"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# UE M2 Master MAS-MSS et CIMI ISI Projet Données Massives"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Algorithmes stochastiques pour la régression logistique avec & \n",
"**Résumé**: \n",
"\n",
"Dans ce projet, vous devrez implémenter de trois algorithmes stochastiques pour la résolution d'un problème de régression logistique dans le cardre de classification supervisée binaire (à $K=2$ classes): \n",
"- un algorithme de descente de gradient stochastique usuel tel que vous l'avez vu en cours\n",
"- l'algorithme ADAM : https://arxiv.org/pdf/1412.6980.pdf\n",
"- l'algorithme de Newton stochastique : https://arxiv.org/abs/1904.07908\n",
"\n",
"Pour évaluer ces algorithmes, vous devrez les appliquer à trois problèmes de classification binaire différents:\n",
"- Des données 2D simulées\n",
"- La classification des images MNIST de taille 28 * 28\n",
"- La prédiction de présence d'éoliennes dans des images de taille 128 * 128 * 3\n",
"et plus comaprer leurs performances en terme de précision de la classification ainsi que de temps de convergence. \n",
"\n",
"Dand ce calepin, vous trouvrez les listes de travail pour vous aider à accomplir le rapport. Le rapport est à réaliser en jupyter notebook, avec le code et **la sortie**. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Versions de librairies**\n",
"- scikit-learn 1.0.2\n",
"- tensorflow 2.7.0"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install --upgrade pip\n",
"! pip install -U scikit-learn\n",
"! pip install tensorflow "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.0.2\n",
"2.7.0\n"
]
}
],
"source": [
"import sklearn\n",
"import tensorflow as tf\n",
"print(sklearn.__version__) \n",
"print(tf.__version__) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dans un premier temps, on rapelle la méthode de régression logistique, le problème d'optimisation sous-jacent et sa résolution par une implémentation disponible dans la package ``Scikit-Learn`` sur un exemple de données simulées en petite dimension pour $d=2$. On présente ensuite une approche par un réseau de neurones qui est équivalente à la régression logistique mais dont l'implémentation est basée sur un algorithme stochastique."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rappels sur la régression logistique et le problème d'optimisation sous-jacent\n",
"\n",
"Il est supposé que l'on dispose d'un échantillon de $n$ observation $(X_i,Y_i)$ pour $1 \\leq i \\leq n$ où $X_i \\in \\mathbb{R}^{d}$ et $Y_i \\in \\{0,1\\}$. Les observations sont modellisées comme des variables aléatoires indépendantes et de même loi qu'un couple aléatoire $(X,Y) \\in \\mathbb{R}^{d} \\times \\{0,1\\}$. Il s'agit du cadre standard de classification supervisée à $K=2$ classes (ici labellisées $\\{0,1\\}$), et le problème considéré est celui de la construction d'une règle de classification\n",
"$$\n",
"\\hat{f} : \\mathbb{R}^{d} \\to \\{0,1\\},\n",
"$$\n",
"à partir de ces observations (ensemble d'apprentissage) dans le but de classer de nouvelles données $X^\\prime \\in \\mathbb{R}^{d}$ dont on ne connait pas la classe d'appartenance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Régression logistique\n",
"\n",
"Pour $x \\in \\mathbb{R}^{d}$, on introduit les probabilité conditionnelles\n",
"\n",
"$$\n",
"p(x) = \\mathbb{P}(Y=1 | X = x) = \\mathbb{E}(Y | X=x) \\quad \\mbox{et} \\quad 1-p(x) = \\mathbb{P}(Y=0 | X = x) = \\mathbb{E}(1-Y | X=x).\n",
"$$\n",
"\n",
"On rappelle que la régression logistique revient à considérer le modèle linéaire suivant :\n",
"$$\n",
"\\log \\left( \\frac{p(x)}{1-p(x)} \\right) = \\theta_0 + \\sum_{k=1}^{d} \\theta_k x^{(k)} = \\langle \\theta , x\\rangle,\n",
"$$\n",
"où $\\langle \\theta , x\\rangle$ est le produit scalaire entre le vecteur de paramètres $\\theta = (\\theta_0, \\theta_1,\\ldots,\\theta_d)$ et le vectur de données $x = (x^{(0)},x^{(1)},\\ldots,x^{(d)})$ avec par convention $x^{(0)}=1$ pour prendre en compte le paramètre de biais (ou intercept) $\\theta_0$. Ceci est équivant au modèle logistique\n",
"$$\n",
"p(x) = p_{\\theta}(x) = \\frac{\\exp(\\langle \\theta , x\\rangle)}{1+\\exp(\\langle \\theta , x\\rangle)}.\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"L'estimation du vecteur de paramètres $\\theta$ à partir de l'ensemble d'apprentissage est obtenu par maximisation de la vraisemblance\n",
"$$\n",
"L_{n}(\\theta) = \\prod_{i=1}^{n} \\mathbb{P}(Y=Y_i | X = X_i)= \\prod_{i=1}^{n} p_{\\theta}(X_i)^{Y_i} (1-p_{\\theta}(X_i))^{1-Y_i}, \n",
"$$\n",
"ce qui est équivalent à minimizer l'opposé de la log-vraisemblance (normalisée par $1/n$)\n",
"\n",
"$$\n",
"\\mathcal{L}_{n}(\\theta) = - \\frac{1}{n}\\sum_{i=1}^{n} \\left[ Y_i \\log(p_{\\theta}(X_i)) + (1-Y_i) \\log(1-p_{\\theta}(X_i)) \\right]= -\\frac{1}{n}\\sum_{i=1}^{n} \\left[ Y_i \\langle \\theta , X_i \\rangle - \\log(1+\\exp(\\langle \\theta , X_i \\rangle)) \\right],\n",
"$$\n",
"où par convention $X_i$ est un vecteur de $\\mathbb{R}^{d+1}$ dont la première coordonnée est $x^{(0)}=1$. Remarquons que $-\\left[ Y_i \\log(p_{\\theta}(X_i)) + (1-Y_i) \\log(1-p_{\\theta}(X_i)) \\right]$ est la cross-entropy binaire entre la veritable classe de l'observation $i$ et la classe (probabilité) prédite. \n",
"\n",
"Il n'existe pas de solution explicite $\\hat{\\theta}$ à ce problème de maximisation. Toutefois, de nombreuses méthodes algorithmiques permettent d'en avoir une très bonne approximation numérique. Celles-ci se basent sur la connaissance du vecteur de gradient $\\nabla \\mathcal{L}_{n}(\\theta) \\in \\mathbb{R}^{d+1}$ et de la matrice Hessienne $\\nabla^2 \\mathcal{L}_{n}(\\theta) \\in \\mathbb{R}^{(d+1) \\times (d+1)}$ de l'opposé de la log-vraisemblance donnés par\n",
"\n",
"$$\n",
"\\nabla \\mathcal{L}_{n}(\\theta) = -\\frac{1}{n}\\sum_{i=1}^{n} \\left[Y_i X_i - \\frac{\\exp(\\langle \\theta , X_i \\rangle)}{1+\\exp(\\langle \\theta , X_i \\rangle)}X_i\\right]\n",
"$$\n",
"et\n",
"$$\n",
"\\nabla^2 \\mathcal{L}_{n}(\\theta) = \\frac{1}{n}\\sum_{i=1}^{n} \\frac{1}{a_{i}(\\theta)} X_iX_i^T, \\mbox{ avec } a_{i}(\\theta) = \\big(\\exp(-\\langle \\theta , X_i \\rangle /2)+\\exp(\\langle \\theta , X_i \\rangle /2)\\big)^2\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Après avoir déterminé l'estimateur $\\hat{\\theta}$, une nouvelle observation $X^\\prime \\in \\mathbb{R}^{d}$ est affectée à la classe $1$ si\n",
"\n",
"$$\n",
"\\frac{\\exp(\\langle \\hat{\\theta} , X^\\prime\\rangle)}{1+\\exp(\\langle \\hat{\\theta} , X^\\prime\\rangle)} \\geq \\frac{1}{2},\n",
"$$\n",
"\n",
"et à la classe $0$ sinon. On fera attention au fait que, dans les calculs du produit scalaire $\\langle \\theta , X\\rangle$, le vecteur $X^\\prime$ est de dimension $d+1$ avec sa première composante égale à $x^{(0)}=1$.\n",
"\n",
