x}_{\tau-1} \mathbf{x}_{\tau-1}^\top$, $\widehat{\Gamma}_t(1) = \sum_{\tau=1}^t \mathbf{x}_{\tau} \mathbf{x}_{\tau-1}^\top$, W^0 is the sub-gradient matrix of zero entries in A_N , and W^1 is the sign matrix of active entries in A_N .

Adaptive tuning of lambda

$$\mathbf{A}(t,\lambda_t) \rightarrow \mathbf{A}(t,\lambda_{t+1}), \mathbf{A}(t,\lambda_{t+1}) \rightarrow \mathbf{A}(t+1,\lambda_{t+1})$$

 $\lambda_t \rightarrow \lambda_{t+1}$: Monti et al. (2018); Garrigues and Ghaoui (2008) propose an adaptive tuning method, in our notations:

$$f_{t+1}(\lambda) = \frac{1}{2} \|\mathbf{x}_{t+1} - \mathbf{A}(t,\lambda)\mathbf{x}_t\|_{\ell_2}^2,$$

and updating rule:

$$\lambda_{t+1} = \lambda_t - \eta \frac{\mathsf{d}f_{t+1}(\lambda)}{\mathsf{d}\lambda} \big|_{\lambda = \lambda_t},$$

 $\frac{d\mathbf{A}_{(t,\lambda)}}{d\lambda}|_{\lambda=\lambda_t} \text{ can be calculated from the optimality condition of } \mathbf{A}_{(t,\lambda_t)}.$

イロト イヨト イヨト イヨト 三臣

Online graph and trend learning

Come back to the assumption:

$$\mathbb{E}(\mathbf{x}_{\tau})_{\tau} = 0, \ \forall \tau \Rightarrow \frac{1}{t} \sum_{\tau=1}^{t} \|\mathbf{x}_{\tau} - A\mathbf{x}_{\tau-1}\|_{\ell_{2}}^{2}.$$

However, raw data $\mathbb{E}(\mathbf{x}_{\tau})_{\tau} = b_{\tau}$, that is, a trend is present.

$$betrend \mathbf{x}_{\tau} - \hat{\mathbf{b}}_{\tau} \Rightarrow \text{ is forbidden online.}$$

Offline:

Online graph and trend learning

Augmented data model:

 $\begin{cases} \mathbf{x}_t = \mathbf{b}_t + \mathbf{x}'_t, \rightarrow \text{ Observations} \\ \mathbf{x}'_t = \mathbf{A}\mathbf{x}'_{t-1} + \mathbf{z}_t, \rightarrow \text{ underlying stationary process.} \end{cases}$

In particular, we consider periodic trend of period M:

$$\mathbf{b}_t = \mathbf{b}_m, \ m = 0, ..., M - 1, \ m = t \mod M.$$

Augmented structured matrix Lasso:

 $\mathop{\arg\min}_{A \in \mathcal{K}_{\mathcal{G}}, \mathbf{b}_{m}} \frac{1}{2t} \sum_{m=0}^{M-1} \sum_{\tau \in I_{m,t}} \|(\mathbf{x}_{\tau} - \mathbf{b}_{m}) - A(\mathbf{x}_{\tau-1} - \mathbf{b}_{m-1})\|_{\ell_{2}}^{2} + \lambda_{t} F \|A_{\mathbf{N}}\|_{\ell_{1}},$

where $I_{m,t} = \{ \tau = 1, ..., t : \tau \mod M = m \}.$

 $\begin{array}{l} \mbox{Detrend} + \mbox{graph estimation simultaneously} \\ \implies \mbox{Online graph learning on raw data} \end{array}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Climatology data

Figure 5: California weather graph. Graph Adjacency matrix (left), visualization on the map (right) using sensor coordinates. The nodes with bigger sizes connect with more nodes.

(a)

Climatology data

Minimal temperature Average temperature Precipitation

Figure 6: Estimated trends along years. On the left, middle, right are the estimated trends at different years of a certain station for the 3 features. Experiment settings: N = 27, F = 4, M = 12.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure 7: Updated feature graph at t = 1522. Projected OLS (left), and Lasso (right). Experiment settings: N = 27, F = 4, M = 12.

Note that t = 1522 < # params = 1761.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

- Graph learning with auto-regressive (AR) models
 from matrix-variate time series
 - from multivariate distributional time series
- 3 Predictability of scalar time series on a graph
- 4 Conclusion and perspectives

< □ > < 同 > < 回 > < 回 > < 回 >

Recall the data setting:

Learn \mathcal{G} of $(\boldsymbol{\mu}_{it})_t \in \mathcal{W}_2(\mathbb{R}), i = 1, \dots N$ with a multivariate distributional AR model.

