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Data and problems

Data recorded over a network of sensors such as traffic analysis,
brain network analysis, social network, and citation network.

Data we consider in this thesis:
Spatio-temporal: Observations along time per sensor (node).
3 diverse forms: Observation per sensor (node) per time is
scalar/vector/distribution.
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Data and problems

Data illustration: scalar observation
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Figure 1: Monthly climatological records of weather stations in
California. A value xit P IR is recorded on each station (sensor/node) i,
at each time t. In this example, xit is the average temperature.
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Data and problems

Data illustration: vectorial observation
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Figure 2: Monthly climatological records of weather stations in
California. A vector xit P IR4 is recorded on each station (sensor/node)
i, at each time t. In this example, xit is the vector of: min/max/avg
temperature, and precipitation.
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Data and problems

Data illustration: distributional observation

2035
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Figure 3: Annual records of age distributions of EU countries. A
distribution µit P Ppr0, 1sq is recorded on each node i, at each time t.
In this example, µit is an age distribution. Time is represented by color
instead of x-axis. Lighter curves correspond to the distributions from
more recent years.
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Data and problems

A network of sensor Ñ a collection of random processes indexed
by nodes.

Main goal: identifying the dependency structure between
these random processes ùñ graph learning from vectorial
pxitqt and distributional pµitqt processes.
Second goal: understanding the predictability of each process,
for scalar xit data. ÝÑ the details are not considered in this
presentation.
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Graph learning with auto-regressive (AR) models

Causal graph and vector auto-regressive model

For pxitqt P IR, i “ 1, . . . , N , the VAR Models have been widely
adapted in literature to learn their causality (Granger) dependency.

VARp1q : xt ´ u “ Apxt´1 ´ uq ` zt, (1)

where xt “ px1t, . . . ,xNtq, u “ Ext, and zt is white noise.

When VAR (1) is stationary, the sparsity structure of A
adj. mat.

ðñ G.

Contribution of the thesis:

G of pxitqt P IR Ñ

#

G of pxitqt P IRF + online inference,
G of pµitqt P W2pIRq.
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Kronecker sum, causal product graph and Matrix AR

pxitqt P IRF , i “ 1, . . . , N ðñ pXtqt P IRNˆF ,

where Xt’s row „ spatial (node-wise) dim, col „ feature dim.

We propose the matrix-variate AR for pXtqt:

xt ´ u “ Apxt´1 ´ uq ` zt, with A “ AF ‘ AN,

where xt “ vecpXtq “ pxiftqi,f , AN P IRNˆN , AF P IRFˆF , and

AF ‘ AN :“ AF b IN ` IF b AN.

KS endows the matrix representation of the vector Model:

Xt ´ U “ ANpXt´1 ´ Uq ` pXt´1 ´ UqAJ
F ` Zt,

AN „ spatial dependency, AF „ feature dependency.
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Kronecker sum, causal product graph and Matrix AR

Moreover, the vector representation implies

A
adj. mat.

ðñ G of pxiftqt,

then the KS structure in A furthermore implies

G “ GNlGF , where GN
adj. mat.

ðñ AN and GF
adj. mat.

ðñ AF.

Cartesian product of subgraphs. Subgraphs are retained in every
section of the other dimension. For nodes on right as pxiftqt, @ fixed f ,

Subgraph of pxf
itqt “ GN , @ fixed i, Subgraph of pxf

itqt “ GF .