"Nous proposons d'illustrer la régression logistique sur un exemple de données simulées $X_1,\\ldots,X_n$ à valeurs dans $\\mathbb{R}^{2}$ à l'aide de fonctions disponibles dans la librairie `scikit-learn`."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(1000, 2)\n",
"(1000,)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA8UAAALKCAYAAAAbE/MNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOz9eXBj2X3nC36xEAABgiRIEGTuSWZlsjJrz3It2jKlkmVbstyyrHoRE9Fe9Fqe7vfssMPP7eh5057XVr9pR3S/6R63PW1PR4/1qttLdEeryrIsa3FJlpSlKqmySsXasyqZWWSSySSZJEiABEEsBIH545unzgV4sV8AF+TvE8HgdnFx7r3nXpzvb3UUCgUIgiAIgiAIgiAIwkHE2ekBCIIgCIIgCIIgCEKnEFEsCIIgCIIgCIIgHFhEFAuCIAiCIAiCIAgHFhHFgiAIgiAIgiAIwoFFRLEgCIIgCIIgCIJwYBFRLAiCIAiCIAiCIBxYRBQLgiAIgiAIgiAIBxYRxYIgCIIgCIIgCMKBRUSxIAiCIAiCIAiCcGARUSwIgiAIgiAIgiAcWEQUC4IgCIIgCIIgCAcWEcWCIAiCIAiCIAjCgcXd6QG0A4fDMQugH8CNDg9FEARBEARBEARBsJ6TADYLhcJ4vS88EKIYQH9vb+/Q2bNnhzo9EEEQBEEQBEEQBMFa3nnnHaRSqYZee1BE8Y2zZ88OvfLKK50ehyAIwv5kZQWYnQUyGcDrBcbHgUik06MSBEEQBOGA8PDDD2NqaupGI689KKJYEARBaAUzM8ClS8D0NBCNArkc4HYD4TBw5gxw8SIwMdHpUQqCIAiCIJRFRLEgCILQGFNTwDPPUBDHYhTCHg+QStFrfP06v558EnjooU6PVhAEQRAEwRQRxYIgCEL9zMxQEE9NASMjwOQkPcSKXA6Yn+f/AWBgQDzGgiAIgiDYEmnJJAiCINSPCpkeGaHYdZfYWN1u/n1khNs991xnxikIgiAIglAFEcWCIAhCfays6JDp48crb3v8OLe7epWvEwRBEARBsBkiigVBEIT6mJ1lUa1weK+HuBRVdCsa5esEQRAEQRBshohiQRAEoT4yGeYMezy1be/xcPtMprXjEgRBEARBaAAptCUIgiDUh9dLD3AqVdv22SwQDPJ1giAIgrDPyefzWF9fRyKRQCaTQaFQ6PSQug6HwwGv14tgMIihoSE4na315YooFgRBEOpjfJwh0bOzui9xOXI5hk6Pj/NLEARBEPYx+XweN2/exPb2dqeH0tUUCgWk02mk02kkk0kcO3aspcJYRLEgCIJQH5EIcOYMexDPz1dutTQ/D4RCbNkUibRvjIIgCILQAdbX17G9vQ23242xsTEEAoGWezn3I/l8HslkEsvLy9je3sb6+jrC4XDL3k+ukCAIglA/Fy9SGK+usmdxLlf8/1yOf19d5XYXLnRmnIIgCILQRhKJBABgbGwMwWBQBHGDOJ1OBINBjI2NAdDntVWIp1gQBEGon4kJ4HOf48/T08CLLzKk2uNhDnE0Sg/x+fPAk09W9iYLgiAIwj4hc6eoZCAQ6PBI9gfqPGZaXKxTRLEgCILQGOfPA4ODwHPPsQ9xNEoPcTDI/OHJSXqIRRALgiAIBwRVVEs8xNbgcDgAoOXFykQUC4IgCI0zMcGvlRUW3spkWGV6fFxyiAVBEARBaAoliluNiGJBEASheSIREcGCIAiCIHQl4tcXBEEQBEEQBEEQDiy2FcUOh+OXHA5H4c7Xr3Z6PIIgCIIgCIIgCML+w5ai2OFwHAPw/wGw1emxCIIgCIIgCIIg2I6VFeDyZRa8vHyZv9uMhYUF/KN/9I9w+PBheL1enDx5Er/1W7+FWCzW6aEVYbucYgezqZ8CsAbgrwD8TmdHJAiCIAiCIAiCYBNmZoBLl9gSUXV+cLvZGvHMGeDiRVt0fnjvvffwwQ9+ECsrK/jMZz6Du+++Gy+99BL+8A//EN/61rfwwgsvYHh4uNPDBGBDUQzgNwE8AeCjd74LgiAIgiAIgiAIU1PAM89QEMdiFMIeD5BKsQvE9ev8evJJ4KGHOjrUX/u1X8PKygr+6I/+CL/xG7/x/t9/+7d/G3/wB3+A3/3d38V//I//sYMj1NgqfNrhcJwF8K8B/GGhUHiu0+MRBEEQBEEQBEGwBTMzFMRTU0BvL/D448Ddd9MrfPfd/L23l/9/+mlu37GhzuDZZ5/FyZMn8eu//utF//uX//JfIhAI4M///M+RTCY7NMJibCOKHQ6HG8CfA5gH8M8b3McrZl8A7rZyrIIgCIIgCIIgCG1FhUyPjFAIu0uCft1u/n1khNs91zkf43e/+10AwE/91E/B6SyWnMFgEB/60Iewvb2NF198sRPD24NtRDGAfwHgIQCfLxQKqU4PRhAEQRAEQRAEwRasrOiQ6ePHK297/Di3u3q1Y8W3rl69CgA4c+aM6f9Pnz4NAJienm7bmCphi5xih8PxKOgd/neFQuFHje6nUCg8XGb/rwA43+h+BUEQBEEQBEEQOsbsLItqhcN7PcSlqKJb0ShfF4m0Z4wGNjY2AAADAwOm/1d/j8fj7RpSRTruKTaETU8D+N86PBxBEARBEARBEAR7kcmwyrTHU9v2Hg+3z2RaO64GKRQKAAA2Huo8HRfFAPoAnAFwFkDa4XAU1BeA37uzzf/vzt/+facGKQiCIAiCIAiC0BG8XnqAs9nats9mub3X29pxlUF5gpXHuJTNzc2i7TqNHcKnMwC+VOZ/58E84+cBXAXQcGi1IAiCIAiCIAhCVzI+zpDo2Vndl7gcuRxDp8fH+dUBJicnAZTPGb527RqA8jnH7abjovhOUa1fNfufw+H4IiiK/0uhUPjTdo5LEARBEARBEATBFkQiwJkz7EE8P88q0+WYnwdCIWBysiP5xADwsY99DADw7LPPIp/PF1WgTiQSeOGFF9Db24vHH3+8I+MrxQ7h04IgCIIgCIIgCEIlLl6kMF5dZQ/iXK74/7kc/766yu0uXOjMOAGcOnUKP/VTP4UbN27gj//4j4v+93u/93tIJpP45V/+ZQQCgQ6NsJiOe4oFQRAEQRAEQRCEKkxMAJ/7HH+engZefJEh1R4Pc4ijUXqIz58Hnnyysje5DfzJn/wJPvjBD+I3f/M38fd///c4e/YsLl++jO9973s4c+YMfv/3f7+j4zNia1FcKBS+COCLHR6GIAiCIAiCIAhC5zl/HhgcBJ57jn2Io1F6iINB5g9PTtJD3GFBDNBb/OMf/xj/4l/8C3zrW9/CN77xDRw6dAi/+Zu/id/7vd/D0NBQp4f4PrYWxYIgCIIgCIIgCIKBiQl+rayw8FYmwyrT4+MdyyEux7Fjx/DUU091ehhVEVEsCIIgCIIgCILQbUQithPB3YoU2hIEQRAEQRAEQRAOLCKKBUEQBEEQBEEQhAOLiGJBEARBEARBEAThwCKiWBAEQRAEQRAEQTiwiCgWBEEQBEEQBEEQDiwiigVBEARBEARBEIQDi7RkEgRBEAS70AU9JwVBEARhvyGiWBAEQRA6zcwMcOkSMD0NRKNALge43UA4DJw5A1y8CExMdHqUgiAIgrAvEVEsCIIgCJ1kagp45hkK4liMQtjjAVIpeo2vX+fXk08CDz3U6dEKgiAIwr5DRLEgCIIgdIqZGQriqSlgZASYnKSHWJHLAfPz/D8ADAyIx1gQBEEQLEYKbQmCIAhCp1Ah0yMjFLvuElu1282/j4xwu+ee68w4BUEQBGEfI6JYEARBEDrByooOmT5+vPK2x49zu6tX+TpBEARBECxDRLEgCIIgdILZWRbVCof3eohLUUW3olG+ThAEQRAEyxBRLAiCIAidIJNhzrDHU9v2Hg+3z2RaOy5BEAShK1hZAS5fZmbN5cv2CyR6+umn8Ru/8Rv4yEc+gv7+fjgcDvziL/5ip4dlihTaEgRBEIRO4PXSA5xK1bZ9NgsEg3ydIAiCcGDpli5+/+pf/Su8/vrr6Ovrw9GjR/Huu+92ekhlEVEsCIIgCJ1gfJwrmNlZvaIpRy7Hlc/4OL8EQRCEA0k3dfH7gz/4Axw9ehR33XUXLl26hI997GOdHVAFRBQLgiAIQieIRGjSv36dbZcqmfXn54FQiC2bIpH2jVEQBEGwDd3Wxc/OIrgUySkWBEEQhE5x8SKF8eoqVzu5XPH/czn+fXWV21240JlxCoIgCB1Huvi1DvEUC4IgCEKnmJgAPvc5/jw9Dbz4oo6Fy2YZMh0KAefPMxbODkligiAIQtsxdvGbnKy87fHj/DhRXfwkwKg6IooFQRAEoZOcPw8MDtKkf/WqrpoSDDJ/eHKSHmIRxIIgCAeWZrr4iSiujohiQRAEQeg0ExP8WlnhCiaTYZXp8XFZzQiCIAjSxa/FiCgWBEEQBLsQiYgIFgRBEPYgXfxaixTaEgRBEARBEARBsDGqi5/KsKmE6uIXDksXv1oRUSwIgiAIgiAIgmBjVBe/UIhtlyohXfzqR0SxIAiCIAiCIAiCzZEufq1DcooFQRAEQRAEQRBsTrd18fvrv/5r/PVf/zUAYHl5GQDwox/9CJ///OcBAOFwGP/23/7bDo2uGBHFgiAIgiAIgiAIXUA3dfF77bXX8F/+y38p+tvMzAxmZmYAACdOnBBRLAiCIAiCIAiCINRHt3Tx++IXv4gvfvGLnR5GTYgoFgRBEIRuwe4rIEEQBKFtSBc/6xBRLAiCIAh2Z2YGuHSJSWQqVs7tZjLZmTOsvmKHWDkzRMgLgiAINkdEsSAIgiDYmakp4JlnKIhjMV1VJZWi2Lx+nV9PPgk89FCnR6vpZiEvCIIgHChEFAuCIAiCXZmZoSCemgJGRlhBxW346M7l2JByaoq/DwzYQ2h2q5AXBEEQDiQiigVBEATBrihP68iIudh1u/Xfp6dZjrTTorhbhbwgCIJwYHF2egCCIAiCIJiwsqI9rcePV972+HFud/UqX9dJSoW8u8T+roT8yIgW8oIgCILQQUQUC4IgCIIdmZ1lLm44vFdYlqJydaNRvq5TdKuQFwRBEGxJoVBoy/uIKBYEQRAEO5LJMNTY46lte4+H22cyrR1XJbpRyAuCIFiIw+EAAOTz+Q6PZH+gRLE6r61CRLEgCIIg2BGvl8Ixm61t+2yW23u9rR1XJbpRyAuCIFiI984zOJlMdngk+wN1Hr0t/mwTUSwIgiAIdmR8XHtSc7nK2+Zy2kM7Pt6e8ZnRjUJeEATBQoLBIABgeXkZiUQC+Xy+bSHA+4VCoYB8Po9EIoHl5WUA+ry2Cqk+LQiCIAh2JBJhP9/r11mtuVKF5vl5IBRipedIpH1jLEUJ+dlZ3Ze4HErIj493VsgLgiBYyNDQEJLJJLa3t7GwsNDp4ewL/H4/hoaGWvoe4ikWBEEQBLty8SKF8eoqWx2VeoxzOf59dZXbXbjQmXEqlJAPhSjUK2EXIS8IgmAhTqcTx44dw8jICHw+X8tzYfcrDocDPp8PIyMjOHbsGJzO1spW8RQLgiAIgl2ZmAA+9zn+PD0NvPgiPbEeD0OPo1EKy/PngSeftEe/34sX6d1WfYiPHzfvU7y6ynF3WsgLgiBYjNPpRDgcRjgc7vRQhBoRUSwIgiAIdub8eWBwkP18r17VOcbBIMOOJycpLO0giIHuFPKCIAjCgUZEsSAIgiDYnYkJfq2sMF83k2FxqvFxe4Yed5uQFwRBEA40IooFQRAEoVuIROwpgs3oNiEvCIIgHFhEFAuCIAiC0Dq6ScgLgiAIBxKpPi0IgiAIgiAIgiAcWEQUC4IgCIIgCIIgCAcWEcWCIAiCIAiCIAjCgUVEsSAIgiAIgiAIgnBgEVEsCIIgCIIgCIIgHFhEFAuCIAiCIAiCIAgHFmnJJAiCINSH9J0VBEEQBGEfIaJYEARBqI2ZGeDSJWB6GohGgVwOcLuBcBg4cwa4eBGYmOj0KAXhYCFGKkEQhKYRUSwIgiBUZ2oKeOYZCuJYjELY4wFSKS7Ir1/n15NPAg891OnRCsL+R4xUgiAIliGiWBAEQajMzAwF8dQUMDICTE5y8a3I5YD5ef4fAAYGZDEuCK1EjFSCIAiWIqJYEARBqIzyRo2MmItdt1v/fXoaeO45EcWC0CrESCUIgmA5Un1aEARBKM/KivZGHT9eedvjx7nd1at8nSAI1lNqpHKX+DeUkWpkRBupBEEQhIqIKBYEQbCKlRXg8mUuQi9f3h/CcHaW+Yrh8N7FdykqnzEa5esEQbAWMVIJgiC0BAmfFgRBaJb9XPAmk+HxeDy1be/xcPtMprXjEoSDSDNGKqlILQiCUBYRxYIgCM2w3wveeL1cXKdStW2fzQLBIF8nCIK1iJFKEAShJYgoFgRBaJSDUPBmfJxCf3ZWe8DLkcvRKzU+zi9BEKxFjFSCIAgtQXKKBUEQGuUgFLyJRBgCHgpR4Fdifp7bTU5KqKYgtAJlpFJpGpVQRqpwWIxUgiAIVbCNKHY4HP/G4XD8vcPhuOlwOFIOh2Pd4XC86nA4fs/hcAx3enyCIAhFHKSCNxcvUhivrtI7XroYz+X499VVbnfhQmfGKQj7HTFSCYIgtAQ7hU//LwCmAHwbwAqAAIDHAXwRwD92OByPFwqFm50bniAIgoGDVPBmYgL43Of48/Q08OKLOnc6m+VxhULA+fPMne62EHFB6CYuXmSdApWWcfy4edrG6irvSTFSCYIgVMVOori/UCikS//ocDh+H8A/B/B/B/BrbR+VIAiCGQet4M3588DgIEPAr17V4ZvBIEMzJye5+BZBLAitRYxUgiAIlmMbUWwmiO/w30FRfLqNwxEEQajMQSx4MzHBr5UVerwzGR7P+Hj3eb8FoZsRI5UgCIKl2EYUV+Dn7nx/o6OjEARBMHKQqzJHIu0TwSLABcEcMVIJgiBYhu1EscPh+B0AfQAGAPwEgA+Dgvhfd3JcgiAIRaiCN9evM3+vkkdGCt7Uz8yMru6tvGAqN/vMGeZVihdMENprpBIEQdin2E4UA/gdAKOG378F4POFQmG12gsdDscrZf51txUDEwRBKEIK3rSGqSn2f1bVvVW+ZCpFj9j16/x68kngoYc6PVpBEARBELoc24niQqEwBgAOh2MUwAdBD/GrDofj04VCYaqjgxMEQTAiBW+sZ2aGgnhqiv2dJyfNDQ3KEDEwIOdVEARBEISmsJ0oVhQKhdsAvuJwOKYATAP4MwD3VnnNw2Z/v+NBPm/5IAVBEKTgjbWokOmREfNz5nbrv09P87zLue0uJAdWEARBsBm2FcWKQqEw53A4rgB40OFwhAuFQrTTYxIEQShCCt5Yw8qKDpmenKy87fHj9MxfvcrXyXm2P5InLgiCINgU24viOxy+8323o6MQBEGohBS8aY7ZWYqlcLhyNW9Ai6lolK+T825vJE9cEARBsDG2EMUOh+NuAPFCobBc8ncngP8ngAiAHxYKhVgnxicIgiC0gUyG3kOPp7btPR5un8m0dlxCc0ieuCAIgmBzbCGKAfwMgP+Xw+F4DsB7ANbACtQXAUwAWAbwf+3c8ARBEISW4/VSLKVStW2fzTJ32+tt7biE5pA8cUEQBMHm2EUUfwfAfwLwIQAPABgEkAQLbP05gD8qFArrHRudIAiC0HrGxxlWOzur803LkcsxdHp8nF/lkDzvziJ54oIgCEIXYAtRXCgU3gLw650ehyAIgtBBIhEWXLp+neG0lbyF8/NsdzU5aS6eXnoJ+NrXKIgTCaC3l17lbi/q1G0iX/LEBUEQhC7AFqJYEARBOICYCbyLFymKVX7p8ePm+aerq2yHdeFC8T5nZoA/+zPg2WeBpSXu2+cD/H5+9fR0Z1Gnbq3cLHnigiAIQhcgolgQBEFoL9UE3mOPcbvpaYbTqkrF2Sy3D4UoiJ98slgITk0Bf/qnwPe+R8EdDALDw0ChAGxvA/k8X5tKdVdRp26u3Cx54oIgCEIXIKJYEARBaB+1CLwzZ4DHHwdOn2Z+qRLOwSC9yZOT9BAbxayqcPyDH1AAHz5MQazI54GNDeD2bcDpZNGnbijq1O2Vm1uRJy4IgiAIFiOiWBAEQWgPSuD96Ef0BB4+TEEcCgGBwF6B94UvAJ/6VG05tJcuAW+8Qa+wy8V9GnE69d/W1oDBQWBz0/5Fnbq9crOVeeKCIAiC0CJEFAuCIAjt4ctfZq5vKkUxvLREser306t78uRegff5z1cXSKrC8fIyc4b9fu7XjIEBYGFBe6ntXNRpv1RubjZPXBAEQRBajIhiQRAEofV85zvAV78KzM3RKwzQo5vNAvE4sL7Or3Pn6hd4qsJxMMh9uFzlt1UifHub723nok77pXLzxATwuc/x53rzxAVBEAShDYgoFgRBEFrLzAzwl39Jb6DfDxw7VuzJVfm+S0v8/fz5+gSeqnDs9XK/2Wzl7V0uvmc6TTFp16JO3VK5uZY2UefPM2T9uedqzxMXDg7d1mpMEIR9h4hiQRAEobVcusQFr9cL9PXtDW0uzfedmwP6+2sXeKrCsddL0R2PU/SWC6He3eX2iQTFt12LOtm9cnO9baImJvglAkhQdGurMUEQ9h0iigVBEITWofJik0kKtlyu/LYq3zca5e8jI7UJPGOF41CIIdQbG3uLbQEUy9vbFM/Hj9u7qJOdKzc30yYqErHvORfaRze3GhMEYd8holgQBEFoHSov9sgRfl9cLO/FVfm+ySS9iGfP1ibwjBWOczkW7VKh2AMDxe8Vi9FT7HAA991n76JOdq3c3O1tooTOI3NIEASbUSa2TBAEQRAsQOXF9vdTrPp89OKWw+Viq6RAoD6Bd/EiBWQ6zfcaHQV2drTneW0NuHGDotzvpxjuhqJO6rhWVykkSj3tuRz/vrrK7doh8kvbRJV6sFWbKGMvaEEwInNIEASbIZ5iQRAEoXUY82JPnmRoczkvriq4tbvLbesReKUVjuNxhms7nQyXTqUoyCcngZ/+aeCXfsn+ghiwX+Xm/dImSugcMocEQbAhIooFQRCE1mHMi73rLrZcAui5XVig19blohBOJilg77qrMdFqVuE4kaAg7uvj/n7u54BHH7X8MAG0roCUnSo375c2UULn6OQckiJvgiCUQUSxIAiC0DrM8mJ9PlaYjkYpgvN53XYoHAZ+/ueBj3+8sffrRIXjVlXQLT2GT32KX51c1HdLmyjBvnRiDkmVa0EQqiCiWBAEQWgtFy8Cr78OXL4M3L4NHD4MnD7Nr1hMhwGn08AHPsAw4GZpV4XjVlTQtfMC3u5togT70+45JFWuBUGoARHFgiAIQutQAm9jg4vQpSXgrbdYDCsUAoaGKIZDIS5Iu6H4laIVFXTtvoC3c5sooTto5xySKteCINSIiGJBEAShNZQKvKNHWVV6fZ0VplMphk+fP8+c2HblxVpFaQXdUlQFXUBX0K10fN2wgLdrmyihe2jnHLL6HhUEYd8iolgQBEGwnkoCL5nUPYs3N+k17jZB3IoKunZcwJvlZl+8SEGjxPnx4+bifXVVGzwEwUg75pBUuRYEoQ5EFAuCIAjWU0ngBQL8OnGC4vnWrdYIvFYW27K6gq7ZAj6Z5O+7u6zQHQrxvLVjAV8tr/mxx7idHdpECd1HO1qNSaV0QRDqQESxIAiCYC2d9tC0o1CV1RV0jQv4RAK4cYNtq1R1bqeT7auGh9nDuZUL+Fryms+cAR5/nMXSOt0mSuhOWt1qTCqlC4JQByKKBUEQBGvppIemXYWqrK6gqxbwW1v0nK+tsQCZ6uOczQLxOPOx19eZT9zba/0Cvt685i98ofNtooTupZUt1KRSuiAIdSCiWBCEyrSz36uwP+iUh6adhaqsrqDr9XLxPjPDxXkgwP07nXqbfJ5VvJeWKJr7+qxfwDeS1/z5z8szQWiOVrRQk0rpgiDUgYhiQRDMsXOvVMHedMpD085CVVZX0B0fZ9h0NAqMjnL7UpxO/j2fZ7/nRMLaBXynw94FwUqkUrogCHXgrL6JIAgHjqkp4EtfAr7xDeDll7n43t3l95df5t+/9CXg1Vc7PVLBjigPjTKmVEJ5aMLh5gSeUdAdP1552+PHuZ0SdI1y8SIX3aurNCKVHmsux7+vrnI7u1dhbibsXRDsyH67RwVBaBniKRYEoZhu6JUqtA4rwuVr8dCoyso3b9LzeehQcx6aTuQxW1lBd3aW4dDhMD3ssRjvLbPw6VSK2/X1WVtoSwoTCfuNdlS5FgRhXyCiWBCEYuzYK1VoPVaHy5frQxqLsbLy6iq/trc51955B3jqqcbD8jsl6KyqoJvJsKjW+Dh7N6+tAQsLutDW7i7Plc9HA8LAAP9npSCVwkTCfqTVVa4FQdgXiCgWBEEjOYUHk1ZUbDbz0DidLBIVj9NTHAgAQ0PMob12jYvVRitDd1LQVaugu7ICXL5c2fuuxh8MAnfdBczN8XyolkweDxf24TD7O9++ze2tFKSdLEwkBf2EVtLKKteCIOwLRBQLgqDpZCsdoTO0Mlze6KG5fBn40Y/YTsjvB44d45w5cYLhi82G5duh0mxpBd2ZGeDrX6/N+24c/113AQ8+qEPMd3fpLQ6FaEjI5YC3327N+NtdmEgK+gntpBVVrgVB2BeIKBYEQSM5hQePVofLKw/NxgZfPzpKQawEnlXvY7dKs/V6383GHwgUn6N2jL9c2LtCGS9WV2n0UIWJGvHAtauntCAIgiBUQUSxIAiag5xTaHVYXTeE6bUrXH5lBVheBhwO4JFHKntxS98HqP08NirorKZR77sdxl9vYSKAueD1enqloJ8gCIJgI0QUC4KgsUMIaruxOnyzm8JB2xUu38j7zM4Cf/RHDB2u9TzapdJso953u4y/1sJE8ThbszXi6ZWCfoIgCIKNEFEsCILGbiGorcbq8M1uCwdtV7h8ve+ztcX5tbyshXCt57HTlWab9b53evyKaoWJmvH0SkE/QRAEwWaIKBYEoRg7hHC2A6vDN7sxHLRd4fL1vE8sxnOZSABHjgAPP1z/eexEpVn1Xq++Cly5wh7CjXrf7VQpt1xhomY8vVLQTxAEQbAZIooFQSjGLiGcrcbq8M1uDAdtV7h8Pe/z3nt8n0gEuPfevdvWcx7bUWm2NFx+YYHH4PEAhQJw8iTvl3JU8r7btVJus55eKegnCIIg2AxnpwcgCIINOX8e+MIXgJ/9WRZGCgbZEiYY5O8/+7P8vx1CgBvBuKg/frzytsePcztj4adW769dqHD5UIje10o0Ey5f6/skk8CNG/x5fNy88rLCDudxaoo5td/4BvDyy/RuOxwUcKur7L08NcXezOXIZq3vN9xqmvH0AjpyIJut7f268RwJgiAIXYV4igVBMMdOIZxWY3X4ZjeHg7YrXL6W93n7bRZvCoere9FbcR7rmevlwuWTSWBzE7h1i4YkJYh9vr0e424tVtesp/cgFvQTBEEQbI2IYkE4KDQqbu0awtkMVodvdnM4aLvC5Wt5n1wOGBqiYK4Ucqyw6jw2UjG8XLh8IAAMDwPr64DTyd/X1oC5ub3H1K3F6prNRT9oBf0EQRAE2yOiWBD2O93UIqhdWF1gqtv7O7er4nG193G7OU8djtr2Z8V5bKRieLWc2pMnKYqXloDeXu4rGqUXORDo/mJ1Vnh6D0pBP0EQBKErEFEsCPuZbmsR1C6sDt/cD+Gg7QqXr/Q+APAHf8D83EbOY71jb7RieLVw+VAIOHeOP6+tAdvbwOIi8NZb3Ee3F6uzwtO7nwv67ceUE0EQhH2OiGJB2K90Y4ugdmF1+Gbp/kZHaYTY3WVeaSiki0bZPRy0XeHy5d6nkeuytQV8/ev1R0M0WjG8lnD5Q4eYRzw3x+NRRaXa3W+4VVjh6bVLT2arkKgcQRCErkVEsSDsV7qxRVA7sTp88+JFejh/8AO24unp4XenE/D7KeDcbiCdlnDQStR7XYaGWAG63miIZtoK1RouHwrpPOJCAfjkJzmG/eA5tMrTu18K+klUTuN0+7UXBGFfIKJYEPYjzfYRPQhYHb4Zj2sP4toa82J7e/m/W7coioaHgQ9+sPvCQdtJrddlcpLfv/xlio1jx4DHH689GqKZiuH1hstvbbGV2S/8wv66v6z09HZzQb9WReXsd7EonnVBEGyEiGJB2I90c4ugdmLVol4tihcXgbNngZ0dGiS2t4F8nu+Ry1Eo+3xcFAvlqXRdQiGK40wG+NrXGJ7c08Mw9UyGRa6Ud7ZSNEQzFcOlerJmv3h6m8HqqJyDIBbFsy4Igs0QUSwI+5FubhHUbqxY1JstipPJvXnFt2/zfQ5aqHojmF2X2Vng1VcpFG7fZgh1JsPw9MVFVnxeX2eRq0OH9L7MoiGarRgu1ZOL6WZPbzNYHZVzEMRiKzzrB9koIwiCJYgoFoT9SLe3COoEjS7qyy2KAwFdXEtxUEPVm0Fdl5kZ4O/+juduZAQ4dYphyS4XhUM+D2xssA0SQI+80WNcGg3RbMXw/Vw9uVvphDCyMirnoBRHtNKzXsmrPjbGtIpwWISyIAhVEVEsCPuR/dAiqF00u5CWUPX2ULqQnpujEHa5+H+nU4vgtTX+3+PR3vqNDf5PRUNYEQJtFuadSNAYNTbGufRzP9e9Hr1uoZPhxlZG5RyE4ohWetbLedVXV4EXXuDzwefjfkZH91f4uSAIliOiWBD2I5LzWB2rFtISqt56zBbSLheFsGp1pBgYoMHh7bfpNd7Z4eJ4c5PREN/+NnD0KK+tFSHQKsz7pZeAv/kb5pGr1y4vA1/5CsciC/HW0OlwY6uicg5KcUSrjIjlvOpLSzSAqciRjQ0axfL5/RN+LghCSxBRLAj7Fcl5LI+VC2kJVW89ZgvpUIi5xPE4F7xOJ/+eTLLtVSJBgRoKscBZMsntXn+dLZzUtbUiBHpqCvjqV/fOp0RCFuKtxA7hxlZF5RyUiBOrjIhmXvVYDLhyhcI4EABOn6Yo3tnhOXv8cclVFgShLCKKBWG/IjmP5li9kJZQ9dZjtpAOBNjian2dC99QiIaJaJSi2O3m/4eGuFgeHmYe8uBg8bVttgK5HYTZQcUO4cZWReUclIgTK4yI5bzqN24wdSIQ0KkUAwPAwgLv60zGmlxlCcEWhH2JiGJB2M9Y2Ud0v2D1QlpC1VtPuYX0yZMUxaq4VipF77DLxVxCp5ML52SS1agnJvRi2Xhtm6lAXjqfkkmGTRurjnd7HqgdsVO4sRVROe2OOOmUB9QKI6KZVz2ZpCBOp/l3hdPJiJLtbc6VQKDxXOX9VAFcEIQ9iCgWhP2O9BHVtGohLaHqraXcQjoUYvslQLe72tnh7263XgQfOsTtlCAud23rrUBunE+RCNtFra3p/tRqQT48zDzmxcXuzAO1I3YKN7YiKqddESed9oBaYUQ086qrvvB+v06lULhcvB93d/l7I7nKCon8EIR9i4hiQTgoHNQ+okZatZCWUPXWUmkhfegQvcKvvsowarXIDwR0O5YTJ7QgBqwTSWo+uVzAG29oT5Xfz79ls8x5Vv2T/f7uzAO1I3YLN242KqcdESd28YA2a0Q086qrYlqqGr2R3V0ep/F/9eQqG9kPFcAFQTBFRLEgCAeHVi6kJVS9tVRaSIdCDKWen+cC+PBh4OxZblPaK1phhUjKZCguFhe5QA8EKDSMnipj/+TeXs6HbssDtSN2LHDXbFROKyNOWuEBbfQ4mzUimnnVy1Wjz+fpQR4cLDaM1ZOrbEY3VwAXBMEUEcWCIBwcWr2QllD11lFtIf3ee6wyHYkAH/gAPciVsEIkeb0UKPE4C3oZF90KY//k9XVuL5XHm8fOBe4ajcppZcSJlR5QK0KwmzEimnnVy1Wj39hgJEk4rA1k9eQql6ObK4ALgmCKiGJBEA4O7VpIS6h6a6i0kP7AByiM43Eu/CtRy7WtxbDR10exkkwyRLsSwSBw8ya37+ur9YiFcuzXAnetiDix0gNqZQh2M0ZEM6+6sRr9wAC/qyJ7xvtzfp5RG2438O67fO/xcfuF5AuC0FZEFAuCcHDYrwvpg0SlhfTXvw584xvNXdt6vGBbW1wYBwLsSWzmKVYkEtzO4+HrBNJMVMV+LXBndcSJVR7QVhWhasSIaOZV9/kYRr2ywq/BweIie7kc8PbbnDPBIHDtGts1qWN2uxlq7XDUNgbpOS8I+woRxYIgHCz260L6oGG2kG702irx8eabwPPPs2BWKlXdC5bJUBysr9MjBVAImOUUJ5NcpI+MiGcJsCYEd78XuLMq4sQqD6jdilCZedWdTgrjdJridmCA9++773LOJRJ8rapEvbur729VCG93F7jrLnuF5AuC0HJEFAuCcLDY7wvpTtLpXOp6ry0APPUUt52dBa5cYUjowADHPjqqvb9mXjCvl/8/dIgL67U1ep5U9endXXqefD5u4/dz+4PuWbIyBFcK3FXHiloKjYRgv/oq76FAoHXPAzOvejTK+3BpSc+HQoHnwO0GTp+m99jMYKZSa95+G3jggfLvK5FEgrDvEFEsCMLBY78spDstQhWd7n1qpNZrG48DX/qSXuhvbtKj63JRyKr85HPnKGjNvGCf+pTOUb//fuDWLb6f6lPs8XAs4TBw5AjHEw4fTM+Smquzs8C3vkVRcfRo/SG4ZnNeCtxVxopaCvWEYCcSvJ8uXQJu3GARukafB7VeUzOvuvG13/42jQJ33VXZy721Bbzzjg6xlkgiQTgwiCgWBOFg0s0LaTuJULv0PjVS7dqW5kYePQq8/DIF8dGj3IdqowTQ06s8xsZCRJ/6lM5RTySABx9kmHQsRi+xy8XXBQJ8z4PoWSqdq++8Q+NBIEDRUZqLXS4Et9Y5f5DOba1YUUuh1hDspSVGXNy+TY/z0JAOYa7neWDFM04J5ZUV4JvfpLHq/vsrv+bcOZ1nrNqtSSSRIBwIRBQLgnCw6bZK0XYSoa0qvGMV5a5taW7kwgIXzH6/zgdWQm1tDZib07+XFiIyy2NWwhrgOZiZOZiepdK52tdH7/v2Nv9/7RrzsZU33ojR+PCd7wDf+5495ny30mwthVpCsGMxCuKlJebzjo3x/lL3Q63PA6ufcfUWGlNjOn1ae867MZJIEIS6EFEsCILQLdhNhNqt8E4tmOVG7u4y3NnlKt52YICCORqlB1j1OTUWIrJrjnqnIyDM5uryMufnyAg9iOW88YA2PszM8HXLy/aY891Ks/O0lhDsGzdoROrt1fdLLVEARlrxjGuk0JjLBXziE8Ddd3dfJJEgCA0holhoD51eoAnCfsBOItTK3qftxMxr5HLRQ5zNFm/rdNJ7vL3N41SiuLQQkZ1y1O0SWm82V43GB6ezvDde4fHweNxuzqFOz/lup5l5Wi0EO5nkdUyneZ/4fJxz6p4xUul50IpnXDOFxrotkkgQhIYRUSy0Frss0ASh27GbCLWq92m7MfMahUIUv/E4RZuxpZLLxb+pFi7lChHZIUfdLqH15eaqmfGhnDceYLGmRILHcPx45fe0k+HFzjQzTyuFYMdiLFKVz3O+HToEnDhhvp9yz4NWPeOsKDRWL+IIEISuQ0Sx0DrsskAThP2A3USoVb1P242Z1ygQAIaHmd+6sVHssdzd1eGUQPVWLJ3yLNkptL7cXDUzPpTzxudyLMjlcLBytx3m/H6ikXlaKQR7YYFCsKeHgvjcub2efyNmz4NWPeOsKDRWK+IIEISuxRai2OFwDAP4LICfBXAfgCMAsgDeBPAUgKcKhUK+cyMU6sZOCzRB2A/YTYRa0fu0E5TzGp08SVGsclwHBvh9e5shp8GgvQtmNRt2aqVnq9xcLWd8KPXGA/x8CAS4n/7+2t7XLoaX/UylEOyREYZNnz9fWRAD5s+DVj7jmi00VgviCBCErsYWohjA/wDg/wtgCcD3AMwDGAXwCwD+FMAnHQ7H/1AoFAqdG6JQF1bmBUkYkv2Ra9R6WiVCG712nQhJtIJyXqNQiN4tgLmRCwsUaoUCsLMDvPmmfVuxNBN2urVlvWer0lw1Mz4YvfFGcXLyJHNUS3O9y2EXw8t+xywEO5lk26MrV3gNKlHuedBKQ1urC+KJI0AQuh67iOJpAP8AwNeNHmGHw/HPAbwE4HOgQH6mM8MT6sKqvCAJQ7I/co3aRyURWtobNxisLkKbvXbtDEm0mnJeo0OH6OmameF5jsdZJfnkSR6fXVuxNBp2+s1v8vpb7dmqNFdLjQ83b9IbPzLCMd24ocXJE0+wHdPLL3eX4eWgUBqCvbxMY0ejz4NWG9paWRDPTkUQBUFoCFuI4kKh8N0yf192OBz/EcDvA/goRBR3B1bkBUkYkv2Ra9RezERoLKbboGxv6zzNbJZtUUIhcxFq1bVrR0his5h5wqt5jVIpbjM8DHzoQ8B999k7+qGRsNNYjIIzGrXes1XNYKKMD3Nz3AagWBkZAc6eLRYn8/OdNbxIFEztNPs8aIehrRUF8exWBFEQhIawhSiuws6d77mOjkKonWbzgiQMyf7INeoMxkXn+joXYbEYQ0z9fhYlisdZsTcSoWB+9dViYWvltbNrj16gNk/4F75gjzZKzdJI2OnqKqMK1PW6dYu/h0LM5W3Ws1VNIAWDzBWORFil+Kd/Wnv9jEKhU4YXiYKpHyueB+263lYWxLNbEURBEBrC1qLY4XC4AfzynV+/VcP2r5T5192WDUqoTrN5QRKGZH/kGnUGteiMx4HvfpeehmCQX4UCw6j9flbrDYW46Hr66WJha/W1syok0UrPTT2e8M9/vvu9gfWGnS4u0nCSTNKgkk7rKAO/nx7ykyc5hxr1bNUqkD7wgcoRCZ0wvEgUTOM0+zyws6GtHHYrgigIQkPYWhQD+NcA7gXwjUKh8HedHoxQI83kBUkYkv2Ra9RZzp8Hvv1toK+Pnj2PRwuawUHeeydOcOE4M1MsbFt17ZoJSbTaI9eoJ7yb52alsNPSfPPNTYq7tTUaUpaXKYRdLoqOeJxRCOvrzP09dKhxz5ZVBpNW5oKWIlEwzdNsiHI7r7cVdGslfkEQirCtKHY4HL8J4J8CeBfAL9XymkKh8HCZfb0C4Lx1oxMq0kxe0OXLEoZkdyRUrLOsrFC4DAwAH/4wPX5K8KjQV0WpsG31tas3JLEVHrl2RjHYycNcGnYaDLKCtso3z+V4XjMZGlHSaYYvHz1Kg4oin2e7JFUd2udrzrNlVQ5nK3JBzah3/vzt3wKPPWaPOWCn+dgt19sKurUSvyAIRdhSFDscjl8H8IcArgD4eKFQWO/wkIR6aTQvSMKQ7I9co8awanFnFLYDA7qfrhmlwtZO164VHrl2RTE0691uxULfGHZ6+TKfv7u7HFtPD9tKKW/W7i7zzx2OYkEM8HfVY3ZtjcWwfL7mPVtW5XAa96PO47vvWnMe65k/wSDw4x/T8PDSSzzHnco5tlP+s9VjsTL3t1V0cyV+QRDex3ai2OFw/BaAPwDwFiiIVzo7IqEhGs0LkjAk+2PHa2Rnb4LVi8RmhK2drl0rPLrtiGJoxrvdavFy/jzDo994g+K2p0eHRvv9vJa3b7OoViZD0Ts0VBxdoBgYoOBbWeEYP/Qh+3i2WnUea50/S0vsx5tI0KseCACHD3cm59hO+c92Gku76YZK/IIgVMRWotjhcPzfwDzi1wB8olAoRDs7IqEpGskLkjAk+2Ona2QnD4kZrVgkNiNs7XLtWuXRbbUnvBnvdrsEw+wsPbsPP8z3N4bWx2IUxSMjFHMbG8wpPnVq735U0a3VVV4Du3i2Wnkea5k/sRgF8dISjQ59fcCxY8zjB9qbc2yn/Gc7jaUTdGOBMEEQirCNKHY4HP8bgP8dwCsAfkpCpvcJ9eYFSRiS/bHLNbK7V6JVi8RmhK1drl2rPLqt9oQ36t1ul2AwGhsef3zvuY1GmTPscgFjY/R0bm1R+A4P780t3t7mM/vwYXt4tlp9HmuZP6oveCBAg4PbzfOpaGflfTt1ASg3FmOhN4+HRoT92pGg2wqECYJQhC1EscPh+BVQEO8C+AGA33Q4HKWb3SgUCv+5zUMTrKKevCAJQ7I/nb5GViyOrQ65Lt3fiy9as2A1G2czwrbT1w5onUe3lZ7wZrzb7RIv1YwNLheFbzZLUTc8TNGyvU0hqEKtd3f5t50djvkTn7DHQr7V57Ha/EkmKYjTaYadLy5SBKkcbCNWV94vfQ4ocWmHLgBm90Yspg0I29u6Qr7Px0KB4TDwqU/tP4N2NxUIEwShCFuIYgBqReIC8FtltrkE4D+3YzBCh5EwJPvT6WvUzOK4FS2ASve3swO89x7DUz/2scqvL7dgrTTOUIjHPjur91GrsK3l2vn99CSOj3MffX3WLuha5dFtpSe8Ue/2K6+0T7xUMzaEQry28ThFSl8fz+nQEP+vxIvHw8rU8Tj7CP/Mz9Q3jlbQipD7eg1OsRjPkd9PL7vPx+tslpNtVeX9cs+BbJaiMxjsfBeA0ntD5VwrA0Jpy6+dHeBHPwK+9S3gl3/Z2rE0QisErJkjQISyINgaW4jiQqHwRQBf7PAwBDshYUj2p1PXqJnF8cKCtSHX5UK4l5e5qHY6WfRI9Xs1w2zBWi00PBSiaDl8mIWV6jVKlLt2ABdrylP4wgusZGx1jnYrPbqt8oQ36t2em2tfC7NqxgblHV5fp8Fmd5fC7u67dc6xykHe2ACOHGG7ITss3K0MuW/U4LS7q+8Np5P3tMolNqPZ6u2VngPXrlF0BoO8TuWeL1aNpRLGe8OYcx0IcMylYfkLC7z/vv1ttpXr1Od4u2pS2L32hSAIAGwiigXBFAlDsj+duEaNLo6ff55eO6vyESuFcLtcPCdbW8X9Xs3CLIHiBWutoeGLixzf5CQXovUaJUqv3Ztv8hwlk1x0B4MUAK3I0bbKo2s271oVxdCodxtoXxusWowNJ09SFC8uUtyNj+v+1oGAnl9bW/ZKT1le5r20s0NRVdqTu5Ry57EZg9PSEueP08nzeO5c+XsaaK56e7XnQG8v79dolCK00vOl2bFUw3hvGHOuzcajCri5XJyDncotbldNCrvXvhAE4X1EFAv2pxv6FB502nmNGvXYvfQSQ5qtykesFMLtcnF/avGn+r2WW7QaF6z1hIavrACPPAJ8/vONGyUiEQqg2VldmfiBB1pfObZej+65c/RaZzIUAjdvUiiV87x84QvWRjFUEpzGYkIuF99HebdPnKAxptVtsJSBoFDg1/Q0z1kpoRD/Ho/zXMbjPJceD0XgrVsUNCdPAk880XkPlvKyff/7nC+ZDOeE30+v98mT5veV2XmsJDSTSQrNxUWK7rvv5r1lNDiNjvJe2dgA7r+f+yhHs9Xbqz0HwmE9nmi08vOl1V0A1L1x9SrfK53m72aoAm5jYzRwtCrPuRLtKny3Xypyi2NCOCCIKBb2D/LgPhg04rFTeW5W5SNWC+E25m4ePsyFdjTKhXepd8u4YG20eM6nPsUw10bpROXYWj26ExNsffOVr/Bvt29zIZlO0+s0McGcWDPPy+c/b91zwcy7Xa6YUDZLgRUKsTXSc8+1rg1WaWhmLMbxzM5S3D30ULF4y+V4roaGKCiPHqXneGaGebIOhxY23/kOj7VT4Z1GL9vt2xxbOs2veJzjXl/fm55Q7jyazXOza5hMMufV6QT+yT+hkcFYQO/553muKoniZqq315IiokLho1Gei3LPl2bHUgvq3rh8mc9Zv784ZNrIxga92pEIv7cqz7kS7Sp8Z6fq4I0gYd/CAUNEsdD9yIP7YNFIPuqRIxR2VuV1VgvhNuZuJhJcJG5vc5Fbumg1LliV16cd+aeKTlaOrZaX7vVyfG+/zTH5fDpHF6BnReW+TkyU97xYteC+5x4+a955h1EH2SyFiCom5HDw/CQSfM+5OXpeW1X8yyw00+/nazc2dJj95CS9ikZjw4c/TMPB2hrwl3/J+eTx8Fz293Pbl19ubXhnJYNFqZftwgWG+F+7RiNJOMxjNEtPMDuPZvO8XEGonh5GIbzwAufir/yKNjqNjHBfrazeXmuKiAqF39ig0SAaLX6+tLNTw8WLwHe/y/t4d1c/MxT5PMeZTOpc7FisdXnO5WhVj3Qr3ufVV3mfBgKdN+x3OOxbfBxCJxBRLHQ3kq9z8GgkH/XwYS5yy3kvSqmW11lLCLdasC4t6d6wu7v6/2YL1oWF9uWfKjpdObZcXrrDAXz1q/ybCj18802ew0hEC+JSUdSo56WaQFOGt40Nfi0vc1tlAAG44Pf7KSxDIb7u6afZ0ujMGWuFVKXQzIkJ4PRp4LXXeH5u36a4C4WKw8cBjm95mWMqNy6rwztrMWSaedmM95QaD6DTE4LB8uexdJ5XKwgFcK5fvsz/q2NvR+X9WlNEjKHwiQSL+qVSnenUMDEB/ORP8h5dW+OzrLTFl89HQaxysdW8bEWeczla1SO9mfdJJJi6cOkSjZFDQ5017Hcw7Ft8HEInEVEsdC/7JV9HqJ9681Effhj45jety+usJYRbLVgBLnSiUS4Ud3fLL1hXV1vTqqgSdqkcW5qX/tRTxaLI2CNWjUt5Bktztuvx8FRbhQ0PUxgZDW+BAN/f6eT28bg2voTD9IIpUTw9TYFqtZCqFpqp+gu/8gq9xV4v8Pjj/LrnHvNzXEorwjtrMWS+/joND6VeNuM9