・ロト ・ 四ト ・ ヨト ・ ヨト

Random probability measures in Wasserstein space

$$\mathcal{W}_2(\mathbb{R}) = \left\{ \mu \in \mathcal{P}(\mathbb{R}) \middle| \int_{\mathbb{R}} x^2 d\mu(x) < \infty \right\},$$

endowed with the 2-Wasserstein distance

$$d_W(\mu, \gamma)^2 = \inf_{\pi \in \Pi(\mu, \gamma)} \int_{\mathbb{R} \times \mathbb{R}} (x_1 - x_2)^2 d\pi(x_1, x_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Random probability measures in Wasserstein space

$$\mathcal{W}_2(\mathbb{R}) = \left\{ \mu \in \mathcal{P}(\mathbb{R}) \middle| \int_{\mathbb{R}} x^2 d\mu(x) < \infty \right\},$$

endowed with the 2-Wasserstein distance

$$d_W(\mu,\gamma)^2 = \inf_{\pi \in \Pi(\mu,\gamma)} \int_{\mathbb{R} \times \mathbb{R}} (x_1 - x_2)^2 d\pi(x_1, x_2)$$
$$\stackrel{\|\cdot\|^2 + \mathbb{R}}{=} \int_0^1 \left(F_{\mu}^{-1}(u) - F_{\gamma}^{-1}(u) \right)^2 du,$$

where $F_{\mu}^{-1}(u), F_{\gamma}^{-1}(u)$ are the quantile functions of μ and γ .

Random probability measures in Wasserstein space

$$\mathcal{W}_2(\mathbb{R}) = \left\{ \mu \in \mathcal{P}(\mathbb{R}) \middle| \int_{\mathbb{R}} x^2 d\mu(x) < \infty \right\},$$

endowed with the 2-Wasserstein distance

$$d_W(\mu,\gamma)^2 = \inf_{\pi \in \Pi(\mu,\gamma)} \int_{\mathbb{R} \times \mathbb{R}} (x_1 - x_2)^2 d\pi(x_1, x_2)$$
$$\stackrel{\|\cdot\|^2 + \mathbb{R}}{=} \int_0^1 \left(F_{\mu}^{-1}(u) - F_{\gamma}^{-1}(u) \right)^2 du,$$

where $F_{\mu}^{-1}(u), F_{\gamma}^{-1}(u)$ are the quantile functions of μ and $\gamma.$

 W_2 is not linear space. Chen et al. (2021); Zhang et al. (2021); Zhu and Müller (2021) extended the univariate AR model

$$\boldsymbol{x}_t - \boldsymbol{u} = \alpha(\boldsymbol{x}_{t-1} - \boldsymbol{u}) + \boldsymbol{\epsilon}_t,$$

by relying on the notion of *Tangent space* in W_2 .

イロン イロン イヨン イヨン 三日

Enable again linear methods - Tangent space

 $\mathcal{W}_2 := \mathcal{W}_2({\rm I\!R})$ has a pseudo-Riemannian structure (Ambrosio et al., 2008).

Let $\gamma \in W_2$ be an atomless measure (that is it possesses a continuous cdf F_{γ}), the tangent space at γ is defined as

$$\operatorname{Tan}_{\gamma} = \overline{\{t(T_{\gamma}^{\mu} - id) : \mu \in \mathcal{W}_2, \ t > 0\}}^{\mathcal{L}^2_{\gamma}},$$

where $T_{\gamma}^{\mu} = F_{\mu}^{-1} \circ F_{\gamma}$ is the optimal map, that pushes γ forward to μ .

Enable again linear methods - Tangent space

 $\mathcal{W}_2 := \mathcal{W}_2(\mathrm{I\!R})$ has a pseudo-Riemannian structure (Ambrosio et al., 2008).

Let $\gamma \in \mathcal{W}_2$ be an atomless measure (that is it possesses a continuous cdf F_{γ}), the tangent space at γ is defined as

$$\operatorname{Tan}_{\gamma} = \overline{\{t(T^{\mu}_{\gamma} - id) : \mu \in \mathcal{W}_2, \ t > 0\}}^{\mathcal{L}^2_{\gamma}},$$

where $T_{\gamma}^{\mu} = F_{\mu}^{-1} \circ F_{\gamma}$ is the optimal map, that pushes γ forward to μ . Tan_{γ} is endowed with the inner product $\langle \cdot, \cdot \rangle_{\gamma}$ defined by

$$\langle f,g \rangle_{\gamma} := \int_{\mathbb{R}} f(x)g(x) \, d\gamma(x), \ f,g \in \mathcal{L}^2_{\gamma}(\mathbb{R}),$$

and the induced norm $\|\cdot\|_{\gamma}$.

