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Data and problems

Data recorded over a network of sensors such as traffic analysis,
brain network analysis, social network, and citation network.

Data we consider in this thesis:

@ Spatio-temporal: Observations along time per sensor (node).

@ 3 diverse forms: Observation per sensor (node) per time is
scalar/vector/distribution.
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Data and problems

Data illustration: scalar observation
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Figure 1: Monthly climatological records of weather stations in
California. A value x;; € IR is recorded on each station (sensor/node) i,
at each time ¢. In this example, x;; is the average temperature.
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Data and problems

Data illustration: vectorial observation

e 1
A5 3 iy B B o £ @ o %
Montns

Figure 2: Monthly climatological records of weather stations in
California. A vector x;; € IR* is recorded on each station (sensor/node)
i, at each time ¢. In this example, x;; is the vector of: min/max/avg

temperature, and precipitation.
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Data and problems

Data illustration: distributional observation
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Figure 3: Annual records of age distributions of EU countries. A
distribution p;; € P([0,1]) is recorded on each node i, at each time ¢.
In this example, p;; is an age distribution. Time is represented by color
instead of z-axis. Lighter curves correspond to the distributions from
more recent years.
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Data and problems

A network of sensor — a collection of random processes indexed
by nodes.
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Data and problems

A network of sensor — a collection of random processes indexed
by nodes.

@ Main goal: identifying the dependency structure between
these random processes = graph learning from vectorial
(xi¢): and distributional (t;¢); processes.

@ Second goal: understanding the predictability of each process,
for scalar x;; data. — the details are not considered in this
presentation.
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© Graph learning with auto-regressive (AR) models
@ from matrix-variate time series
@ from multivariate distributional time series
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Graph learning with auto-regressive (AR) models

Causal graph and vector auto-regressive model

For (xi4): € IR, i =1,..., N, the VAR Models have been widely
adapted in literature to learn their causality (Granger) dependency.

VAR(1) : x; —u = A(x¢—1 — u) + 24, (1)
where x; = (x14,...,2xnNt), u = Exy, and z; is white noise.

adj. mat.
=

When VAR (1) is stationary, the sparsity structure of A g.

Contribution of the thesis:

G of (x4)¢ € IR + online inference,

G of (xz; R —
of () € { G of (i) € Wa(IR).
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Kronecker sum, causal product graph and Matrix AR

(Xz‘t)tEIRF, i=1,...,N (Xt)te]RNXF7
where X;'s row ~ spatial (node-wise) sim, col ~ feature dim.

We propose the matrix-variate AR for (X;)::
x; —u= A(x4_1 —u) + z, with A = Ap @ A, (1)
where x; = vec(Xy) = (xift)ip, An € RVN, Ap e RF*F, and

Ar @ AN = A Q@ INn + Ir ® AN.
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Kronecker sum, causal product graph and Matrix AR

(Xit)tEIRF, i=1,...,N (Xt)te]RNXF7
where X;'s row ~ spatial (node-wise) sim, col ~ feature dim.

We propose the matrix-variate AR for (X;)::

x; —u= A(x4_1 —u) + z, with A = Ap @ A, (1)
where x; = vec(Xy) = (xift)ip, An € RVN, Ap e RF*F, and
Ap QAN = Ar ® IN + Ir @ Ax.

KS endows the matrix representation of the vector Model (1'):
X;—U=AxXi_1 —U) + (X1 — V)AL + Zy,

AN ~ spatial dependency, Ap ~ feature dependency.
9/40



Kronecker sum, causal product graph and Matrix AR
Moreover, the vector representation implies

adj. mat.

A = gOf (mift)t,
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Kronecker sum, causal product graph and Matrix AR

Moreover, the vector representation implies

adj. mat.

A = gOf (mift)t,

then the KS structure in A furthermore implies

adj. mat. adj. mat.

G = GN[OGF, where Gy <= Ay and Gr <= Ap.

0 oO——0——0
o [ — O0——0——0
4 © oL —0—{—-0

Cartesian product of subgraphs. Subgraphs are retained in every
section of the other dimension. For nodes on right as (z;f¢), V fixed f,
Subgraph of (zif:): = G, V fixed i, Subgraph of (@;5¢)¢ = Gp.