pYSXz8ftrl6lYB4dNT+PpUKzXEGobJZzLJPh9fV69x57qyvv15MioryuiQSNBspQ1olODZ/8JOf2pUs8P+m0bvE1OFh8b7Q6z7kcreqR3uj7KCPk7duce0NDXKt00rDfobBv8XEInUZEsdC9dHu+jtA49XprjhxhKKhVeZ21hnAfOsT/ra1xoTM6qgsxmS1YW9mqqBx2rBxbLqRb9Yg1CvWBAYojY05lrR6e0pxVr5f7zucpdl57jR4cADh1imPJZPh+apGvxuXzAWfPcq4pSvO+rSr+VXp+Sgt9hUK6j+3aGj3B2Sy979evU+zfc0/7+icrajVkXr7M+Xj06N574NCh4jB6de4LBZ7Hj33M/Dwa53mpgQXg3+Nxft/Z4XeXi/teWdmbMtDKyvv1PgfSaeCDHwR+8ReZgtGpmNNIBHj0UV4Xh4Nh+MY5aQztLglxb/o01rqDVvVIb+R9jEZIh4PFxyYmOO+Bzhj22xVeXoL4OAQ7IKJY6E469OAWbITy1vzt39IbtrbGvw8OsmpsqciwMq+znhDuRIIC5CMfYV5ipUWbVa2K6sGOlWPNQg9VnqLLVbytEuqlOdvVPDxqFfb88zwWgILCmD997RqF0qFDPNduNwXm9rbev3q/VIoedKMoLhXnjz1mjZBS58fn0+GqxtxvdZ3yeX3O0mmOfXmZ8+vSJQr+duav12rIvH1bRyuYEQrxSxkDbt5kHvAv/ALwmc+Yv8YoNHt7iw0siQSvXSqlRejuLr9vbvIclksZaEXl/UafAyoCoJMYo3h8vqpRPDMnn8Clp5oIl52ZAb72Nb6f8TPg2DHzHbTL8FjL+yijVW+vNugZjZGdMOy3K7y8BPFxCHZARLHQnXTowS3YCBX2urRUnKvrclG0lXqL6g25rpbXWe/+Pv3p2j7FrR5nNexYOdYs9NDl0pWdS3G5KFyM86Cah+fSJR7z+jpfV5o/vbami2glEjo8W1X6Tad5PgoF7k+Fio6MFAtjM3HerJDKZCgc5+b2jn1ri6JbCXZVZM7hoFA4coTz5513KALvuqu292w2f70eQ+bhw8Bbb/HalKuoDOjeyltbvNZjY+X3aRSai4vaWKCMGVtbFNb9/TyfPh9D5yOR1qUMVKLdzwGrqCOKZ+qeX8Iz3z7eeLjs3/wN8J/+EzdKJPhit5tfU1MM1S7dQbsMj9XexxitEAhwvqnUjFLaadhvV3i5AfFxCHZBRLHQnXTgwb0HKY/YOcySj4aGuOi6dYteoJWV4sWQ1QVyGt1ftXnTjkI+pditcqxZ6KGxzVXp+FTLKOVFrubhWVnRfaudTraaKs2fdru50Ab4ngsLFEzXr9N7uLPDBazDQWG8s0OB8vLL3I9qEWRF3ncp0SgX2tEo545x7Ok0x+5wcExra3zvvj7dP1vlr7/7Lu+X+++v/p7NHkc9hsxwmOd6c3NvReVS6vHmKaH53e9yLvf08HylUvzZ5+PvOzs81oGB9qUMlNKJ54BV1JBzPXPyCTzz7eONh8v+zd8A/+bf8B52OHguenp0US+vl/esSn8w7qBdBodK7xOL6ciUVEo/V81op2G/XeHlBsTHIdgFEcVCd9KBB/f7SHnEztJM8pHVBXLq2V898+boURYHy+e5EFd5ea0qnmO3yrFmoYfGNlcbGzrMUIUKDw5WbsljZHaWuXyqerTDwQWqz1dsaPN4KHh3d+lFz+X43mqb3l6+FuD3bJYL6StXuK9gsLxga8aodvMmxRughRvA90+lOF7l8UwmeX4ikeLQzLvvprf49m0ek6rkbIYV+ev1GDJVGGkqxflfTiwA9XnzlNBMJhkKvbjIuZVO81pubvL3YJDzr7e3PSkD5eZCqwt6tZIqOdcqZLqhcNmZGXqI33uPz6mjR8sb8QB+Fpw+rXfQLoNDpfdZWOC56ekpfq6WoxWGfTM6UNfCDj4OQQBEFB8M9qNHsxMFiQApj2gH6kk+evNNVtj9xCf03Le6QE4t+6t13jz+OOeqUTgrQTw6yiI2H/5wa+5fO1WOLRd6aNaSR4V0h8M87zMz1T08r73GBfXGBo8xkaCo7emhEBoc5CLb4eB8yuW4jdPJiASPh+NIp4tXaC4Xf1fVsPv79wq2Zo1qKyu6vZg6frWYVl7Onh6O3efjOD0eCimjx3VggGNaXaXgevTR8u9pRf56vYbMoSGK0c1NnjOrvHlKaCYSwHe+w/tRhdz29lJkDQzwZ6C1KQO1zoVWFfRqByapAk2Hy37ta3w2OBx7BTFQXJk+m+W9WGrMaJfBodL7jIxwTp0/X1kQq+NoR/uqDtS16KSPQxCMiCjez+xnj2YnChJJecTOU+tqKhajGHjrLS6Irl3T3h/j3LdyUVkuT7TWefO97wHf/z6F1M6OFs65nC7u5HK1bjHcROXYlmAWemhsyRON8roCPFe5HFfP1Tw8U1MMvdzY4GvyeR5vPq9DaVMpHY6pPLKqIvHAABeyiQT3oVBi1Ovl/3I5Ltg/8AEt2KwwqqlYw4mJ4j7NAwM8hkJBh3Sn0/yucmVLOXKE26ytWSs8zWikovJDD/G4bt2y1ps3MQH87u9ScH//+xzL6CgFsdq/6v2byfA6Wp0yUO9caEVBrw7RVLgsVnjuEgle/0q951Vleq+X0RWlxox2GRzM3ieZZJvAK1f42VSJdrevanM+e6d8HIJQioji/cpB8Gi2uxCJlEfsPLWsplTfx7U1znenU4uXTsz9WuZNKKQr4J46xbYynTC41Fk5tqXFfcxCD/v6dKydKlDT18dxjo5yXlTy8CgDxdISxb7yDKsQaCUkt7b4u9vN7ZJJfldFyJSYVrnEKse5UNBiO5djiLISbFYZ1dTxDw3pgl4q5B2goFO9sN1u7fn0+/fuy+vlfBsc5DG3Mm+1EUPmxYu8lq3w5k1MsPjdtWs8f5ubNDwpo4jy/Pt8/PnGDZ7XQ4ead1EdcANrU+Gys7O8Xh4P799KqHzwTIZGjnLGjHYZHErfZ3mZz6J2GfZrpc357J3wcQiCGSKK9yMH5QO3nQ9uKY9oD6qtpox9HwMBnntVjfrEifbP/VrnzY0bFFcOB78ymeJ7tl0GF7sV91Ghh08/TePC7KyOsRsY4Njuvpsh5cp1UOl+UwaK0VEurGMxnU8K8Nyrn1Mpii/liVIeV1WtOJvltm63FqA+n85RdTh0iLPxvZs1qhljDScminv2bm5SwO/s0DMcCFCwBwJ7W1kpl8sjjwCf/Szvm1bnrTZiyGylN8+YMuB28z3SaYpfr5fXt7eXho6rV/m/SISGmMuXGx/LATewNhUuq4StaptVDZeL80q9sZ2wc4XxNuez2/lUCAcHEcX7kYP0gduuB7eUR7QH1VZTqu+jKtQTjVKYKEHQ7rlfy7xRrTmyWY65tN+ukXYYXOxW3CcepyhR+brDw7og1tYWC0W9+eZe10GpiOrr0waK++7j6mpjQ7d48vm0x9jn4/+2tvT7OhwUncqTrAwYXi8FaF8fX+d08hru7nL7554rfu9mjWqlsYalPXtVRWm/n+dKFU0rzVk0ulwefZRf7QgjbdTo0qp+wI8+SqPC7Czv0eFhznUVSg3QsLCwwOs+NQX8h/+gowFqSUkqDZt99dUDbWBtKlx21svnk9td3Ju7HDs7nFvDw/aLt7WbEdJsfG3KZ7f7qRAOBiKK9xsH0aPZjge3lEe0B5VWU8a+j+GweVViRbvmfi3zJhbjOFW159J+u0baZXCxS3Gf0qiX+++vHvUCmNdSyGZpNFGtdo4cYd65aouyuakLVKmwaICL6WPHeA7W13V4st+vRbHap8fDfcXjjE7I5TjHRketM6qVizVUPXtVNe2lJZ1Paex/Wsnl0o4wUrsZXS5e5ByLxXhNjxwxr2S8s8O/Ly9zft1/f/WUJLO6HuvrnIcq97xSgaV9amBtLlx2nPfj1BTPv7HQXCn5PK/rwACr+dvx/NntfjCjTeHl3XAqhP2NiOL9xkH2aLbywS3lEe1BpdWUUVw6nfxdVSUu9bq2a+7XMm9UX2DV/sjYb9eMdhpcOlHcxyjEn30WeOON2qNe/uzPKF7Maimo3NFgkMJHVbKen+f5B3S1791d3evX52P18v5+4G//lvtRXuVCgff6+joFjspPLq1WPDdnrVGtUqyhUhDxOIVvocB9zczYx+VihdHFKoNNXx/nV2+v7m1b2o5MiWSPh38bHKQwKzU0GI0z8bh5XQ9VO6Cnh9ufO6d7WpuxTw2sDYfLqs+AkydZPEu1XTK2JgO0d79QYDumT3+6HYfVGHYxQtoAORVCJxFRvN8Qj2ZrkPKI9qHcakqJS4eDi9BkkovNcj1O2zH3a5k3LhcXc+k0v8w820a60eBSywqn1KuWSDAUOB5nuHMsVv68HD/O6t23blGIHj26t5ZCby/w/PMMt758GbjrLnqBd3boJVYFsnZ2OJdUNWmnk98fe4wujGSS86ynR/cxzucpvDc2uP3Jk8XVigFrjWq1xBoeO8ZxKANpIsH3Hx3l63/u5zpfZLERo4sVXRWM8/HaNV7re+7hfqJRHZar2pElk3yu+P2cG+l0cYpDqXHm6ac5F8zqeqh2XvG4rhzu85Wf2914v5tR8gyYGB/H5z7Ha193uKz6DIjH+XsmU2zM2Nnh9SkUWEjuH//j7nAv7qMK480ip0LoBCKK9xvi0WwNUh7RPpQTBJubutDQ8DAF8blznV1s1jJvQiEu5paWdD9gs3xioPsMLrUKGLNq+ep6plLsKRyPl/equd1cCK+usvBWOa8ywPkxO0thEg5TxObz/NrZ0WPM53We8Ntvc1GfSHAfhUJtx6/m2IkTOm/VKqNarbGG0Sj7uqrPhN1dhgB/5Ss8rm5qzddsVwWz+bi6ynuzr49Fx06f5r5VOzKPh9EKGxu6L3S5FAeVlnHpEueVWYRDKMT32tykoUb1tDZ7TnXb/W5GhWfA+TNnMPiJj+O508frC5c1fga8+qoOR1dOgWyW1+r0aQrin/u5+sctrkpBOHCIKN5viEezdUh5RPtgJggAhrjm8/QOTEyUF8TtnPvV5o3Xq9v7uN3lPdtAdxlcahUwjz9OIVHqVZubAxYXaSBwOit71ZJJevfSae6jlKUlep1VqGUmw223t/m3VIqCeGBAFztzOCjC772X5/0HP+C2wSC/q+Jbqsp0f79ue5TJUAykUpxfDz9MIWq1Ua1arOHUFPDVr5qH8JYTkbWIgXoFgxUCo9muCuXmo+rTHItRBJ87x0gDxcJCcVpGpRQHt5uC98YNRhI88MDebQIBGu3W1/l7Os1nUTK51xjWTfe7GTU8AybOXMfEk09i5VMP1TdFSj8Dbt7UnuPhYd5zn/50/QYfKyIRBEHoSkQU7zfEo9k6DnJ5RDtazc0EwbPPAq+/rivylqOdc7+WeTM4SCEPcPEYDHa3waUeAfP66xQapV41FVauKiwD5b1qKp+8t3dv6oixTVd/P8ehCrLlcroFFkDDRCbD76qNl9vNOb++rvPUHQ5eO6+X4qe/v7jQ1sIC56Ryd0UirTWqmcUa1isiNzZ4LaameH4AnTurxABQn2CwUmA001Wh0rkYHeXcmZ2lEQYoNrwYc/4rFe9TZLPc5ujR8kZplc++tMR9qsrhtRRD6xbqnH+RLwwg8lidn5lWJ6A2G4kgCEJXI6J4PyIezdZx0MojdoPV3CgIjh4FvvQl+839WubN0BBzXfeDwaVWAZNOMzTV6aRnR4kDldPrdtP7k89TdC4smHvVslnua2hor1gxtuny+bhdocDvCwvcRhXWikb586lTOvR+aQl4+WVWqc7ltEdfierdXV1cy9jCZ2ODHis1x9ptVKtHRH7/+ywilsnQi+zx8P9uN++lkyeZjw0w7LcWwWClwGi2q0KlcxEI8O/xuPYaGw0vyjiTzfKalivep0in+b1SWkYoxPkF8Hm0vKwLoXXj/W5GO1tDWpGA2mwkgtBZ7Gi4F7oOEcX7kYPs0WwHB6U8Yjdaze0892uZN/fe2/0Gl3oETCBAEebzAT/+MYWnsfdoIkGRsbJCz63fb97HORrluVR/W1jQwnppifvw+Sg+tre5jdtNwaM8wypP2O1mXvKhQ9rLvLrK8fT2cj8DA9yPCtk2FklTwjkUAj784eLr1YhRrZHnTD3XQHmIczken6rErCovezzM6X7jDb7//fcz5L2a1/nb37ZOYDTTVQGofi6U53ZxkdutrGjDSyjEa760xPl3+HD5FIdcTlchr1ar4NAh7jeb5bUNBjkfu+1+N6MbW0O2U8QL1tENhnuhaxBRvF85aB7NTrCfyyN2s9Xc7nO/0rzZDwaXegQMQAEZi/FaqQq/Lpf2/mazrBidz+v8a1XkSM3DdJriZW0NeOEF/q4qQqs8QyVcVdVolQO8sqJFeCajPYJHjnBMypus8kkLBS2MNzYoHLe2tLg5doxifHycVbNLqfUaN7PYq+UaKMH/4x/zPDmdugq6w8F7aGiIx7i0VGw8KN1nqWBYXqZH2SqB0UxXhVrOhdFze+MGPcWBAIVrNss55HJxvlQq3jc/z9fs7lJkz83x7y4XX1PqXQ4G+fX448DP/Az/3233uxnd1hrSChFv1TO7m5/97aYbDfeCrRFRvJ/ZDwtsoTN0u9W82+e+VQaXThx/PQImmaQIS6UoGo4cKe41OjREQRaN6sJE/f0UXamU9vyPj3MequMdHtbCentb5w77fNxHTw8Fjt/P87K7y583NjiemRmKurfe0iGzSqADFL2Dg/QIqve4fZt/u+ceelarFXGrdI2bWeytrLAi78ICj9msgNPSEgXx9DQFPaBFv2rdlErx/lev3dnhtS1XFAqgYHjuOb53T0/19IRavYTNdFWodT4qz20+z2vv9WrP7cWLPCZVDb20iKUxLWN8nN/fe4/nWRWK8/s5L0+e