Enable again linear methods - Tangent space

$$\operatorname{Tan}_{\gamma} = \overline{\left\{t(T_{\gamma}^{\mu} - id) : \mu \in \mathcal{W}_{2}, \ t > 0\right\}}^{\mathcal{L}_{\gamma}^{2}},$$

where $T_{\gamma}^{\mu} = F_{\mu}^{-1} \circ F_{\gamma}$ is the optimal map, that pushes γ forward to μ .

Definition

The logarithmic map $\mathrm{Log}_\gamma:\mathcal{W}_2\to\mathrm{Tan}_\gamma$ is defined as

$$\operatorname{Log}_{\gamma} \mu = T^{\mu}_{\gamma} - id.$$

The exponential map $\operatorname{Exp}_{\gamma}:\operatorname{Tan}_{\gamma}\to\mathcal{W}_2$ is defined as

$$\operatorname{Exp}_{\gamma} g = (g + id) \# \gamma,$$

where $T \# \mu$ is the measure pushforwarded by function T, defined as $[T \# \mu](A) = \mu(\{x : T(x) \in A\}).$

Yiye JIANG

Line segment in Tangent space = geodesic in \mathcal{W}_2

The geodesic (McCann's interpolant) between γ and μ

$$\operatorname{Exp}_{\gamma}[\alpha(T^{\mu}_{\gamma} - id)], \ \alpha : 0 \to 1,$$

イロン イ理 とく ヨン イヨン

Line segment in Tangent space = geodesic in \mathcal{W}_2

The geodesic (McCann's interpolant) between γ and μ

$$\begin{split} & \operatorname{Exp}_{\gamma}[\alpha(T^{\mu}_{\gamma}-id)], \ \alpha: 0 \to 1, \\ & = [\alpha(T^{\mu}_{\gamma}-id)+id] \# \gamma \end{split}$$

イロン イ理 とく ヨン イヨン

Related work: Univariate Wasserstein AR model

Chen et al. (2021); Zhang et al. (2021); Zhu and Müller (2021) proposed to interpret the regression operation geometrically.

Let μ be a random measure from $(\Omega, \mathcal{F}, \mathbb{P})$ to \mathcal{W}_2

$$egin{array}{lll} (extsf{Fréchet} extsf{mean}) & \mathbb{E}_{igoplus} oldsymbol{\mu} = rgmin_{
u \in \mathcal{W}_2} \mathbb{E} \left[d^2_W(oldsymbol{\mu},
u)
ight]. \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Related work: Univariate Wasserstein AR model

Chen et al. (2021); Zhang et al. (2021); Zhu and Müller (2021) proposed to interpret the regression operation geometrically.

Let μ be a random measure from $(\Omega, \mathcal{F}, \mathbb{P})$ to \mathcal{W}_2

 $(\text{conditional Fréchet mean}) \quad \mathbb{E}_{\oplus} \boldsymbol{\mu} | \boldsymbol{\gamma} = \argmin_{\nu \in \mathcal{W}_2} \mathbb{E} \left[d_W^2(\boldsymbol{\mu}, \nu) | \boldsymbol{\gamma} \right].$

Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)): for any fixed i = 1, ... N

$$\mathbb{E}\boldsymbol{x}_{it}|\boldsymbol{x}_{j,t-1} = u_i + \sum_{j=1}^N A_{ij}(\boldsymbol{x}_{j,t-1} - u_j) \Rightarrow \begin{cases} \boldsymbol{T}_{1,t-1} - id \in \operatorname{Tan}_{\mu_{1,\oplus}} \\ \boldsymbol{T}_{2,t-1} - id \in \operatorname{Tan}_{\mu_{2,\oplus}} \\ \vdots \end{cases}$$