Gn = spatial graph of (x;):, Gr = feature graph. ‘
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Constraint set Kg

Due to the model identifiability and application reasons, we employ
a more sophisticated structure for A. The complete MAR(1) is

Xy = Axy 1+ 2z, A€ /Cg,

where x; = vec (X4), and

Kg = {Me]RNFXNF :IMp e RFF My € RV*Y | such that,
offd(M) = Mg @ My, with, diag(Mg) = 0, diag(My) = 0,
Mg = Mg, My = M},
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Constraint set Kg

Figure 4: Kg for N = 3, F = 2. M (left), My (right upper), My (right
bottom).
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Matrix AR(1)

The complete MAR(1) is
Xt = AXt_l + Z¢, Ae ]Cg,
where x; = vec (X;), we assume Ex; = 0 for now, and

Kg = {MeRMNEIMp e RFF My e RV*Y, such that,
offd(M) = Mg @ My, with, diag(Mr) = 0, diag(My) =0,
Mp = M, My = MY},
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Matrix AR(1)

The complete MAR(1) is
Xt = AXt_l + Z¢, Ae ]Cg,
where x; = vec (X;), we assume Ex; = 0 for now, and

Kg = {MeRMNEIMp e RFF My e RV*Y, such that,
offd(M) = Mg @ My, with, diag(Mr) = 0, diag(My) =0,
Mp = M, My = MY},

z; € RVE ~ TID (0, %) is white noise with a non-singular

covariance structure Y and bounded fourth moments, with
[All2 < 1.
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Sparse estimators of Ay

MAR(1):
Xy = Axy_1 + Z¢, Ae ICg.
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Sparse estimators of Ay

MAR(L):
Xy = Axy_ 1+ 2, A€ ICg.

@ In low dimension: AOLS projected onto linear subspace Kg.
CLT — nullity test on Ay.
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A(t,\) = argmin — Z [x, — AXT,1||§2 + A || Axly,
AeKg 2t
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RN
A(t,\) = argmin — Z [x, — AXT,1||§2 + A || Axly,
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T=1

o Off-line: for example, the proximal gradient descend,
o Online: Given x¢y1, A(t, At) = A(t+ 1, Aeq1).
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Sparse estimators of Ay

MAR(L):
Xy = Axy_ 1+ 2, A€ ICg.

@ In low dimension: AOLS projected onto linear subspace Kg.
CLT — nullity test on Ay.

@ In high dimension, we propose the novel Lasso

1 ¢ 2
A(t,)) = in — L — Ax, |2 + MF AN,
(t, ) agg;cr;ln 2tZHX Xr-1llg, tF [ An|p,

=1
o Off-line: for example, the proximal gradient descend,
o Online: Given x¢y1, A(t, At) = A(t+ 1, Aeq1).
>\t - )\t+1v A(ta )‘t) - A<t7 )‘t+1)1 A<t7 )‘tJrl) - A(t + 13 )‘t+1)-
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Homotopy algorithms and optimality conditions

. 1
6" = argmin L(0), L(0) = o[y = XO|, + A0,
feR?
Algo: 6*(A1) — 6*(\2) relies on Optimality condition of
minimizer 6*:
0L(0)

2y =0 = XT(X0" —y) + 2w =0, w=2[6",.
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Homotopy algorithms and optimality conditions

. 1
0" = argmin L(0), L(0) = 27Hy — X0/7, + A6]e,.
feR?

Algo: 6*(A1) — 6*(\2) relies on Optimality condition of
minimizer 6*:
0L(0)
00
Unique 6* = (67,0) at A\, X = (X1, Xp), w = (w1, wp):

—0 — X' (X0 —y)+Aw =0, w = 9|0,

0F = (X{Xy) 1 (X{y — Aw1),
)\W() =Yy — XOTXlef

Continuity = (8) is the explicit form of all lasso solutions in a
neighbourhood of A, which ends with the critical values.
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Sub-gradients under the structure constraint

1« 2
min & 7; Ixr — Axr_aly, + AF [ Ax,,

,OL(A)
oA

while A € Kg
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Sub-gradients under the structure constraint

min — Z |x; — Ax-_1|7, + AF |Ax,,

Aekg 2t
Sataras

OL(A)

? 74 while A € Kg :(—D =
Kg=@®P span{U} = A = Z (U, A% Uy, where
keK keK
Ir@An = Y Uk, AUy, Ky © K.
k‘GKN
Lasso above becomes
2
1< 0 0
Aoe]RNmeF o Z_: ;<Uk’A YUr—1| 4+ A Z Uk, A7) Uy,
= cK 0 ke KN 0
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Sub-gradients under the structure constraint

a@fﬁf) = 0 = The optimality condition of A € Kg:

Projpg <Af‘t(0) - ft(1)) —0,

Projj: (Af‘t(o) - ft(1)) FAP@W! =0,

Projs <Af‘t(0) - f‘t(l)> FAP@WO =0,

A~ t o~ t .
where T4(0) =Y _ x, x|, Ty(1) =Y x,x] |, W0is
the sub-gradient matrix of zero entries in An, and W is the sign
matrix of active entries in An.
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Adaptive tuning of lambda

A(t, Ae) — A(t, Ader1), At Adpy1) — A(E+ 1, A1)

At = A1
Monti et al. (2018); Garrigues and Ghaoui (2008) propose an
adaptive tuning method, in our notations:

1
frer(V) = 5 lxesn = At N7,
and updating rule:

dfir1(N)

>\t+1 = >\t - UT’)\:)\tv

dA(t,N)

[x=, can be calculated from the optimality condition of
A(t,\p).
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Online graph and trend learning

Come back to the assumption:

E(x;); =0, VT =

t 2
%ZT:l ||XT - AX7-71||£2 *

However, raw data E(x.), = b, that is, a trend is present.

.
:

Offline: Detrend x, — BT = is forbidden online.

Yiye JIANG
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T D T U
Online graph and trend learning

Augmented data model:
x; = by + x}, — Observations
x, = AX]_; + 24, — underlying stationary process.
In particular, we consider periodic trend of period M:
b;=b,, m=0,...M —1, m =t mod M.
Augmented structured matrix Lasso:
| M=
argmin - Z Z H(Xr—bm)_A(XT—l_bm—l)Hzgg+)‘tFHANH€1v
A b 2t
EICQ, m m=0 TEIm,t
where I, = {T =1,...,t: 7 mod M = m}.

Detrend + graph estimation simultaneously
== Online graph learning on raw data
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Climatology data

(e LN CETGIERVH L IETN LR FENVEN O W T SIEll  from matrix-variate time series

Figure 5: California weather graph. Graph Adjacency matrix (left),
visualization on the map (right) using sensor coordinates. The nodes
with bigger sizes connect with more nodes.
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Climatology data

o
5 8

Temperature(C*)
Precipitation(0.1mm)

Temperature(C*)
ey

o N & o

Jan  Mar May July Sept Nov Jan  Mar May july Sept Nov Jan  Mar May July Sept Nov

Minimal temperature Average temperature Precipitation

Figure 6: Estimated trends along years. On the left, middle, right are
the estimated trends at different years of a certain station for the 3
features. Experiment settings: N =27, F =4, M = 12.
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Figure 7: Updated feature graph at t = 1522. Projected OLS (left), and
Lasso (right). Experiment settings: N =27, F =4, M = 12.
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Note that ¢ = 1522 < #params = 1761.
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(GET LN CETGILERVH L RETN LR VIR (N W T DIl from multivariate distributional time series

Recall the data setting:

Age/100

Learn G of (pit): € Wa(IR),7 = 1,... N with a multivariate
distributional AR model.
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Random probability measures in Wasserstein space

W) = {ue PR)| [ *du(o) < o}
R
endowed with the 2-Wasserstein distance

dw(p,v)? =  inf J (z1 — x2)%dm (21, 22)
mell(p,y) JRxR
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Random probability measures in Wasserstein space

W) = {ue PR)| [ *du(o) < o}
R
endowed with the 2-Wasserstein distance

dw () = inf f (21— 22)%dr (21, 22)
mell(1,y) JRxIR

e m 1
|~:1Rf0 (F,* (u) —F_l(u))Qdu,

where Fu_l(u), F{l(u) are the quantile functions of x and 7.
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Random probability measures in Wasserstein space

W) = {ue PR)| [ *du(o) < o}
R
endowed with the 2-Wasserstein distance

dw () = inf f (21— 22)%dr (21, 22)
mell(1,y) JRxIR

oim (1
|~:1RJ0 (F ' (u) ~F(w)?du,

where Fu_l(u), F{l(u) are the quantile functions of x and 7.