GN “ spatial graph of pxitqt, GF “ feature graph.
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Constraint set KG

Due to the model identifiability and application reasons, we employ
a more sophisticated structure for A. The complete MAR(1) is

xt “ Axt´1 ` zt, A P KG ,

where xt “ vec pXtq, and

KG “
␣

M P IRNFˆNF : D MF P IRFˆF ,MN P IRNˆN , such that,
offdpMq “ MF ‘ MN, with, diagpMFq “ 0, diagpMNq “ 0,

MF “ MJ
F , MN “ MJ

N

(

,

Yiye JIANG 11 / 40



Graph learning with auto-regressive (AR) models from matrix-variate time series

Constraint set KG

Figure 4: KG for N “ 3, F “ 2. M (left), MN (right upper), MF (right
bottom).
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Matrix AR(1)

The complete MAR(1) is

xt “ Axt´1 ` zt, A P KG ,

where xt “ vec pXtq, we assume Ext “ 0 for now, and

KG “
␣

M P IRNFˆNF : D MF P IRFˆF ,MN P IRNˆN , such that,
offdpMq “ MF ‘ MN, with, diagpMFq “ 0, diagpMNq “ 0,

MF “ MJ
F , MN “ MJ

N

(

,

zt P IRNF „ IID p0,Σq is white noise with a non-singular
covariance structure Σ and bounded fourth moments, with
}A}2 ă 1.
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Sparse estimators of AN

MAR(1):
xt “ Axt´1 ` zt, A P KG .

In low dimension: pAOLS projected onto linear subspace KG .
CLT Ñ nullity test on pAN .
In high dimension, we propose the novel Lasso

Apt, λq “ argmin
APKG

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

` λtF }AN}ℓ1 ,

Off-line: for example, the proximal gradient descend,
Online: Given xt`1, Apt, λtq Ñ Apt ` 1, λt`1q.

λt Ñ λt`1, Apt, λtq Ñ Apt, λt`1q, Apt, λt`1q Ñ Apt ` 1, λt`1q.
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Homotopy algorithms and optimality conditions

θ˚ “ argmin
θPIRd

Lpθq, Lpθq “
1

2t
}y ´ Xθ}2ℓ2 ` λ}θ}ℓ1 ,

Algo: θ˚pλ1q Ñ θ˚pλ2q relies on Optimality condition of
minimizer θ˚:

BLpθq

Bθ
“ 0 ðñ XJpXθ˚ ´ yq ` λw “ 0, w “ B}θ˚}ℓ1 .

Unique θ˚ “ pθ˚
1 , 0q at λ, X “ pX1,X0q, w “ pw1,w0q:

#

θ˚
1 “ pXJ

1 X1q´1pXJ
1 y ´ λw1q,

λw0 “ y ´ XJ
0 X1θ

˚
1 .

(8)

Continuity ùñ (8) is the explicit form of all lasso solutions in a
neighbourhood of λ, which ends with the critical values.
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Sub-gradients under the structure constraint

min
APKG

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

` λF }AN}ℓ1

?
BLpAq

BA
while A P KG

“
à

KG “
à

kPK

spantrUku ñ A “
ÿ

kPK

xrUk, A
0yF rUk, where

IF b AN “
ÿ

kPKN

xrUk, A
0yF rUk,KN Ă K.

Lasso above becomes

min
A0PIRNFˆNF

1

2t

t
ÿ

τ“1

›

›

›

›

›

xτ ´
ÿ

kPK

xUk, A
0yUkxτ´1

›

›

›

›

›

2

ℓ2

` λ

›

›

›

›

›

ÿ

kPKN

xUk, A
0yUk

›

›

›

›

›

ℓ1
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Sub-gradients under the structure constraint
BLpA0q

BA0 “ 0 ùñ The optimality condition of A P KG :

ProjDF

´

ApΓtp0q ´ pΓtp1q

¯

“ 0,

ProjK1
N

´

ApΓtp0q ´ pΓtp1q

¯

` λIF b W 1 “ 0,

ProjK0
N

´

ApΓtp0q ´ pΓtp1q

¯

` λIF b W 0 “ 0,

where pΓtp0q “
řt

τ“1 xτ´1x
J
τ´1,

pΓtp1q “
řt

τ“1 xτx
J
τ´1, W

0 is
the sub-gradient matrix of zero entries in AN, and W 1 is the sign
matrix of active entries in AN.
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Graph learning with auto-regressive (AR) models from matrix-variate time series