3

イロン イ団 と イヨン イヨン

Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)): for any fixed i = 1, ... N

$$\mathbb{E}\boldsymbol{x}_{it}|\boldsymbol{x}_{j,t-1} = u_i + \sum_{j=1}^N A_{ij}(\boldsymbol{x}_{j,t-1} - u_j) \Rightarrow \begin{cases} \boldsymbol{T}_{1,t-1} - id \in \operatorname{Tan}_{\mu_{1,\oplus}} \\ \boldsymbol{T}_{2,t-1} - id \in \operatorname{Tan}_{\mu_{2,\oplus}} \\ \vdots \end{cases}$$

$$\begin{cases} \mathsf{Center} & \tilde{\boldsymbol{x}}_{it} = \boldsymbol{x}_{it} - u_i, & \stackrel{\mathsf{ref pt}}{\longrightarrow} \mathbb{E} \tilde{\boldsymbol{x}}_{it} = 0, \\ \mathsf{Push} & \mathbb{E} \tilde{\boldsymbol{x}}_{it} | \tilde{\boldsymbol{x}}_{j,t-1} = 0 + \sum_{j=1}^{N} A_{ij} \tilde{\boldsymbol{x}}_{jt}, \end{cases}$$

 \cong

3

イロン イ団 と イヨン イヨン

< ロト < 同ト < ヨト < ヨト

Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)): for any fixed i = 1, ... N

$$\mathbb{E}\boldsymbol{x}_{it}|\boldsymbol{x}_{j,t-1} = u_i + \sum_{j=1}^N A_{ij}(\boldsymbol{x}_{j,t-1} - u_j) \Rightarrow \begin{cases} \boldsymbol{T}_{1,t-1} - id \in \operatorname{Tan}_{\mu_{1,\oplus}} \\ \boldsymbol{T}_{2,t-1} - id \in \operatorname{Tan}_{\mu_{2,\oplus}} \\ \vdots \end{cases}$$

$$\begin{cases} \overleftarrow{\mathbf{x}}_{it} = \mathbf{x}_{it} - u_i, & \stackrel{\text{ref pt}}{\longrightarrow} \mathbb{E} \tilde{\mathbf{x}}_{it} = 0, \\ \text{Push} & \mathbb{E} \tilde{\mathbf{x}}_{it} | \tilde{\mathbf{x}}_{j,t-1} = 0 + \sum_{j=1}^N A_{ij} \tilde{\mathbf{x}}_{jt}, \\ \end{cases} \\ \implies \begin{cases} \text{Center} & \widetilde{\boldsymbol{\mu}}_{it} = ? \stackrel{\text{ref pt}}{\longrightarrow} \mathbb{E}_{\oplus} \widetilde{\boldsymbol{\mu}}_{it} = c \\ \text{Push} & \mathbb{E}_{\oplus} \widetilde{\boldsymbol{\mu}}_{it} | \widetilde{\boldsymbol{\mu}}_{j,t-1} = \operatorname{Exp}_c \left(\sum_{j=1}^N A_{ij} (\widetilde{T}_{j,t-1} - id) \right) \end{cases} \end{cases}$$

Center a random measure μ , s.t. $\mathbb{E}_{\oplus}\mu = U(0,1)$

Zhu and Müller (2021) proposed a notion of addition for two increasing functions:

$$g \oplus f := g \circ f \implies g \ominus f := g \circ f^{-1},$$

where $^{-1}$ are the left continuous inverse. For μ , its centered measure $\tilde{\mu}$ is defined by the quantile function

$$\widetilde{\boldsymbol{F}}_{\mu}^{-1} = \boldsymbol{F}_{\mu}^{-1} \ominus F_{\oplus}^{-1},$$

where $\pmb{F}_{\!\mu}^{-1}, F_{\oplus}^{-1}$ et $\widetilde{\pmb{F}}_{\!\mu}^{-1}$ are respectively quantile functions of $\mu, \mu_{\oplus}, \text{ and } \widetilde{\mu}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 ののの

Center a random measure $\boldsymbol{\mu}$, s.t. $\mathbb{E}_{\oplus}\boldsymbol{\mu} = U(0,1)$

=

Yiye JIANG

★ B > < B >

$$\widetilde{\boldsymbol{\mu}}_{it} = \boldsymbol{\epsilon}_{it} \# \operatorname{Exp}_{Leb} \left(\sum_{j=1}^{N} A_{ij} (\widetilde{\boldsymbol{F}}_{j,t-1} - id) \right),$$

where $\{\epsilon_{it}\}_{i,t}$ are i.i.d. random increasing functions, ϵ_{it} is almost surely independent of $\mu_{j,t-1}$, $i, j = 1, \ldots, N$, for all $t \in \mathbb{Z}$, and

$$\mathbb{E}\left[\boldsymbol{\epsilon}_{it}(x)\right] = x, \, x \in [0, 1].$$

$$\widetilde{\boldsymbol{\mu}}_{it} = \boldsymbol{\epsilon}_{it} \# \operatorname{Exp}_{Leb} \left(\sum_{j=1}^{N} A_{ij} (\widetilde{\boldsymbol{F}}_{j,t-1} - id) \right),$$