1KJa1TZ46CHgk5+s7di6gW5rDdmMiN/assZTKR7P+uhmw71gW0QUHwT2s0dTsJ5Whr61W6Qd1LnfyQVWPQJmc5NiC6D4MApigL8fOUJxsrHBbYNBLnCCQRZJ2t2lYNna4t+yWW4/MMDvyaRuowNw+4EB/f+eHp1n7HZz+/l5zlXVd1h95fPcNh6ngAoGuaBXi3qXi1VwayniVu5eaHSxZ7zmV65QlOVyPMdGMaY8xAsLPFcOB/ff06MLlaXTWiyr6+Jw6GtWGr6uUEXJVlYqF5oybl+Ll7CZrgqzs7XPx1CInn63G/jYx9jSR12bhQVtqCiXlnH4MH9Xxp5MhvPN5+OcWV/n1+Qkt2umtoGdDX7d1hqyURH/5pu8Bs16KsXjWT/dbrgXbImIYkEQimlF6JtYwdtHpxdYtQqYZJICK5+nF015Yc2IRChQQyHg4x8HHn2UXtzNTS5M5+Yo6gIBipBkUheM2tnR4da7u8V5swC/K8+oChHe3tbeZLXN7q6uRLy5SaGo8pJVeycVqv3JT+4VOkrEzM6yP/DmpvZiG++F1dX6F3vxePE17+vjsW9sALduaTF27hy97Gtr3I9R7Ltc/JvDoc+NUdT09OiQdLMevQpVMdysZZEZtXgJm+2qUK+gfuQR9rY1Ps8ikcppGaEQ5+HMDK/dT/4kt1OVzlW0wfXrFNh3391YbYNueJZ2W2vIRkQ8wOJzt28356kUj2f9dGPOutAViCgWBKEYq0PfOi3SAHt7VazEDgusWgVMLEYB2N+vPbyxGMdk9BirSs4ARW9/P/CtbzH3Mx6nAM5kKGA3N3W14L4+fu/p0Z5Ol4vX3+iRGhzkXIzFeH4ALbATCf4tldIVsFVIcjRaLLzTaZ7rUIivVxhFzLvv0oObSFB8RyL0qHo8nJ9vvUURtbsLfOITlc+zWuxdvgy89hoXfcZrXihosav6PGez3Hc6zfOjzq/DwTEbhazPx/OpDAXGbSsJ3nye719JOBup1UvYaFcFK9sUVkrL+PrXWaXcaMwIBCiUo1FdtMzl4teRI8AXvlDf/WeHZ2ktGM/59DTv2d1d89xqO7SGbETEe718DjTrqRSPZ/10W8660DWIKBYEoRgrQ9/KiTTVesfj4YfVj37E7a0Wad3gVbESKxdYKyvAK6/oYkEnTrBtUi2LiloEzM2bFArhMKtuLyxQEC4s6GJbqgKyz8eFdTYLPP00RbISGJub3HcwyH1tbHB++Xwc8+AgqyurIlsqBFoZfbxebutycVyqevTODr9U/qzav9tNb+vyMvezs6OFd18f9/X222wNds89/Hl6Wlc2jsf53g4HQ5RXV+nBvesunu+bN/leiUTlXttqHl+5wrEfPVp8LY29cAMBen9VUTEVEq0Khzmde41gSiirn1VYem9v+XEp41goxO2t9BI2U1ne6jaFpWkZ5TxXql+6sdUYQMPIyIg2TNSCHQxe9TA+zs8QNT97ezlelVt99CjnuB1aQ9ZrOPH7eS1TKeCBByrvu5KnUjyejdFtOetC1yCiWBBaSTd6KK0Mffva1yh4VcXf27d5TtbWilvvZLPAs89yIffP/pk1x9EtXhWrsGqBNTMDfPnLumCSMo74/fRuXbxYPeSzFgGTz3NxPzqqvURGr1o+z+0HBzkHFxYo8nI5zpO+PgriZJKL7qUl7k8JNuXlfPhhvu7GDe5za0sLFKPoVi2YEgneq34/ty8UuKAfG9Oh1oAOnY5EKBodDorbe+/lwvn559n/1+2mOB8a4v7VGJUHfGmJ+zt/nu8xPc1jMvbKLUc+z2PzeIAPfrD4f8aKymtruhK38iCr8G91b5p5dtVxud3aA3z4cPkevfPzvJ79/Tz/zXpmS2m0snyrW7VV81wFAsXnTBWJq8dz1U0exakptuQy9gTf2uJc29nh3H79deZsP/qoPVpD1mM4GRvjcyMYbM5TKR7Pxui2nHWhaxBRLAitoJs9lFaEvs3MUBD/t//GbcJhLoS2tnRIpyp0pArTrKwAf/3XFDEf/3hzx9BtXhUrsGKBNTUF/PEfAz/8IYWUMb90Y4PezpkZzotf//XKxoRqAubQIeCdd4Br1/h3M6+ay8UxXLnC8ahqwMePU9S5XFwYGQtDud28ngsLfM/TpylK1X7dbu2pVaJbnbNXX9Xi4tQpLnxv3NB5oV6vbsOkCmyp0OKxMb6Per3yOp04QaE4M8N9hMPc3unUondtjfdHOMz7bXGxcpVnxfo6RcbYmPk1VxWVlbEhk+E+83l9TtbXtccb4PaqqJZqwbS9XRw2Xan68vnzDP1WfYqBxjyz5QyKjVaWb2WrtlZ7rrrJo2h89h4+zPHeuqWNXcoQpQqQfeIT9jBK1mM4GR9n67daUwTKXW/xeDZGt+WsC12DiGJBsBo7eyhrXUg2E/qmjv/FF7nwdbmKW7l4PBQtXi8XpAC9aPPzDB398z/n+zcjUrvJq2IVzS6wZmaAP/1TejdTKQq5UEjn9+bznM9ra8D3vsfr90//aXWPcSUB89RTnBdGj2KpV021F1K5wMYq1T4fjyOT0Z6DjQ2KRL+fi+9YjKHEqq3T4CDw4IOc08rQ4/Vy3mYyFKUPPaQF6+CgFuVzczqH2eHg/v1+3g/G/rXJJL9vb1NULi3pbUsrbBsFvNELqzza5URxLqdTEAYHy18Do7HB46HI93hYTCqf53HfuMFtd3fp4e3p4c9GI5bfz7HOzvI8TEzwvjXztD70EM8jUL9ntlaDYiOV5VvVqq0Rz5XbTYOQen2lMXSTR9Hs2TsystfYpeoEqLlnB2o1nKyuMpe/WU+leDwbw8o6AYJgQESxIFiJXT2U9Xiumwl9Mx6/200B7XBwHw4HP9BVLqUKy+ztpVAYGODfb9xoTqR2k1ellGYW680usC5dYqGgXK44DFnhdPJ6Op0Mw33ppeLrVGns5QRMtZDFjQ3mX25tUTCWVjX2eCjWUinOp50dik+V/5rPcxEeCnGxG4kw7FoJDI+HhpholPs5fpzbK2MNUOxtVX1JVb7zwACrCJ85U3y+YjFdzCqd5u9KXJaietiqcQ8Pc0yJRGVP1Pw8j6nWSs+BAI9/d5fneG2N106FWC8t8XwrI5by5rndFL93381xzszwWBYWOPbRUXNPayOe2XYZFK1u1VaP52p1FXjjDc4dgGH21aKIusWjWOnZW2rsGhuz17NXUYvhpK/PGk+leDwbx+o6AYIAEcWCYC129FDWs9AcGGgu9M14/B4PP5C2t/leuRy9Ryo0c3ubi3AVnru7y/8nk80tlLrJq6KwIty+mQXWygo9squr2kBRjoEBehNXV/mac+d0Mal6x14tZPG99zgfRkcZzjw/v7d108AA55eq6JzNUoju7moRoYTcxz5Gr3EsZi7S3nuPYZEvv8x+tSpdQHlbfT7O22SSC+W77wYee2zvcanWTSoX1+HQufNmFAoU27duaUPF9jZz8I8cKb/Yu+8+LtpVCHot1/zcOe7/6lX+/fhxLhpViPXKCgWyw8H78d57mdKgRP+DD/Ja3bzJc//JTwIf/nD91ZpLt7erQbEWavVcLS0xNWFzk7/ncpwX1UR/t3gUO/TsbUnpjkqGE6s8leLxbJxW1wkQDiQiigXBKuzooax3odnf33joW+nxqzY5y8sUBj09WhCrdi/KO+Z28+fDh5tfKHWLV0VhlXesmQXW5csURcprWRria8TppFDc3mYrIFXtudGxV/IoTk5ylTsywurM0ajusavG4vPpPF3Voml9nddzcJBCd3S0OLS3tLK2yhVWIdarq7rf7MgIhXQopA04hQJDps+cMT8m1QZJiZ6BAY4tHtdFrgBd/GptTb/W76fADwR4DNUWe6+9tjcEvdI1f+wx4P779ZxT+1fhzrdu8ZxGIsCHPrR3n243hbXPx/Fvbla/T2vxzHbaoNissqrmuVpdpSBeWmL0wYULPFZFJdHfLR7FNj97O1q6wypPpXg8G6eVdQKEA4mIYkGwCjt6KOtZaL75JkVvJtNY6Fvp8avw6YUF3UJHodq9qP6uyvOsFufNiNRu8aoA1nvHGl1gZTI8D9V60CpU+PDCAq/f5GRzYy/nUVxfB/7qrygSVUG2ZFL3B1bzqLdXhxLnchyb18t5+cEPFi+OSlfSt29znOm0DhHf3aVYffddekRnZmiwSaV0r+PJyfLVoZVXeWuL4vnwYf68vs57IRTSOfnK8xwI8PzF43x/v59fIyO6XZTZYm9goP5rPjFhvpjs6+O9vbFBr7pRtJVipWGvkwZFq5RVNc/VG2/QgHDoEOdk6bmtJPq7xaPYxmdvx0t3WOWpFI9nc7SqToBwIBFRLAhWYTcPZb0LzXfe4Yfw+Hhjot7s+E+epDdOee6MlW0dDt2WxuHgYvHECYqUZkRqrV6VZJLjv3aNIaL19Ay1Cqu9Y40usLxeXUm5loqqKoy+p4f5plZ59sz6vz73HHPYb96ksDT2Ena7KWZTKc4tQIc8nzsHfPazxaG9pStpY2VmQIeN33sv97myQjG5vk5h+oEPMJd+aal8KDSgDUh+P+d2IFDcN1hVgU4meRyBAM9jTw+P6fRpjjmdppHowgVeR7PFXqPX3GwxqQo/qbzySlhp2OuUQdEKZVW6GP/MZ1iYzWhsUBXRgb0e4lLKif56DF6Tk5w3zz3XXoHQJo+2bSLtrfJUisezeayuEyAcSEQUC4JV2M1DWe9CMxik569WkV4q6s2OPxRiqObamvaSKQ9fOk1RrKr3jo/Tk9KsSK3mVYnFdJud27fprb5xA/iLv2hvu6xWeccaWWCNj9Mg8frrFGpDQ+VDqPN5XqdslqLy7rutG3spkYj2qm5saONBNKrz1N1uvcB2Ojn2n/mZvULGbCWtoiMiEa6cS/sGnz7N63PzJt/j7Fng058GvvSl6uKkp0e3aJqZ4XaqqNV779EjrHKNVWspt5vGoXPn+H1mhuHMm5vAL/xC+fPUzKK6dDH5/POVw+eNWGXY64RBsVllVc3D/NnP0uBhlbGhFuNHTw/n0uYm8M1vtr8VYJs82qa2REOKj9vlwsRoCECg9aU7rPJUisdTEDqOiGJBsAq75X3Vu9BUnrZaF5qlor7c8U9MsO/qlSu6Um4+z6+BAYqFnh4uMq0SqeW8KktLHMfqqs6LDod5HC+/3N52Wa30jtW7wIpEeLw/+hFfo0J8zdjY4LX3eBgWXKkoVyNjL0X1AVb09XG+qH7B2SznlcPBOXz2LPCFL+ydM6Ur6WRS9x8Oh837Bj/4IL24Kl1gaYnvX4tn9sMfBu65RxchU9sFgzymfJ7j9Xq5fTjMrxMn9DjqMSg0s6hWr7lyhcYrFc1RDasMe50wKDYTpWHmYVYh91NTzNG//37gV35FF2KzwthQyfjR28vfd3d1b/hOtAJssUd7jy3RaOTc3tY5+34/jg+G8WLsDK5e9be+wLVVnkrxeApCxxBRXA6x1gn1Yre8r3oXmqq9TSLRmKivdPz33MN7aWFBi2K/n6JKtXexUqSaeVVKQ2UHB/leyivX7uq27fCO1bPAuniR5/zv/o4L1ny+fJ9ip5Pn7/Dh1o0d4HM4Hud8GBri+y8scO4oQaRaI/X3c86eOrU3ysDMKx+LmfcONvYNNub6GoX9Y4/V7pmdmSnebmuL79HXx3kXiXBfKuzbSCMGhXqueam3M5HgPaLymicmyhtHrDTstdug2EyUxtZWsYc5EuF8UaJsd5eRBTdu8Nn1O7+j+7xbIfrNjB/RKOfY8jLHVE6ItuPZVotH2+PRBRvr9GgX2RJXl3QP8XSa97LLxfeJx+FeX0cYDkSvHsHsbFiWcELHEWlhb0QUl9LRcoZC12OnSpL1LjS3ttj+xelsXNSXO/5QiOJTCeCtLf4tGtXtSawWqaVelR/+kIv+vj5WIy71yrW7XVYnvGOVPpEnJoBf/VX+74c/pNd+ZUVXXE6l6OEcHmZYsSo41cqxqxXwxASvmTJqKI+Q31/sYb1921xAmnnlVduk0sJixr7BsZgWqqXCvlbPbOl2L73Ev/f20lhUDStrDxjHOjvLllq3bhXn03o8PPY33qA4VvdjKVYa9tptUGwmSuPKFe1h7u3leSoVZV4v//baa8C/+3fAb/2W9aLfaPx46ilex1q93n/7tzTstGplXotHO5ej8aCaR7vk/sosn0EuF4Inm+C1WFriPaqiPRR36lV4VleRu55DZjYLPFajEU8QLEakRXcgothIx8sZCl2PnSpJNrLQfOQRWu8bFfXVjl+N68gRLnLW1lorUpUgeftthnBvbTGsMRze65VTtKtdVju9Y7V+Ip8/D/zu7wJPP83tFxa0aB8c5HW7eBH46EeBr3yFnuVWjt3oTVe9gkvbg6m5tbmpDSylAtLMK6/aJpkVzFLRDMaiY+WEfTnPrJlYVqG0b7xBA00tWGEMmZkBvvY13tfKo3n7Nq/t2Bg/z1SuayjE8PTZWeY+qzBvdV+2yrDXToNio1Eay8t6fRCJ8DqWE2WqHdjbb/PcHz7Mc2i16K/H6x0MAj/+Me/rl17Shd1asTJv1qMdj/P/8XjRM8ubfQjuGx9HKp4HdtZ0H/FS7qRDZDd8CCZi8L69BECLYvHYCe1CpEX3IKJYYZtyhkLXY6dKkvUuNJ98kosQoHFRX+n4L1zg8Y+NAf/1vwJvvdUekbq1xWM4fZrCuxLtapfVLu9YvZ/IExPAP/tnwOc/X9zL98QJ4OGH9fu//Xbrx27mTVftwcxyCTc3GUb97LMs3masrm1WBM7v39s7GKAYViGeQH3CvpoB4p572hsq/Dd/A/yn/8RrpVpZbW/zy+nk1xtvaI9wKMRCdypi5No1jmNysrWGvXYaFBuN0ohGtYdZhUyXE2WqJV0mw4Juhw/z+lst+mv1eqt6CqpoXSCg24y1cmXeiEd