W is not linear space. Chen et al. (2021); Zhang et al. (2021);
Zhu and Miiller (2021) extended the univariate AR model

T —u = a(xi—1 —u) + €,
by relying on the notion of Tangent space in W.
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Enable again linear methods - Tangent space

Wy := Wh(IR) has a pseudo-Riemannian structure (Ambrosio
et al., 2008).

Let v € W5 be an atomless measure (that is it possesses a
continuous cdf F), the tangent space at 7 is defined as

[:2
Tan, = {t(T4 —id) : p e Wy, t >0} 7,

where T/ = Fljl o F, is the optimal map, that pushes ~ forward
to u.

Yiye JIANG 25 /40
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Enable again linear methods - Tangent space

Wy := Wh(IR) has a pseudo-Riemannian structure (Ambrosio
et al., 2008).

Let v € W5 be an atomless measure (that is it possesses a
continuous cdf F), the tangent space at 7 is defined as

[:2
Tan, = {t(T4 —id) : p e Wy, t >0} 7,

where T/ = Fljl o F, is the optimal map, that pushes ~ forward
to p. Tan, is endowed with the inner product (-, -), defined by

(frgdy = fm F(@)g(x) dy(2), f.g€ L2(R),

and the induced norm | - |.
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Enable again linear methods - Tangent space

[:2
Tan, = {t(T4 —id) : pe Wy, t >0} 7,

where T} = Fljl o F, is the optimal map, that pushes ~y forward
to p.

Definition

The logarithmic map Log, : Wy — Tan, is defined as
Log., pp =T} —id.
The exponential map Exp,, : Tan, — W is defined as
Exp, g = (g + id)#7,

where T'#/. is the measure pushforwarded by function T, defined
as [T#u)(A) = u({z : T(2) € A}).
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Line segment in Tangent space = geodesic in W,

The geodesic (McCann's interpolant) between ~ and

Exp, [a(T} —id)], a: 0 — 1,
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Line segment in Tangent space = geodesic in W,

The geodesic (McCann's interpolant) between ~ and

Exp, [a(T} —id)], a: 0 — 1,
= [a(TY —id) + id]#y
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Related work: Univariate Wasserstein AR model

Chen et al. (2021); Zhang et al. (2021); Zhu and Miiller (2021)
proposed to interpret the regression operation geometrically.

Egpelpi-1 = Exp,, a(Ti-1 — id)

Let u be a random measure from (Q, F,P) to W,

(Fréchet mean) Egu = argxinE [ (p,v)] .
veVva
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Chen et al. (2021); Zhang et al. (2021); Zhu and Miiller (2021)
proposed to interpret the regression operation geometrically.

Egpelpi-1 = Exp,, a(Ti-1 — id)

Let u be a random measure from (Q, F,P) to W,

(conditional Fréchet mean) Egu|y = arg minE [dfy, (p, v)]7v] -

veWs
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Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)):
for any fixedi=1,... N
N Tl,tfl —1id € Tan,“@
Exit|mj,t—1 = ui+2 Ai]’ (azjvt_l—uj) = T2,t—1 —id € Tanm@
i=1 :
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Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)):
for any fixedi=1,... N
N Tl,tfl —1id € Tan,“@
Exit|mj,t—1 = ui+2 Ai]’ (mj,t—l_uj) = T2,t—1 —id € Tanm@
i=1 :

~ ref pt __ _
Center T = Ty — u;, S Ez; = 0,

~ |~ N ~
Push  E&y|Z;—1 =0+ X5, Aij&e,
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Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)):
for any fixedi=1,... N

Tl,tfl —1id € Tan,“@

N
Exit|mj,t_1 = ui+2 Ai]’ (mj,t—l_uj) = T2,t—1 —id € Tan;m@
j=1 :
—
. ref pt
Center X = Ty — uy, il Ez;; = 0,

Push Byl 1 = 0+ XL Ay,

ref ef pt

Center f1;; =7 Egfiis = c

Push  Egfii|fjt—1 = Exp, (Zj:l A (T — id))
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from multivariate distributional time series
Center a random measure p, s.t. Egu = U(0, 1)

Zhu and Miiller (2021) proposed a notion of addition for two
increasing functions:

g®fi=gof = gOfi=gof

where ~1 are the left continuous inverse.