Adaptive tuning of lambda

Apt, λtq Ñ Apt, λt`1q,Apt, λt`1q Ñ Apt ` 1, λt`1q

λt Ñ λt`1:
Monti et al. (2018); Garrigues and Ghaoui (2008) propose an
adaptive tuning method, in our notations:

ft`1pλq “
1

2
}xt`1 ´ Apt, λqxt}

2
ℓ2 ,

and updating rule:

λt`1 “ λt ´ η
dft`1pλq

dλ

ˇ

ˇ

λ“λt
,

dApt,λq

dλ |λ“λt can be calculated from the optimality condition of
Apt, λtq.
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Online graph and trend learning

Come back to the assumption:

Epxτ qτ “ 0, @τ ñ 1
t

řt
τ“1 }xτ ´ Axτ´1}

2
ℓ2
.
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However, raw data Epxτ qτ “ bτ , that is, a trend is present.
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Offline: Detrend xτ ´ pbτ ñ is forbidden online.
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Online graph and trend learning

Augmented data model:
#

xt “ bt ` x1
t,Ñ Observations

x1
t “ Ax1

t´1 ` zt,Ñ underlying stationary process.

In particular, we consider periodic trend of period M :

bt “ bm, m “ 0, ...,M ´ 1, m “ t mod M.

Augmented structured matrix Lasso:

argmin
APKG ,bm

1

2t

M´1
ÿ

m“0

ÿ

τPIm,t

}pxτ´bmq´Apxτ´1´bm´1q}2ℓ2`λtF }AN}ℓ1 ,

where Im,t “ tτ “ 1, ..., t : τ mod M “ mu.

Detrend + graph estimation simultaneously
ùñ Online graph learning on raw data
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Climatology data
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Figure 5: California weather graph. Graph Adjacency matrix (left),
visualization on the map (right) using sensor coordinates. The nodes
with bigger sizes connect with more nodes.
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Climatology data
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Figure 6: Estimated trends along years. On the left, middle, right are
the estimated trends at different years of a certain station for the 3
features. Experiment settings: N “ 27, F “ 4, M “ 12.
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Figure 7: Updated feature graph at t “ 1522. Projected OLS (left), and
Lasso (right). Experiment settings: N “ 27, F “ 4, M “ 12.

Note that t “ 1522 ă #params “ 1761.
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Recall the data setting:

2035

1995

Learn G of pµitqt P W2pIRq, i “ 1, . . . N with a multivariate
distributional AR model.
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Random probability measures in Wasserstein space

W2pIRq “

"

µ P PpIRq

ˇ

ˇ

ˇ

ż

IR
x2dµpxq ă 8

*

,

endowed with the 2-Wasserstein distance

dW pµ, γq2 “ inf
πPΠpµ,γq

ż

IRˆIR
px1 ´ x2q2dπpx1, x2q

}¨}2`IR
“

ż 1

0

`

F´1
µ puq ´ F´1

γ puq
˘2

du,

where F´1
µ puq, F´1

γ puq are the quantile functions of µ and γ.

W2 is not linear space. Chen et al. (2021); Zhang et al. (2021);
Zhu and Müller (2021) extended the univariate AR model

xt ´ u “ αpxt´1 ´ uq ` ϵt,

by relying on the notion of Tangent space in W2.
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Enable again linear methods - Tangent space

W2 :“ W2pIRq has a pseudo-Riemannian structure (Ambrosio
et al., 2008).

Let γ P W2 be an atomless measure (that is it possesses a
continuous cdf Fγ), the tangent space at γ is defined as

Tanγ “ ttpTµ
γ ´ idq : µ P W2, t ą 0u

L2
γ
,

where Tµ
γ “ F´1

µ ˝ Fγ is the optimal map, that pushes γ forward
to µ.