7fR347ndpMB0YKHpmjS9+F+HFEcyunkQukID7rvL3RS7vQNQRxnhhBuMbM8DKo5jZiojHTmgbIi26CxHFCqtbowgHG7tUkmx0odmsqK92/Jcvt1ek2q1dlqLV3rGXXgL+5E/YbmtoCLjvvuLCWJU+kSMR4JOf7NzYgfLedLXAN4atOhz0IufzrKL9pS/pBb7ZfgIBihZj72CAr9/e1nm+QO3CvlYDhCqu1epQ4b/5G+Df/Bt6LB0O7svh0HUDAgH+rOa58ggfOsSfBwcp6NJpLQzLPQOseNa1y6DYaJRGOKz7YBuLtJXD5WK4cDzO+fDxj/Pv5Z7Fvb2Mmhkf533T11f9HNbybIvFdKhxTw/3e+yYfva2Y2Veq0c7FuPXygrP34c/XPTMityVw5mv3sT1bC/mEcZEJqNTPEqY3xhAqDeDyeAGIqk5TH3zNp6ZjrTVY9fpJYDQWURadBciioHWtUYRBDtUkmxkoWmVqC93/O0WqXZrl6VolXdMeSuffpqLYaeTVb0TCQrBkye532Y+kdvh2TPzphsX+Maw1ViMx3bqFN+3dIFv5pU39g5W225sUBCqvsAzM7UJ+3pcAuo+mpnh/1phUJiZoYf4vfd02zOnk950JYycTt5TOzvc3uFgiLfyfj78MIVJocCQeWVgMN7TVifLtcOg2ECUxsqhBzAbPYXM6ll4V25iPLWOSGmRtlJUxIGqnxAMsjJ66bO4UOAx5vMU2i+8QMNhLeewlmebiqgIBDgmt7s4l74dK/NaPdo3bvBeDgZ57hKJYkOe242Lk8u4vuDFVPocsAgcH3fA7dRV6nN5B+Y3BrCaDOD8oSVcCF/HTCyEZ77Tj6loezx2kkMqiLToPkQUA61tjSIIdqDRhWarRH27Rard2mUZsdo7pryVb77JEOdUitfwTkVWrK/zy1hAqdFP5HZ49ko90uvrxWGrqip2MsnjMVZMNi7wzTzbqgAcwLGrfrLKI/jii7V77+pxCayuMox6cLAxg0It9/HXvsbjdTi0IAZ4vgoFfu3uUhDv7vL8KcPT2Jg2nPT3U0CdO6dzohWtTJZrtUGxxkiHmTkXLgX/L5h+5wlEEz7k5p6A+9YNhAv34EzPDC4W3sHEwNpeA58x4mBoSJ/b0mfxm29SBKdS3D4Y5PWo9RxWe7YZW48NDbG2gjEKwkgrV+a1GEKNYw0G9+b132FicB2fi9wEFrKYTj2AF+cOIRzMwuPKIbvrRnTbj5AvhfOHlvDkuSuY2LiFp5Z+GtPuPowcab3HTnJIBUCkRTciohiwb2ilIFiNHTzXQPtFqt3aZZUyMaELjpXL4TVSThQZvZUOBxe/fX30oALvV2R93zOqwmWb+URutWfP6JF+803moSuhrypR+3wUxOfOle/xW8mzPTDAxfjAAPd1/DjFsOonXM1714hLIJMBPvtZer1rNSiUcz/5/RSv99zD1/b1cQ4kEsVttQD+nMvxvAEUHYUC50s6zVzZREIbTsoZpKp5xjc2eFzf+Q6F2P/8PwOPPlrftW8lNUQ6TOE8nsl9EtOZBxG7FkLYtwVPKoNU2oPZ7CSuO0Zxffswnuz7Ozw0OMv5o0J5jREHTifPjfEcRiKsdTA7qwtP3X9//e7Las82Y+uxREKPyayGQytX5rUYQo1jLRR43kqrwwNAKITzI+9icO09POeP4ergY4i6xpDLOxH0ZDA+GMNkeA0XTsxhIriKlXdymN45iVihD5PHKw+zWbuA5JAKCpEW3YeIYsC+oZWCsF/phEi1U7ssI+WEztwcF8tG8VUtJm91VXsrXS6KEeOi8k5FVgAUgXNz+vd6PpHLCeBWGRGUR/qppzhmtVhW/ZJLK5cD5gv8cp7tQ4eYb33oEL2q6+v1ee8adQkUCixoVotBwcz9lM1SxK6sUNQGgwwf7+9nOyCnk6HSpWSz/PJ6KZJyOYp/VRzK4aDhJJ/n9hcu7DVIlfOMx2I8t0tLPF/JJH9eWeH5slPcaIVIh5nQeTyz8NOY2jmNkUN+THqW4L56BXAsAz0ryGUzmM8fxVTmXiCXw0D2v2Eitczzpzzvhw6xYvvVq+ZGPasSDis923Z3+aUKqx06VLmOQ6tW5rUYQlWbNFUfoJxH+049gInAa5hw/yVWzsYx23cfMrtueF05jIfiiASS3HZmHrPu04g6DiN8yNtyj53kkAoKkRbdh4hiwN6hlYKwX2m3SLVTuyxFPXF2hULlbd96i0J3dxf4xCcoqMu1HBoYoJiKRrn4DARq+0TuZKLcxASP69o1euHGxiiMQ6HylcvNFvjVPNszMyzSVY/3rlmXQKlBYWWFXmk1NocD+OpXi91Pq6v0Mm9t8f+Fgr4mTqcOQ1U5rYpkktsqY4nDoV8P8Fj7+/nzwgLHVWqQKucZv3qVFcvX1jifXC7uO5Ph8aRS9osbLTMfLr14FtPRfoyEgIlQDJgy5LGfOgX33Bwmtm4Cu05MF07jufSjmMj+GedmOKwjF5S3vtZzaEY192WlZ9vSEueF08mQeGM0RSnJJA1pPh/vs7vvbm8etzJ0xeO6B3m5e/vkSY5xcxORzeuI3NVf9vMjc+QjyKUOt9xjJzmkghGRFt2HiGLA/qGVgrAf6YRItVO7rHri7OJxipbZ2fLbvvIKcPMmj0UtxI0th3I5iiTVfki15onFKLyqfSLbIVHO6+XxAdWrlgPmQr9UDJcu/Btx9Zw9a41LoJzRYXGR41Ztpm7dYo/o1VWd8+zz8brs7HCOJ5MsqrW2xlxSZfhIpShUvV5uu7Ojw8Tdbu4nn+fX1hY9nSrvWmHmGb96FXj+eY7B4eB+nE7uO5vlsczNaaVht7hRg2FiZQWY/muDuHnzxt72S8eOATdv4vjWLbyYfwRXXZNYcR9GxL1Oo8L99/M+LGfUKxddUNqHWxl9qrkvyz3bRkd5HTc2OCbVj9qIam+2usprNDwMfO97vJ+tNHZVM4QGg5wriQTnXaV7PBhkmsDgIPdR4fPDO3kB7h8EkWpxa3CrL6nQ3Yi06D5EFCvsGlopCPuZTohUu7TLqkd8vfQSv589W37bsTHuL5nkwvbBB7m4vX2bx+lwaAHkcOiQynicq8BKn8h2SZRrxvRei5e7r68xV88jjzTvEihndIjFWDBN9WKOxSiKV1d5HfN5Xr/eXoqxRIK/RyIMA9/dpdf71CkaRXZ2KFhdLu5ThVK7XPza3NR52qOjnFfKi6wo9YzHYjTKxGIM1+7v59iM7Ozw/Tc3eaynT/N827BfTZG4ySTN2y8NDgIuF9yLiwjHNxDdDWHWfRoRx0s0PLz5Js9fOaOe2Tks7bvtdNKwNTzMa1PNfVnu2fbiizRYJBJ7RbGxvVk0yr/l83xuzM/XZuyq9VlaiyG0t5evDYXKe7QBju3ECd57kUjFz4/xvgmE32m9x64Vl1TobkRadBciihV2DK0UhINAp0RqJ4uO1RNnNzzMT0yAPTvL4XJRjCwu6rBov5+L+ViM2/T2clWWz/P/mQzw6qsUPh/9aPlPZLskypUzvZu5Ym7f1kJ/YaE2L/fk5F5XT+m+1WeCqop78yY9cc24BCoZHRYWKMCyWW6n2mvt7uoWO+k0jyWVoijN5Sg4w2Geh60tziG3WxtFVFj2zg732dvL9/F4dJ6206nDw42UJstdvUoBDpgLYoAi2+/n2K5fB778Zc697W179KsxPH8yV8LIJcbh8fQWF38yFixLpd4PXfc4d5Ar9CCTdQCOO1Xez54FfvZni4x6RY+4a0MY3wkhkls077vtchVXjAcY1VCL+7L02TYywjcvXZmr9mZzczweZTDJ5zkWn48GmJUVvq7U2NVIOkU1Q2goRCX57rsMuR8Z0SkAgcBeFaHWYxU+PyJoj8fOeFtYfUkbotOGX0GkRZchotiInUIrBeGgYZfK2O2gnsJMiYRejJf27DRizK3d2uLqbnGRv/v9OoTaWHgpl+M+x8aAxx83f7bZLVHOaHpPJHgMSrioIj07O/z+kY8w97BWL/f8PFe0fv9eN086TYFsFMfptBaqn/0sV96NuAQqGR12d3X4sepp63LxWvv93KZQ4Fi2tnSV44kJverK5bgKLxS4QFbh0qkUxx6JsHL1kSPF8Z3vvru3ajJQ7LFX1czTaW6byfDcq164hYIWW8PDNCKk0/SkrqzQg93JfjUmws67fhruuZ9EyhMGjt+ZV8aCdSosOpUCcjlk3QEEPVvw9vYAmTvX3OUCHngAmJgw1447pxB+7+dwZvWHuDjwGiY2lor7bitUdIBqpWRmcKhGuZX5/Dz7WCeTfE+nk2Po6dHqTUUVXL5M776an82kU1QyhG5tAX/2ZywUNzvL7729nOt+P8d2+PBeFVHl86MdHjt1W1y5wml++3brLmlFpEmyrRBp0T2IKC7FLqGVgrAfkfuK1FOYaXdXr5pMena+z52KrLh5k4v2W7cohIaGuLDd2KC4U2GsPT0UYZEIvXtra+b7tVuzRbXAX14GfvhDjtvh0K1wUikKseFhLuy///3avdy3bvG6eL0cv3LzOBw8p+k09+lwcJWrrsfXv87F+4MP6n7GtboEqhkdXC6KlnSax3hHiBXNndLj39jgftNpvn5nh2Kjp4dzT1Uk9vk4Px5+eO97V4ojNXrsp6Z4LZT3OpfT41YGGNU2SonyVIrvXZoO0O5+NWWE3bjjBsLx65jd9iGXvgH3TkaL4lSK1/fO+cwFBxFNjGA8uIbxowUgPspzsbAAPP00pm6O4JnLR/dqx1wvZjfO4PraLq6v9uPJUSceCt3eO0YlVvv6uN8rVxprbVW6Mr95Uxt83G6u0MfGigtbqRZuW1sUz5cvA5/6FH+3Ip2iVMgar4fDwf8lkxzj+rqu6H3vvcAv/VJtc+POZ85EJoPPnQkByXFM3+pricdO3Rbf+Q7ftlzxbKsuqSl2qP0g7EGkRXcgorgcB8lrJQitRizXxdTTq0F529TPlVAVWeNxuiEKBe2m6O2lSFpb4+8jI8zHGx2t7N21Y7PFwUGKKreb41ULcpWwFwpRkM3McMW5s8OF9Nxc+YrVx4/TM5xI8Bz19HDVGgjQ5WNMRlTiuFDgduk0z9+tW5zPjz4K3HVXbS6BakYHj4diUxXQ2tnR16QUr1cXZbt1i999Po5RXf/dXR0Wfd99HK/Zyr1aHOnFi8xTfeEF5gkrA4FyiWUy2qAwOMj3i8d1uHYgsHdOtbNfTYWQ9QiAM7s+XH8jhfkVLyZ67qQvDA3xGFSYem8v5lNjCLkTmPQvsMhWOk1P5uHDmJmK45k31jCVO2quHf3A/NeymIqfBeJeDAz8PSYCBmGsRGkyySJrQHNRGMaV+de+Rm+9qvJsVoDL2MJtfZ330uwsv1udTlF6PT72Me5HpS8o5aruvWqYfOacd7sx6D6N5/o/gKvhexHNhSz32N1zD6fG1hZtjSqPWGH1JS3CLrUfhLKItLA3IooFQWgtYrneSz0Fo4JB3S9WVV6utG1fH4XfxgaFyfo6f1eFtXw+LoTOnaPXBajs3bVjs8VLl7iKfOghinqz0q4AvcTXrnH8qgeqsdLNyZN60e92U8xMTelQ4FBI99tVubwq/Fh9ORw85yq8+soVbvs//U8UnNVcAtWMDqoIlvLyut06nFq9P8Dj29zUhbfyeYZDLy7yuO6/X7dEmpnhfnp7986peuNIlddcFf0qx86O9nIrI025Qkr1hOE36nqpkid/ceImrsfDmHpvDNjewXHPMtzR6PvHkAsOYj41htWdQZwPTuPCwOu853y+9419l/5qANN5B0buT2FionfPe7idBUwMbwLZXkynj+O5G8cxMfr23vtVtXfa2Gg8CqP0PKn8cqeT90IlBgb4+liMIfWtSKcodz0CAX0/T0xw7lYT2hU+cyaiz2Ii9DJWjjyE2Q98DpmTk5Z67AoFPpLicV7ChQWdT2z1Jd2DXWo/CEKXIqJYEITGqbYgFcu1OfX0alhb016ctbXyOcWArsgaDtMLFI9zMZjPFxdQOnGiWJBU8u62utlivaKmNNzY7TbvZar6syYSXJEODHD/xko36+vFxgGVk6xE3uqqLgSlej6rdkUA9+t28/ypEHWAQvy//3fgD/9w77UtPd5ksrLRQRXUUoWQVH6r06nFuyq0pcbncNBVNT1NMa08s5EIr31/P+/NmzcppBuJI710ia998EG+z61bOixb5SGr8OndXd27WIVtHz5cvgdtLWH4zUSf1JAnPxGK4XPn3gHyk5h+148Xtx9AOL0OT86NrGMM0UQEIXcC54PTeHL4+5hIX9HhvSdOYCUzgOnCacQSbkwG1gAcNb+2Ph+Oj2bwYuwErnrvw4pjChHHmvn9qowK9URhlDtPMzO8ZgDnis9X3jDjdOo8Y7UfK9MprKxbUONnTuTqDxAJJIEPf8HSz5xMhpdtclK3DlflDqy6pKbYrfaDIHQhIooFQShGLdqXl/XiZ2ysWKzUuiAVy3V56qn88uijuk9xtW3Pn2eOaC7H38Nhcy+qkUre3VY1W2xU1NSS46yq6sbj3EbltPb38/8qhnFpib/7fBz3+joF5YkTXMEuLHAf6jUqZNrhoEhQXlqVh+zxUEBkMsAbbwD//t8D//Af6gJCZsfr99ObG48z5Lr0mFwujk/1cF1f10mJiQTHVZprrir5ABzXrVvAj36kveMPPcT3GxzkeyrhX2scqXEB/vjjHHMux32qYm5+v/ZGbm5y9b+9zdcPDzN2dGGh/NysZKhpNvqkxjz584eWMOhL47mcB1djI4imAsjFdhHcXce45xYmffO44H0ZE/HpYvdfKITZhUFEcwMIexJwo4z4v2PccHucCI+6EXWewezJJxAZvm5+TuqNwjA7T9ksz7tKFcjneT48Ht0HfGCgWCDn8zTI9PToCtBWplNYWbegxs+clVQQsz