where $\{\epsilon_{it}\}_{i,t}$ are i.i.d. random increasing functions, ϵ_{it} is almost surely independent of $\mu_{j,t-1}$, $i, j = 1, \ldots, N$, for all $t \in \mathbb{Z}$, and

$$\mathbb{E}\left[\boldsymbol{\epsilon}_{it}(x)\right] = x, \, x \in [0, 1].$$

Assumption

- All μ_{it} , $t \in \mathbb{Z}$, $i = 1, \dots, N$ are supported on [0, 1].
- (N-simplex) $\sum_{j=1}^{N} A_{ij} \leq 1$ and $0 \leq A_{ij} \leq 1$.

<ロト <回ト < 回ト < 回ト = 三日

$$\widetilde{\boldsymbol{\mu}}_{it} = \boldsymbol{\epsilon}_{it} \# \operatorname{Exp}_{Leb} \left(\sum_{j=1}^{N} A_{ij} (\widetilde{\boldsymbol{F}}_{j,t-1} - id) \right),$$

where $\{\epsilon_{it}\}_{i,t}$ are i.i.d. random increasing functions, ϵ_{it} is almost surely independent of $\mu_{j,t-1}$, $i, j = 1, \ldots, N$, for all $t \in \mathbb{Z}$, and

$$\mathbb{E}\left[\boldsymbol{\epsilon}_{it}(x)\right] = x, \, x \in [0, 1].$$

Assumption

- All μ_{it} , $t \in \mathbb{Z}$, $i = 1, \dots, N$ are supported on [0, 1].
- (*N*-simplex) $\sum_{j=1}^{N} A_{ij} \leq 1$ and $0 \leq A_{ij} \leq 1$.

Quantile function representation

$$\widetilde{F}_{i,t}^{-1} = \epsilon_{i,t} \circ \left[\sum_{j=1}^{N} A_{ij} \left(\widetilde{F}_{j,t-1}^{-1} - id \right) + id \right],$$

<ロト <回ト < 回ト < 回ト = 三日

$$\widetilde{\boldsymbol{\mu}}_{it} = \boldsymbol{\epsilon}_{it} \# \operatorname{Exp}_{Leb} \left(\sum_{j=1}^{N} A_{ij} (\widetilde{\boldsymbol{F}}_{j,t-1} - id) \right),$$

where $\{\epsilon_{it}\}_{i,t}$ are i.i.d. random increasing functions, ϵ_{it} is almost surely independent of $\mu_{j,t-1}$, $i, j = 1, \ldots, N$, for all $t \in \mathbb{Z}$, and

$$\mathbb{E}\left[\boldsymbol{\epsilon}_{it}(x)\right] = x, \, x \in [0, 1].$$

Assumption

- All μ_{it} , $t \in \mathbb{Z}$, $i = 1, \dots, N$ are supported on [0, 1].
- (*N*-simplex) $\sum_{j=1}^{N} A_{ij} \leq 1$ and $0 \leq A_{ij} \leq 1$.

Quantile function representation

$$\widetilde{F}_{i,t}^{-1} = \epsilon_{i,t} \circ \left[\sum_{j=1}^{N} A_{ij} \left(\widetilde{F}_{j,t-1}^{-1} - id \right) + id \right], \quad A \iff \mathcal{G}$$

Existence, uniqueness, and stationarity

$$\widetilde{F}_{i,t}^{-1} = \epsilon_{i,t} \circ \left[\sum_{j=1}^{N} A_{ij} \left(\widetilde{F}_{j,t-1}^{-1} - id \right) + id \right]$$
(8)

Admissible as a time series model: existence, uniqueness and stationarity of series $(\widetilde{F}_{i,t}^{-1})_t, i = 1, ... N$.

ヘロア 人間 アメヨア 人間 アー

Existence, uniqueness, and stationarity

$$\widetilde{\boldsymbol{F}}_{i,t}^{-1} = \boldsymbol{\epsilon}_{i,t} \circ \left[\sum_{j=1}^{N} A_{ij} \left(\widetilde{\boldsymbol{F}}_{j,t-1}^{-1} - id \right) + id \right]$$

Admissible as a time series model: existence, uniqueness and stationarity of series $(\widetilde{F}_{i,t}^{-1})_t, i = 1, \ldots N$.