Tanγ is endowed with the inner product x¨, ¨yγ defined by

xf, gyγ :“

ż

IR
fpxqgpxq dγpxq, f, g P L2

γpIRq,

and the induced norm } ¨ }γ .
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Enable again linear methods - Tangent space

Tanγ “ ttpTµ
γ ´ idq : µ P W2, t ą 0u

L2
γ
,

where Tµ
γ “ F´1

µ ˝ Fγ is the optimal map, that pushes γ forward
to µ.

Definition
The logarithmic map Logγ : W2 Ñ Tanγ is defined as

Logγ µ “ Tµ
γ ´ id.

The exponential map Expγ : Tanγ Ñ W2 is defined as

Expγ g “ pg ` idq#γ,

where T#µ is the measure pushforwarded by function T , defined
as rT#µspAq “ µptx : T pxq P Auq.
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Line segment in Tangent space = geodesic in W2

The geodesic (McCann’s interpolant) between γ and µ

ExpγrαpTµ
γ ´ idqs, α : 0 Ñ 1,

“ rαpTµ
γ ´ idq ` ids#γ
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Related work: Univariate Wasserstein AR model

Chen et al. (2021); Zhang et al. (2021); Zhu and Müller (2021)
proposed to interpret the regression operation geometrically.

Let µ be a random measure from pΩ,F ,Pq to W2

(Fréchet mean) E‘µ “ argmin
νPW2

E
“

d2W pµ, νq
‰

.
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Related work: Univariate Wasserstein AR model

Chen et al. (2021); Zhang et al. (2021); Zhu and Müller (2021)
proposed to interpret the regression operation geometrically.

Let µ be a random measure from pΩ,F ,Pq to W2

(conditional Fréchet mean) E‘µ|γ “ argmin
νPW2

E
“

d2W pµ, νq|γ
‰

.
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Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)):
for any fixed i “ 1, . . . N

Exit|xj,t´1 “ ui`
N
ÿ

j“1

Aijpxj,t´1´ujq ñ

$

’

’

&

’

’

%

T1,t´1 ´ id P Tanµ1,‘

T2,t´1 ´ id P Tanµ2,‘

...

ðñ
$

&

%

Center x̃it “ xit ´ ui,
ref pt
ÝÑ Ex̃it “ 0,

Push Ex̃it|x̃j,t´1 “ 0 `
řN

j“1Aijx̃jt,

ùñ

$

&

%

Center rµit “?
ref pt
ÝÑ E‘rµit “ c

Push E‘rµit|rµj,t´1 “ Expc

´

řN
j“1Aijp rTj,t´1 ´ idq

¯

Yiye JIANG 29 / 40



Graph learning with auto-regressive (AR) models from multivariate distributional time series

Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)):
for any fixed i “ 1, . . . N

Exit|xj,t´1 “ ui`
N
ÿ

j“1

Aijpxj,t´1´ujq ñ

$

’

’

&

’

’

%

T1,t´1 ´ id P Tanµ1,‘

T2,t´1 ´ id P Tanµ2,‘

...

ðñ
$

&

%

Center x̃it “ xit ´ ui,
ref pt
ÝÑ Ex̃it “ 0,

Push Ex̃it|x̃j,t´1 “ 0 `
řN

j“1Aijx̃jt,

ùñ

$

&

%

Center rµit “?
ref pt
ÝÑ E‘rµit “ c

Push E‘rµit|rµj,t´1 “ Expc

´

řN
j“1Aijp rTj,t´1 ´ idq

¯

Yiye JIANG 29 / 40



Graph learning with auto-regressive (AR) models from multivariate distributional time series

Multivariate Wasserstein AR model

Multivariate regression operation (VAR(1)):
for any fixed i “ 1, . . . N

Exit|xj,t´1 “ ui`
N
ÿ

j“1

Aijpxj,t´1´ujq ñ

$

’

’

&

’

’

%

T1,t´1 ´ id P Tanµ1,‘

T2,t´1 ´ id P Tanµ2,‘

...