For p, its centered measure fi is defined by the quantile function
Sl _ -1 —1
Fl-Flor",

where Fu_l, Fél et I?’H_l are respectively quantile functions of
s U, and ﬁ’
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from multivariate distributional time series
Center a random measure p, s.t. Egu = U(0, 1)
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Wasserstein multivariate AR Model
N ~
Pit = €it# EXprep Z Aij(Fjp—1 —id) |,
j=1

where {€;+}i+ are i.i.d. random increasing functions, €;; is almost
surely independent of p;;—1, 7,7 =1,...,N, for all t € Z, and

E[ei(z)] =z, x € [0,1].
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where {€;+}i+ are i.i.d. random increasing functions, €;; is almost
surely independent of p;;—1, 7,7 =1,...,N, for all t € Z, and
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Assumption
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N ~
Pit = €it# EXprep Z Aij(Fjp—1 —id) |,
j=1

where {€;+}i+ are i.i.d. random increasing functions, €;; is almost
surely independent of p;;—1, 7,7 =1,...,N, for all t € Z, and

E[ei(z)] =z, x € [0,1].
Assumption

o All iy, t€Z,i=1,...,N are supported on [0,1].
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Wasserstein multivariate AR Model
N ~
Pit = €it# EXprep <Z Aij(Fji1 — id)) ,
j=1

where {€;+}i+ are i.i.d. random increasing functions, €;; is almost
surely independent of p;;—1, 7,7 =1,...,N, for all t € Z, and

E[ei(z)] =z, x € [0,1].
Assumption

o All iy, t€Z,i=1,...,N are supported on [0,1].
e (N-simplex) Zévzl Ajj<land0<A;; <1

Quantile function representation

Z i Bty —id) +id

~

.F;- —Elto

A= g
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Existence, uniqueness, and stationarity

N
Fl=eqo Z i (B, —id) +id (8)

Admissible as a time series model: existence, uniqueness and
stationarity of series (Fi;l)t,i =1,...N.
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Existence, uniqueness, and stationarity

N
F'=¢o0 2 ( F, 1—id>+id]

Admissible as a time series model: existence, uniqueness and
stationarity of series (Fi;l)t,i =1,...N.

Theoretical results:
Under two classical conditions, we have proved:

e Iterated random function system (8) admits uniquely one
solution in the metric space

(T ee)® T = {F e Wa(R)}
e The unique solution is stationary (2nd order) in the Hilbert space
(T Oren)™ T = {F e Wa(R)}

according to a proper definition for functional TS.
33/40
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Constrained least-square estimation

For the auto-regressive model
~ . ‘
Fil =eyo ZAW<N1 id) +id|

given the centered observations ﬁfl, t=20,1,...,7, we propose

2

fiizzargmin%Z ZAU< i 1—zd>—id ,

1
AieBy t=1 Leb

where B! is the constraint set of N-simplex.

Yiye JIANG 34 /40



(GET LN CETGILERVH L RETN LR VIR (N W T DIl from multivariate distributional time series
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For the auto-regressive model

Fl=eyo ZAU< Fl —id)+id|,
given the centered observations ﬁ’lfl, t=20,1,...,T, we propose
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Constrained least-square estimation

For the auto-regressive model

Fl=eyo ZAU< Fl —id)+id|,
given the centered observations ﬁ’lfl, t=20,1,...,T, we propose

2

fiizzargmin%z ZA”( Tl id)—id ,

. 1
AiweBy T =1 Leb
where B is the constraint set of N-simplex.

Theoretical result:

Ab A as T — +oo0.

Y
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Age distribution of countries

Figure 8: Inferred age structure graph. The non-zero coefficients A;;
are represented by the weighted directed edges from node j to node .
Thicker arrow corresponds to larger weights. The blue circles around
nodes represent the weights of self-loop.
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Figure 9: Evolution of age structure from 1995 to 2035 (projected).
Estonia (top left), Latvia(top right), Sweden (bottom left) versus
Norway (bottom right).
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Graph learning with auto-regressive (AR) models

Age distribution of countries

from multivariate distributional time series
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Figure 10: Evolution of age structure from 1995 to 2035 (projected) of

France (left) versus Italy (right).
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Predictability of scalar time series on a graph

Goal: given (xp¢): € R, ne N = {1,..., N}, finding the highly
predictable series 7 € I < N/, such that their observations x;; can
be reconstructed accurately by the past and present obs of other
series xjr, j € [°,t — H < 7 < tin real time.
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Predictability of scalar time series on a graph

Goal: given (xp¢): € R, ne N = {1,..., N}, finding the highly
predictable series 7 € I < N/, such that their observations x;; can
be reconstructed accurately by the past and present obs of other
series xjr, j € [°,t — H < 7 < tin real time.