Theoretical results:

Under two classical conditions, we have proved:

• Iterated random function system (8) admits uniquely one solution in the metric space

$$(\mathcal{T}, \|\cdot\|_{Leb})^{\otimes N}, \mathcal{T} = \{F_{\mu}^{-1} | \mu \in \mathcal{W}_2(\mathbb{R})\}$$

• The unique solution is stationary (2nd order) in the Hilbert space

$$(\mathcal{T}, \langle, \rangle_{Leb})^{\otimes N}, \mathcal{T} = \{F_{\mu}^{-1} | \mu \in \mathcal{W}_2(\mathbb{R})\}$$

according to a proper definition for functional TS.
Constrained least-square estimation

For the auto-regressive model

$$\widetilde{F}_{i,t}^{-1} = \epsilon_{i,t} \circ \left[\sum_{j=1}^{N} A_{ij} \left(\widetilde{F}_{j,t-1}^{-1} - id \right) + id \right],$$

given the centered observations $\widetilde{\pmb{F}}_t^{-1},\,t=0,1,\ldots,T$, we propose

$$\widetilde{\boldsymbol{A}}_{i:} = \operatorname*{arg\,min}_{A_{i:}\in B^{1}_{+}} \frac{1}{T} \sum_{t=1}^{T} \left\| \widetilde{\boldsymbol{F}}_{i,t}^{-1} - \sum_{j=1}^{N} A_{ij} \left(\widetilde{\boldsymbol{F}}_{j,t-1}^{-1} - id \right) - id \right\|_{Leb}^{2},$$

where B^1_+ is the constraint set of N-simplex.

Constrained least-square estimation

For the auto-regressive model

$$\widetilde{F}_{i,t}^{-1} = \epsilon_{i,t} \circ \left[\sum_{j=1}^{N} A_{ij} \left(\widetilde{F}_{j,t-1}^{-1} - id \right) + id \right],$$

given the centered observations $\widehat{m{F}}_t^{-1},\,t=0,1,\ldots,T$, we propose

$$\hat{A}_{i:} = \underset{A_{i:}\in B_{+}^{1}}{\arg\min} \frac{1}{T} \sum_{t=1}^{T} \left\| \hat{F}_{i,t}^{-1} - \sum_{j=1}^{N} A_{ij} \left(\hat{F}_{j,t-1}^{-1} - id \right) - id \right\|_{Leb}^{2},$$

where B^1_+ is the constraint set of N-simplex.

<ロト <回ト < 回ト < 回ト = 三日

Constrained least-square estimation

For the auto-regressive model

$$\widetilde{F}_{i,t}^{-1} = \epsilon_{i,t} \circ \left[\sum_{j=1}^{N} A_{ij} \left(\widetilde{F}_{j,t-1}^{-1} - id \right) + id \right],$$

given the centered observations $\widehat{m{F}}_t^{-1},\,t=0,1,\ldots,T$, we propose

$$\hat{A}_{i:} = \underset{A_{i:}\in B_{+}^{1}}{\arg\min} \frac{1}{T} \sum_{t=1}^{T} \left\| \hat{F}_{i,t}^{-1} - \sum_{j=1}^{N} A_{ij} \left(\hat{F}_{j,t-1}^{-1} - id \right) - id \right\|_{Leb}^{2},$$

where B^1_+ is the constraint set of N-simplex.

Theoretical result:

$$\hat{A} \xrightarrow{p} A$$
, as $T \to +\infty$.

<ロト <回ト < 回ト < 回ト = 三日

Age distribution of countries

Figure 8: Inferred age structure graph. The non-zero coefficients A_{ij} are represented by the weighted directed edges from node j to node i. Thicker arrow corresponds to larger weights. The blue circles around nodes represent the weights of self-loop.

Yiye JIANG

Figure 9: Evolution of age structure from 1995 to 2035 (projected). Estonia (top left), Latvia(top right), Sweden (bottom left) versus Norway (bottom right).

Yiye JIANG

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Age distribution of countries

Figure 10: Evolution of age structure from 1995 to 2035 (projected) of France (left) versus Italy (right).