ðñ
$

&

%

Center x̃it “ xit ´ ui,
ref pt
ÝÑ Ex̃it “ 0,

Push Ex̃it|x̃j,t´1 “ 0 `
řN

j“1Aijx̃jt,

ùñ

$

&

%

Center rµit “?
ref pt
ÝÑ E‘rµit “ c

Push E‘rµit|rµj,t´1 “ Expc

´

řN
j“1Aijp rTj,t´1 ´ idq

¯

Yiye JIANG 29 / 40



Graph learning with auto-regressive (AR) models from multivariate distributional time series

Center a random measure µ, s.t. E‘µ “ Up0, 1q

Zhu and Müller (2021) proposed a notion of addition for two
increasing functions:

g ‘ f :“ g ˝ f ùñ g a f :“ g ˝ f´1,

where ´1 are the left continuous inverse.
For µ, its centered measure rµ is defined by the quantile function

rF´1
µ “ F´1

µ a F´1
‘ ,

where F´1
µ , F´1

‘ et rF´1
µ are respectively quantile functions of

µ, µ‘, and rµ.
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Center a random measure µ, s.t. E‘µ “ Up0, 1q

Á

=
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Wasserstein multivariate AR Model

rµit “ ϵit#ExpLeb

˜

N
ÿ

j“1

Aijp rFj,t´1 ´ idq

¸

,

where tϵitui,t are i.i.d. random increasing functions, ϵit is almost
surely independent of µj,t´1, i, j “ 1, . . . , N, for all t P Z, and

E rϵitpxqs “ x, x P r0, 1s.

Assumption

All µit, t P Z, i “ 1, . . . , N are supported on r0, 1s.
(N-simplex)

řN
j“1Aij ď 1 and 0 ď Aij ď 1.

Quantile function representation

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ id

¯

` id

ff

, A ðñ G
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Existence, uniqueness, and stationarity

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ id

¯

` id

ff

(8)

Admissible as a time series model: existence, uniqueness and
stationarity of series p rF´1

i,t qt, i “ 1, . . . N .

Theoretical results:

Under two classical conditions, we have proved:

‚ Iterated random function system (8) admits uniquely one
solution in the metric space

pT , } ¨ }Lebq
bN , T “ tF´1

µ |µ P W2pIRqu

‚ The unique solution is stationary (2nd order) in the Hilbert space

pT , x, yLebq
bN , T “ tF´1

µ |µ P W2pIRqu

according to a proper definition for functional TS.
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Constrained least-square estimation

For the auto-regressive model

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ id

¯

` id

ff

,

given the centered observations rF´1
t , t “ 0, 1, . . . , T , we propose

rAi: “ argmin
Ai:PB1

`

1

T

T
ÿ

t“1

›

›

›

›

›

rF´1
i,t ´

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ id

¯

´ id

›

›

›

›

›

2

Leb

,

where B1
` is the constraint set of N -simplex.

Theoretical result:

pA
p

Ñ A, as T Ñ `8.
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Age distribution of countries

Figure 8: Inferred age structure graph. The non-zero coefficients Aij

are represented by the weighted directed edges from node j to node i.
Thicker arrow corresponds to larger weights. The blue circles around
nodes represent the weights of self-loop.
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Figure 9: Evolution of age structure from 1995 to 2035 (projected).
Estonia (top left), Latvia(top right), Sweden (bottom left) versus
Norway (bottom right).
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Figure 10: Evolution of age structure from 1995 to 2035 (projected) of
France (left) versus Italy (right).
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Predictability of scalar time series on a graph

Goal: given pxntqt P IR, n P N “ t1, . . . , Nu, finding the highly
predictable series i P I Ă N , such that their observations xit can
be reconstructed accurately by the past and present obs of other
series xjτ , j P Ic, t ´ H ď τ ď t in real time.

G can be given, e.g. geographical graph of the weather stations.

We use 3 prediction methods to evaluate the node predictability:
kernel ridge regression, linear regression, and neural networks.