G can be given, e.g. geographical graph of the weather stations.

We use 3 prediction methods to evaluate the node predictability:
kernel ridge regression, linear regression, and neural networks.

— 3 ranking procedures.
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Conclusion and perspectives

In this thesis, we provided new statistical tools for analyzing
spatio-temporal and multi-dimensional data. In particular, we
extended the classical VAR(1) model for the complex data types:
matrix-variate and distributional data in the way to serve graph
learning.
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Conclusion and perspectives

In this thesis, we provided new statistical tools for analyzing
spatio-temporal and multi-dimensional data. In particular, we
extended the classical VAR(1) model for the complex data types:
matrix-variate and distributional data in the way to serve graph
learning.

Future works:

These two works introduce a more general topic: object data
analysis. Especially, the 2nd work demonstrates one important
way to perform the analysis, that is to view data points as
random objects in a metric space.
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Conclusion and perspectives

Graph itself is also an important data object. Among others, it is
adopted to represent the brain functional connectivity.
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G simple, undirected, weighted (bounded), N nodes

]R,NXN

<= Ly € a subspace of ,endowed with e.g.|| - |F.

Already available graph-valued models:

@ Network regression with Euclidean predictors (Zhou and
Miiller, 2021): EgG|x. The model is applied to study the
evolution of brain connectivity wrt age

@ Two sample tests (Ginestet et al., 2017):
Gi Z'kd' Gl, Gj l'kfd' G2 - E@Gl? = E@GQ. The model is

applied to study the impact of gender on brain connectivity.
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Conclusion and perspectives

Graph itself is also an important data object. Among others, it is
adopted to represent the brain functional connectivity.

G simple, undirected, weighted (bounded), N nodes

]R,NXN

<= Ly € a subspace of ,endowed with e.g.|| - |F.

Already available graph-valued models:

@ Network regression with Euclidean predictors (Zhou and
Miiller, 2021): EgG|x. The model is applied to study the
evolution of brain connectivity wrt age

@ Two sample tests (Ginestet et al., 2017):
Gi Z'kd' Gl, Gj l'kfd' G2 - E@Gl? = E@GQ. The model is

applied to study the impact of gender on brain connectivity.

More generalized models to be developed, e.g. Network
(functional) regression with network predictors.
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Figure 11: Running time of each online update. The red curves are the
mean running time of the high-dimensional procedure, taken over 10
simulations each. The blue curve is the mean running time of the
low-dimensional procedure, taken over the same 30 simulations. The
shaded areas represent the corresponding one standard deviations.
Other simulation settings: N = 20, F' =5, M = 12, number of model
parameters = 1500.
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—— Approach 1
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Figure 12: Average one step prediction error of raw time series.
Projected OLS (top), and Lasso (bottom).
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Conclusion and perspectives

Homotopy algorithms and optimality conditions

Algo: t1 — t:
1 X 2
o = argmin20), 260 = 5,2 ) = (o5 )0+l
feIR? 2 | \MYt+1 Xy s
oL

55 = 0 = Optimality condition == Homotopy algorithm.
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Conclusion and perspectives

Enable again linear methods - towards tangent space

dw(p,7)? = inf J (21 — m2)%dm (21, 22)
mell(p,y) JRxR

When y is an atomless measure, that is F’, is continue, we have
7* exists uniquely and is induced by a function 7% : R — IR,
such that

TH#y = p
where [T4'#~](A) = v({z : T (z) € A}), A< R. T¥ is called
optimal transport map. Furthermore,

TH(x) = F, ' o Fy(x).
Characterization of the difference between p, v:

dw (1,7) = T(x) € L2(R).
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Adaptive tuning of lambda

Updating rule can be interpreted as the steps in the projected
stochastic gradient descent derived for the batch problem

1 n
N = in — — At Nx|Z,
n = AIgIIN 5o t; Ix¢+1 (t, Nxelg,

which is the average one step prediction error.
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KS/KP as a common practice

vec(X;)+ vector model + KP/KS imposed in parameters is
a common practice to extend vector models to matrix-variate data

in literature. For example, Gupta and Nagar (2018) proposed a
matrix-variate Normal distribution as:

vec(X;) i N(u,X), where ¥ =¥ ® o,

where ® is the Kronecker product.
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