Data and problems

Q Graph learning with auto-regressive (AR) models from matrix-variate time series

from multivariate distributional time series

Operation of scalar time series on a graph

A (1) < A (1) < A (1) </p>

Goal: given $(\mathbf{x}_{nt})_t \in \mathbb{R}$, $n \in \mathcal{N} = \{1, \ldots, N\}$, finding the highly predictable series $i \in I \subset \mathcal{N}$, such that their observations \mathbf{x}_{it} can be reconstructed accurately by the past and present obs of other series $\mathbf{x}_{j\tau}$, $j \in I^c$, $t - H \leq \tau \leq t$ in real time.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goal: given $(\mathbf{x}_{nt})_t \in \mathbb{R}$, $n \in \mathcal{N} = \{1, \ldots, N\}$, finding the highly predictable series $i \in I \subset \mathcal{N}$, such that their observations x_{it} can be reconstructed accurately by the past and present obs of other series $x_{j\tau}$, $j \in I^c$, $t - H \leq \tau \leq t$ in real time.

 \mathcal{G} can be given, e.g. geographical graph of the weather stations.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goal: given $(\mathbf{x}_{nt})_t \in \mathbb{R}$, $n \in \mathcal{N} = \{1, \ldots, N\}$, finding the highly predictable series $i \in I \subset \mathcal{N}$, such that their observations \mathbf{x}_{it} can be reconstructed accurately by the past and present obs of other series $\mathbf{x}_{j\tau}$, $j \in I^c$, $t - H \leq \tau \leq t$ in real time.

 $\mathcal G$ can be given, e.g. geographical graph of the weather stations.

We use 3 prediction methods to evaluate the node predictability: *kernel ridge regression, linear regression, and neural networks.*

 \longrightarrow 3 ranking procedures.

<ロト <回ト < 回ト < 回ト = 三日

Data and problems

- Q Graph learning with auto-regressive (AR) models
 from matrix-variate time series
 - from multivariate distributional time series
- 3 Predictability of scalar time series on a graph

- 4 回 ト 4 回 ト

In this thesis, we provided new statistical tools for analyzing spatio-temporal and multi-dimensional data. In particular, we extended the classical VAR(1) model for the complex data types: matrix-variate and distributional data in the way to serve graph learning.

< □ > < 同 > < 回 > < 回 > < 回 >

In this thesis, we provided new statistical tools for analyzing spatio-temporal and multi-dimensional data. In particular, we extended the classical VAR(1) model for the complex data types: matrix-variate and distributional data in the way to serve graph learning.

Future works:

These two works introduce a more general topic: **object data analysis**. Especially, the 2nd work demonstrates one important way to perform the analysis, that is to view data points as **random objects in a metric space**.

イロト イポト イヨト イヨト

(a)

G simple, undirected, weighted (bounded), N nodes

 $\iff L_N \in$ a subspace of $\mathbb{R}^{N \times N}$, endowed with e.g. $\|\cdot\|_{\mathbf{F}}$.

イロン イロン イヨン イヨン 三日

G simple, undirected, weighted (bounded), N nodes

 $\iff L_N \in$ a subspace of $\mathbb{R}^{N \times N}$, endowed with e.g. $\|\cdot\|_{\mathbf{F}}$.

Already available graph-valued models:

- Network regression with Euclidean predictors (Zhou and Müller, 2021): $\mathbb{E}_{\oplus}G|\mathbf{x}$. The model is applied to study the evolution of brain connectivity wrt age
- Two sample tests (Ginestet et al., 2017): $G_i \stackrel{i.i.d.}{\sim} G_1, G_j \stackrel{i.i.d.}{\sim} G_2 \rightarrow \mathbb{E}_{\oplus}G_1? = \mathbb{E}_{\oplus}G_2$. The model is applied to study the impact of gender on brain connectivity.

G simple, undirected, weighted (bounded), N nodes

 $\iff L_N \in$ a subspace of $\mathbb{R}^{N \times N}$, endowed with e.g. $\|\cdot\|_{\mathbf{F}}$.

Already available graph-valued models:

- Network regression with Euclidean predictors (Zhou and Müller, 2021): $\mathbb{E}_{\oplus}G|\mathbf{x}$. The model is applied to study the evolution of brain connectivity wrt age
- Two sample tests (Ginestet et al., 2017): $G_i \stackrel{i.i.d.}{\sim} G_1, G_j \stackrel{i.i.d.}{\sim} G_2 \rightarrow \mathbb{E}_{\oplus}G_1? = \mathbb{E}_{\oplus}G_2$. The model is applied to study the impact of gender on brain connectivity.