ÝÑ 3 ranking procedures.
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Conclusion and perspectives

In this thesis, we provided new statistical tools for analyzing
spatio-temporal and multi-dimensional data. In particular, we
extended the classical VAR(1) model for the complex data types:
matrix-variate and distributional data in the way to serve graph
learning.

Future works:

These two works introduce a more general topic: object data
analysis. Especially, the 2nd work demonstrates one important
way to perform the analysis, that is to view data points as
random objects in a metric space.
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Conclusion and perspectives

Graph itself is also an important data object. Among others, it is
adopted to represent the brain functional connectivity.

G simple, undirected, weighted (bounded), N nodes

ðñ LN P a subspace of IRNˆN , endowed with e.g.} ¨ }F.

Already available graph-valued models:
Network regression with Euclidean predictors (Zhou and
Müller, 2021): E‘G|x. The model is applied to study the
evolution of brain connectivity wrt age
Two sample tests (Ginestet et al., 2017):
Gi

i.i.d.
„ G1, Gj

i.i.d.
„ G2 Ñ E‘G1? “ E‘G2. The model is

applied to study the impact of gender on brain connectivity.

More generalized models to be developed, e.g. Network
(functional) regression with network predictors.

Yiye JIANG 40 / 40



Conclusion and perspectives

Graph itself is also an important data object. Among others, it is
adopted to represent the brain functional connectivity.

G simple, undirected, weighted (bounded), N nodes

ðñ LN P a subspace of IRNˆN , endowed with e.g.} ¨ }F.

Already available graph-valued models:
Network regression with Euclidean predictors (Zhou and
Müller, 2021): E‘G|x. The model is applied to study the
evolution of brain connectivity wrt age
Two sample tests (Ginestet et al., 2017):
Gi

i.i.d.
„ G1, Gj

i.i.d.
„ G2 Ñ E‘G1? “ E‘G2. The model is

applied to study the impact of gender on brain connectivity.

More generalized models to be developed, e.g. Network
(functional) regression with network predictors.

Yiye JIANG 40 / 40



Conclusion and perspectives

Graph itself is also an important data object. Among others, it is
adopted to represent the brain functional connectivity.

G simple, undirected, weighted (bounded), N nodes

ðñ LN P a subspace of IRNˆN , endowed with e.g.} ¨ }F.

Already available graph-valued models:
Network regression with Euclidean predictors (Zhou and
Müller, 2021): E‘G|x. The model is applied to study the
evolution of brain connectivity wrt age
Two sample tests (Ginestet et al., 2017):
Gi

i.i.d.
„ G1, Gj

i.i.d.
„ G2 Ñ E‘G1? “ E‘G2. The model is

applied to study the impact of gender on brain connectivity.

More generalized models to be developed, e.g. Network
(functional) regression with network predictors.

Yiye JIANG 40 / 40



Conclusion and perspectives

Graph itself is also an important data object. Among others, it is
adopted to represent the brain functional connectivity.

G simple, undirected, weighted (bounded), N nodes

ðñ LN P a subspace of IRNˆN , endowed with e.g.} ¨ }F.

Already available graph-valued models:
Network regression with Euclidean predictors (Zhou and
Müller, 2021): E‘G|x. The model is applied to study the
evolution of brain connectivity wrt age
Two sample tests (Ginestet et al., 2017):
Gi

i.i.d.
„ G1, Gj

i.i.d.
„ G2 Ñ E‘G1? “ E‘G2. The model is

applied to study the impact of gender on brain connectivity.

More generalized models to be developed, e.g. Network
(functional) regression with network predictors.

Yiye JIANG 40 / 40



References

L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric
spaces and in the space of probability measures. Springer
Science & Business Media, 2008.

Y. Chen, Z. Lin, and H.-G. Müller. Wasserstein regression. Journal
of the American Statistical Association, pages 1–14, 2021.

P. Garrigues and L. Ghaoui. An homotopy algorithm for the lasso
with online observations. Advances in neural information
processing systems, 21:489–496, 2008.

C. E. Ginestet, J. Li, P. Balachandran, S. Rosenberg, and E. D.
Kolaczyk. Hypothesis testing for network data in functional
neuroimaging. The Annals of Applied Statistics, pages 725–750,
2017.

A. K. Gupta and D. K. Nagar. Matrix variate distributions.
Chapman and Hall/CRC, 2018.

R. P. Monti, C. Anagnostopoulos, and G. Montana. Adaptive
regularization for lasso models in the context of nonstationary
data streams. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 11(5):237–247, 2018.
Yiye JIANG 40 / 40



Conclusion and perspectives

C. Zhang, P. Kokoszka, and A. Petersen. Wasserstein
autoregressive models for density time series. Journal of Time
Series Analysis, 2021.

Y. Zhou and H.-G. Müller. Dynamic network regression. arXiv
preprint arXiv:2109.02981, 2021.

C. Zhu and H.-G. Müller. Autoregressive optimal transport
models. arXiv preprint arXiv:2105.05439, 2021.
Yiye JIANG 40 / 40



Conclusion and perspectives

300 400 500 600 700 800
Iteration

22

24

26

28

30

Ru
nn

in
g 

Ti
m

e 
(s

ec
)

Approach 1

0 100 200 300 400 500 600 700 800
Iteration

0.15

0.20

0.25

0.30

0.35

0.40
Ru

nn
in

g 
Ti

m
e 

(s
ec

)
Approach 2, = 5e 7
Approach 2, = 1e 6
Approach 2, = 5e 6

Figure 11: Running time of each online update. The red curves are the
mean running time of the high-dimensional procedure, taken over 10
simulations each. The blue curve is the mean running time of the
low-dimensional procedure, taken over the same 30 simulations. The
shaded areas represent the corresponding one standard deviations.
Other simulation settings: N “ 20, F “ 5, M “ 12, number of model
parameters = 1500.
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Figure 12: Average one step prediction error of raw time series.
Projected OLS (top), and Lasso (bottom).
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Homotopy algorithms and optimality conditions

Algo: t1 Ñ t2:

θ˚ “ argmin
θPIRd

Lpθq, Lpθq “
1

2

›

›

›

›

ˆ

y
µyt`1

˙

´

ˆ

X
µxJ

t`1

˙

θ

›

›

›

›

2

ℓ2

`λ}θ}ℓ1 ,

BL
Bθ “ 0 ùñ Optimality condition ùñ Homotopy algorithm.
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Enable again linear methods - towards tangent space

dW pµ, γq2 “ inf
πPΠpµ,γq

ż

IRˆIR
px1 ´ x2q2dπpx1, x2q

When γ is an atomless measure, that is Fγ is continue, we have
π˚ exists uniquely and is induced by a function Tµ

γ : IR Ñ IR,
such that

Tµ
γ #γ “ µ

where rTµ
γ #γspAq “ γptx : Tµ

γ pxq P Auq, A Ă R. Tµ
γ is called

optimal transport map. Furthermore,

Tµ
γ pxq “ F´1

µ ˝ Fγpxq.

Characterization of the difference between µ, γ:

dW pµ, γq ùñ Tµ
γ pxq P L2

γpIRq.
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Adaptive tuning of lambda

Updating rule can be interpreted as the steps in the projected
stochastic gradient descent derived for the batch problem

λ˚
n “ argmin

λě0

1

2n

n
ÿ

t“1

}xt`1 ´ Apt, λqxt}
2
ℓ2 ,

which is the average one step prediction error.
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KS/KP as a common practice

vecpXiq` vector model + KP/KS imposed in parameters is
a common practice to extend vector models to matrix-variate data
in literature. For example, Gupta and Nagar (2018) proposed a
matrix-variate Normal distribution as:

vecpXiq
iid
„ N pu,Σq, where Σ “ Σ1 b Σ2,

where b is the Kronecker product.
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