More generalized models to be developed, e.g. Network (functional) regression with network predictors.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

- L. Ambrosio, N. Gigli, and G. Savaré. *Gradient flows: in metric spaces and in the space of probability measures.* Springer Science & Business Media, 2008.
- Y. Chen, Z. Lin, and H.-G. Müller. Wasserstein regression. *Journal* of the American Statistical Association, pages 1–14, 2021.
- P. Garrigues and L. Ghaoui. An homotopy algorithm for the lasso with online observations. *Advances in neural information processing systems*, 21:489–496, 2008.
- C. E. Ginestet, J. Li, P. Balachandran, S. Rosenberg, and E. D. Kolaczyk. Hypothesis testing for network data in functional neuroimaging. *The Annals of Applied Statistics*, pages 725–750, 2017.
- A. K. Gupta and D. K. Nagar. *Matrix variate distributions*. Chapman and Hall/CRC, 2018.
- R. P. Monti, C. Anagnostopoulos, and G. Montana. Adaptive regularization for lasso models in the context of nonstationary data streams. *Statistical Analysis and Data Mining: The ASA Data Science Journal*, 11(5):237–247, 2018.

Yiye JIANG

C. Zhang, P. Kokoszka, and A. Petersen. Wasserstein autoregressive models for density time series. *Journal of Time Series Analysis*, 2021.

Y. Zhou and H.-G. Müller. Dynamic network regression. arXiv preprint arXiv:2109.02981, 2021.

Yiye JIANG

Figure 11: Running time of each online update. The red curves are the mean running time of the high-dimensional procedure, taken over 10 simulations each. The blue curve is the mean running time of the low-dimensional procedure, taken over the same 30 simulations. The shaded areas represent the corresponding one standard deviations. Other simulation settings: N = 20, F = 5, M = 12, number of model parameters = 1500.

< □ > < 同 > < 回 > < 回 > < 回 >

Figure 12: Average one step prediction error of raw time series. Projected OLS (top), and Lasso (bottom).

3

イロト イヨト イヨト イヨト

Homotopy algorithms and optimality conditions

Algo:
$$t_1 \rightarrow t_2$$
:

$$\theta^* = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} L(\theta), \ L(\theta) = \frac{1}{2} \left\| \begin{pmatrix} \mathbf{y} \\ \mu y_{t+1} \end{pmatrix} - \begin{pmatrix} \mathbf{X} \\ \mu \mathbf{x}_{t+1}^\top \end{pmatrix} \theta \right\|_{\ell_2}^2 + \lambda \|\theta\|_{\ell_1},$$

 $\frac{\partial L}{\partial \theta} = 0 \implies \text{Optimality condition} \implies \text{Homotopy algorithm}.$

Enable again linear methods - towards tangent space

$$d_W(\mu, \gamma)^2 = \inf_{\pi \in \Pi(\mu, \gamma)} \int_{\mathbb{R} \times \mathbb{R}} (x_1 - x_2)^2 d\pi(x_1, x_2)$$

When γ is an atomless measure, that is F_{γ} is continue, we have π^* exists uniquely and is induced by a function $T_{\gamma}^{\mu} : \mathbb{R} \to \mathbb{R}$, such that

$$T^{\mu}_{\gamma} \# \gamma = \mu$$

where $[T^{\mu}_{\gamma} \# \gamma](A) = \gamma(\{x : T^{\mu}_{\gamma}(x) \in A\}), A \subset R. T^{\mu}_{\gamma}$ is called optimal transport map. Furthermore,

$$T^{\mu}_{\gamma}(x) = F^{-1}_{\mu} \circ F_{\gamma}(x).$$

Characterization of the difference between μ, γ :

$$d_W(\mu, \gamma) \Longrightarrow T^{\mu}_{\gamma}(x) \in \mathcal{L}^2_{\gamma}(\mathbb{R}).$$

イロト イヨト イヨト イヨト

Adaptive tuning of lambda

Updating rule can be interpreted as the steps in the **projected stochastic gradient descent** derived for the batch problem

$$\lambda_n^* = \operatorname*{arg\,min}_{\lambda \ge 0} \frac{1}{2n} \sum_{t=1}^n \|\mathbf{x}_{t+1} - \mathbf{A}(t, \lambda) \mathbf{x}_t\|_{\ell_2}^2,$$

which is the average one step prediction error.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

KS/KP as a common practice

 $vec(X_i)+vector model + KP/KS$ imposed in parameters is a common practice to extend vector models to matrix-variate data in literature. For example, Gupta and Nagar (2018) proposed a matrix-variate Normal distribution as:

$$\operatorname{vec}(\mathbf{X}_i) \stackrel{iid}{\sim} \mathcal{N}(\mathsf{u}, \Sigma), \text{ where } \Sigma = \Sigma_1 \otimes \Sigma_2,$$

where \otimes is the Kronecker product.

< ロ > < 同 > < 三 > < 三 > <