/KI5O/Cu/PT1jmKVZOeNUCvVyPYoVlgTV2q/0gCF2IiGJBEIgSKS+9REGh8rh6ephLd+4cxdnwMAuuVFuQPvGEWK4rUW+vhkJBL3CrbXvkCPDyy7we997bvHfX6tKtzYiaWnKcVdXo/n6en+3tYuFozJVcW2OucTDIsXg8PL7Dh3nOt7c5LmPObE+PFnyA/p7P68X/6irwjW9QxPb08HeVG1x6vKqY0WuvAT/xE8XHEgpRYMbj/G5sxaRynZ1O3fRUVZZW3uRCgftXglp5x48d4zH/zM/w/q4n/Lh0AX7yJPerxI9q+aUMBypuFNA53++8Y968VYW0l1MLjUSflPZDXl6uWdhNhGKYmJzBSnYQswMPIvPiq/BurGA8GEXEdSc/3394TwRGZteNXM4Bj3u3fC0Aw7X1BHaQc3qRGT4MnNjZu229URhm52l1lc/2rS09JhV2r+bQ+jrP18AAjSa9vZw/bjfnyegoz6WV6RRW1S2owVs6Ewvh0o0TmF4NITq3hdzqCNw3Uwgf67WkvEVpYI0x+ruUZnoi78GOtR8EocsQUSwIghYply+zyqhq/9LTw0V8PE7h8MYb+jWnTlVekC4uctErluvy1NuroZ5trfTuWtlssdmQ+mo5zsmkrhp99Khe0G9v781hHRig1ywa5XENDvL9lUvn7rspGKJRCgnVDkktPFXrJ4dDV1VWhawcDo7hxg2+RzrN433sMV1hRx3vlSvA669TKPb0sFqPOieBAMelWhmdOsVxXb3Kc7+zowsSqQJEqpqwz8f95/MUNz092jseDvNvgQDHVA+lC/BQiEIboOCMx7VIV63APB5dIVuJdLPmrevrul+0mVqoJ/rk1VeB3/99zmujdz6b5XUJBmtTQNksIsEUIj9/CBi6BrzwOq8DjpeNwPAiA3c2iZQvVD53WlWMX19HNpFBcKgHXpdJATWg/ga6pecpFuMcW1jgPeT3c26rkHwV9aCuhTIm9fZqN+e5c4wMuH7d2nQKC+oWrKwAs19bQebNELyOxzGeGUDEnSx62dTSITxz5Sym14YRS/ci7FqGJ51FajmJ2eVeS8pbtCqwpip2rP0gCF2GiGJBOOgokfL88zo0c2iIgsHpLG7LMTfHBfHYGD/N1YLIGCPm8WjPTC5Xu9n9oFqu6+nVoLZ9+20K0+1tLm4ff5xCyojV3l2rmi02G1JfLcc5FuNiH9DhvH4/F/+xmJ7XAL/7fPS47u5SHGYyzAnO5TjH+/t5rEpMKfFQKPA1alG5vc3/q/ziQkH3Efb5+F6pFM9dIFBc4Ov++/na996jaEkkio0OsRj3lc1qz6dKUlT9iKenub+eHgotNS63m+cjneY+AZ3fGw43tig2W4AfOsTjnJvj+VIh0w4H3ysUorBaWODvR4+al+VdWuJ1O3Zsr1qoJ2/S46GxYWaG+zh8WHvnFxe5r7k5PsuMRopSjMLu4Ycp+q9f57WvMNfHt95EOBjBrGMEOW+g/GLr5EnkojFEb3sx3reA8WB07/vX20C39DzFYryPbt7U0QwqB10ZdQBdeEv1vU6ltHCfmOD9cc89VH1vv81ny+ho+dSMWlVfE3ULirIw3hxG7t0PwO3IIZxy48zwGi6enMNEKIaZWAjPXDmLqaVDGAkkMRmOwr1xJ13i2BHkjoQtK2/Rjp7Ie2h17QdBOACIKBaEg45aUag+o319xZ4NFWq6s8NF684OP1Tn5vh/FapqDIX0+bi49Xr1Qrwa3Wq5tqrxYC29Gsrl4V6/vjcP10rvrqLZZotWFIOp5IpR1XFv39YiuFCgsPV4OEcTieJysLEYj+Guu4Bf+RWGMEejet/Dw3z/VKq4v4ryCKtoinRaz30Vvux28/2UCNzY0OHapd7DBx/kWAYH6YVUFXiCQa6avV6OY3WVBqy1Nb7P+jrfA+D79fTs7WFsHOPAAMWR8gI2sigutwAP3fGKGo1kAMV+MMj3V4JsY2OvgWJggMeyusow6lK18MorFLr5PMVpuRz5WIzzJpPhsZ86xdBmxV13Ad/9Lu+ny5eLjRSllAq7GhVPZGsVZ+56Atfz/ZU9hqEQ5kMPIBRZxGTvPCJv/r35fTo5ya+FBZ6fSvecMbx9dZUe4ps3eV36+nhedu6EaKv7wOHgcSgjhup9rVIDHn2U12NmhvNQ3SMqD7mvT4e/B4P1qb4G3atTC5HiLAz0wONwIZVxYXZxDNfXh3B9fQhPnruC15bHML02jJFAEhOhOPeljLgul6XlLVrx6K1Kx1zUgrB/EFEsCAcZJVJu3+mNafQmleLxcDGlxMWNG1yYKi9UaShkJsPtrl2zJq/VbrS793IjebhWeXdLabTZolXFYMyEicqXvHWLi3/l9VJeWyVo+/t1BIQqBxuJAJ/9LM/bwEDxvo8e1WG9DocOmVavV55YFaLscPA+UGJUeYyV6FPh2slksaBzu3We7yc/aZ7nOzPDa/ntbzNnXC3qBwe5j54ejiOd1qHKAMdiPAeqWNjAQOMGnEoLcGMi5cwM30eF6D76KOfw2pp5vxqvV/fX7uvT+7h0CfjOdxhivrurc6xLW2sB2lCnwsNLcbvZo1sJ8B//WPfFVZRz59WheC4+fjeuv9hX3WO4O4zzTzhx4cQoEHuk+D5V+dWZDPCDHwDf+17154wKb89meU8sLPD89/XxflCiV0Uf5PO6xZgyqCiRXCjwHD/xBM+5egblcryXkkkdkn/zJp/3wSAPth7Vd889nNtXrvD4JyeLK+2XXI+Zk0/szcLI9ALpbWBxEbnDGcwnQphaOoRktgeZXTdi6V5Mhu944vN5zrfBwaK5Y1V5i1Y9eivSERe1IOwfbCGKHQ7HkwAuAngQwAMAggD+slAo/GInxyUI+x4lUrxehkerxXs5XC69uF5e5gfu8DAXaKWhkAsLFG9bWwy1e+CB8vvtNst1u3svN5OH26x3tx6qvYdVxWBKhcn3vsfroHJZVT5rKMTzFQhQJKn84sOHtfHn3XcpfHt7Of7SfS8uavG1tUVBpo7P6aQoyOd1lWv1c38/V8BbWzo8VRWU2t7meEsFmzrecnm+6lqOjnK/iQR/39ricaTT3PfWFrf3+bQgVvenKqAXDu8Nua+HehbgqnGrEmCHDlGgJRLm/WqUgWl2ls8Rda/duKHzlMu11jLmlKuwdbNCV6EQBfp3v8vtn3tOh1hXc+fVqHgmJibwuSN8SXWPYQgTDz0JrFzQ99DsLPOio9H6njMqvH1hgXPB69VF2HI5nSPscPB/qs1YTw/PGcDzNjrK++LYMd473/2ufgb91E/x+qlw+WSSxqFEgufmkUdqE8RG42I8zmN75x2K40iE96bHs+d6XHrt+N4sDLfO0XYn4pgI8b57Y2UUu3knDgW34Hbe8Xwbe0ob7kMry1u05NFbaWcdcVELwv7BFqIYwP8DFMNbABYA3N3Z4QjCAUGJFOU5K1clFdBtYFROWjbLBYhZ2KFa/Kt+rteva+9Bt1uuW9172WzRY0Vrq1Lv7soKQ0etWKnV6jU3y0Wt1LOkUki9UZh8+csUr729PN8+H/er2gKtrHCxnkhw4b2yolscOZ1c2P/VX3Ffarxf+EKx6AkGKRrm5ii4VCE65eUE9D3i9VKgHT5Mz5kqgAVwe7M2StWO18jDD1MEvvwyc2KXl/m+brfuaZ1KUaSo8+3zaSGuWjE1E5VR6wJ8fJzvPzPD76ur+vnQ18dK6cpbrK79zAzP7+ws+22re+3DH+YxLy7Skz40tLe1VjJJoe3z8ToNDZUPjT52jIaBRILeZmWUqMWdV6PiqdtjqO7TmRng7/6OL6r3OTM+znO6sqIjApTxQYVDK1TUgMvF+yccppD2eID77uO1TCb5zFta0vnFgHm4vDKWRiLVn3tmxsVTp3h9b9/mXEmnOVcfeeT9k7XSN4Hp/14mC0NVQl9YAJJJHHdH8XbsAWQLLow6t4G+O7nShp7SpVhd3qLRwJoian3GdsRFLQj7A7uI4v8FFMPXQY/x9zo7HEE4ICiRosIqjYv3UpTXJZPR3uJg0HxbFZp2+LD22MRiXOx0u+W6Vb2Xyy16enuZkxmPM8SzEmaxf6WLdoeDnnurwr7r8Zobc1FXV7lwLc1HV17Zo0erh9RPTFBYTU3xOM+e5Xs7HPSc3rjBfSgRC+jc2liM2ymxm0jsHe/nP7/3/P34x8B//a8UJKmUNhQB3F9/Pxfb4+MUCbmcbnPj8+mQ552d4j69wWDtKQSl4cujo7ptU1+fvi8zGX653RSbx47pfsyTk82nKlRbgHu9vM7z87zOLpcO2Y3HeT6Gh7WXV6GMA2+9tfdeu+MJxMaGFmWAztX2+Xgtt7Z0f+dyPXEAiuaREeDnf54GhnqNRDUonj36eTkGb/QWxsMJRMacQN84gJJ9NPOciUQ4D1WUgN/POZ5O7zW4qNx4lU+sPMjBoD6nKv84laKIzGaLQ9aN4fJHjtQWf1zJuPjAA7y+777La93fz/SGRx8FAMxerpKF4XLxWDc24N7ZwVB+CDcLR7C+vQ2sXdHGmDs9pUvJZrnfa9f4e6sCa2qm3sikdkYHCcI+whaiuFAovC+CHSrMTBCE1qNEytWrXEDG48XFhIyoRZOqwqtadcTjOndThcWq0LRIRIfjnT6tc4e71XJtRaEoMyotelThp95eCgyjeCjFGPv3/PO8DkbxG4/rIlQeDxej2SwXkK+9RrFcT9h3vV7zL3yBYu7ll7mI3901z0dfX+e+x8aqh9SrnqmnThXPoa0tHrvK91Vz2phb63TqOXz//fRImXnfjO//2GPM+f3bv2Xhp8VFjiGZ5HwOBPgeMzMU+/E4v6vcWpVLrPIyjQap3l4u0s2MGaUL2tLwZY+H53JmRnujMxke3+Ag8/rPneP19/msS1UotwB3OICvfpXjGR6mmFpe3lvV3ujlDYX0M2J0lNeu9F5TnkD1uoEBfs3Ocv663XqODwzwnnn11b15xwolwMfG6m9NVSeRrRlErtTg7bPiOXPPPdrQkkzymqiWYUo0Ajp0XeW/JxL8vrnJ192+rfPwXS7dcssYsm6k1vjjaqJ/YIDXY2aG47hy5X1RXDYLY2lpb10BAIOFddwujCC2249cOge316QP9B1WV9l5UKUzP/98a0tFVKWZyCRLXNSdRXS90E5sIYoFQegQRo/TrVtcmCoPTCmqWuz6Oj+IVSgkoIsK+XxcOO3s6NC0WIx/+8Qn2F+1mz/hrCoUZaTaosfjAV54gQvRK1e0eCiHx8OF7Fe+oj2i4TDP+dWr/J/qU7q9rYtGqbHMzvK9/uk/1a21yl2vRrxZKpx2aYmL7cOH9y7yFhe5KO/vp5ipRLkV8uoq56GqEK32rVrQBAK6eNzNmzy3H/pQbV7+iQngN39Tr9i+8hUKfaeT51zltPr9/EqldPg2oCu9+/0cSzzO/0UiXJF/8YscVyXhZAxfvnyZ493a0p5hQOdX9/TwPVSRqlakKpQuwJ96qnhuZDIcg3q+qKr2QHFFblVfoL+fAsx4ryWT/AqFdD5yIsFzuLmpW8opj6ffz79tb5uLuHYW+KvH26eiaEqfM+VSDcyeM+PjNBTlcjo6olDQ94vqH+3zcR87OzpSSBVsc7m4PxVSXSjwM8DMmGGkWvxxk6LftCVvLMZ7WEVwqHDwnh64kkGEshm481nMu05hwnGb+yp5ni4tAT/8oe7opjKLWlUqoiZaFZlkc9pdx1IQABHFgiAoj9PKChcSqkiPWZ9iJShUHmUioQWHWkn09nIho0LTbt/WeZLdbrm2qlCUkWqLHo+H12J3t3w7HyMqn663l955JbJffZX/D4V4rZaXudqIRLTXf3ub37/1LRpJzp4tvyLp62tsYbuxwfc7dIjvpQpZGSsQq4V6by9DoCtRLk9Z9dQeGNDiVxXF6unh/o3Fsm7cYFukQKB2L7+azyMjvBe+9S2OQ4V/K+90by/Ho7zWbjfDdtVY/X6GczqdwI9+RA/00BDDnSuFSZ4/z32+8YaeJyrfH+CxqBY8777LsT7xROtTFcxEj5mH11iRe2WFnt6tLR7XPffw7x6PbrG0tMRzUSgUF/3b2qKoc7t57VQ4fCBQWcS1q8Bfvd6+++4rfs7EYuat71SqgdPJOWZ8zoyP0wi5ssK5FIvpgl2qvRjAc6jyhlUYtKoU7nRyvMbc+HLGDCPVcuObNC6adgRT50flTXs8QG8vcgUnohjGuYEFeJ07uLpxCMi4cdyzDrdh/KurFMRLS3w0Xbig0/PNLlEzfYxrxtgd4tQpjrVcT2irymbbgHbXsRQExb4SxQ6H45Uy/5LCXYJQjlKP03vvcfG6sqL7m6rWHD09OkdP9TlVVU1Vf1aAH9w+X3e2WqqEqYuiAtUWh7V4TEIhLn7VYtasnY8il+MCPJ+nIFarNlWRV3kqjUWijIvcfJ4i9dYtevVu3eJizGxFMjlZ/8L25k3uH+Cq89Yt7sOsAvGRI1zgVVvkma2QlacZ0BWYVa4kwGNXY+7t1ZVzFxd53uotQTsxwRW0MoKo0E2j0He7i8eSSumiV+Ewv7/3nu5PfNddFDXGa2u2Kp+d5X5/4ifoXVWFxFQv2nxei+PeXkZvtHolaSZ6QiEayoC97ZhU33OfD/jAB7S3VCV2rqzwNdmsnrPKI6wqKqsiUQ88wO9TU8UCXL3v3Fz9fXSbRRm++vo4R27dKhY3pd4+leOrIiquXCmOPihNNQB4PxqfM8YooN5eziVVoV2dT7VPNT+DQZ7TjQ1t7Dl3jvNKPROUIC/XXqyWZ36TxsU9HcFG7zzfkkk9hv5+AMB8ehQhdwKP9b+L+wPv4RnnRzC9NowXE/cinNmEx7mLLNJ4Y9qHzU0K4g9+sFgQAx1yyD7/PJX66ioNP6XGEGNKgJVlsztIq+tYCkIl9pUoFgShQVTBnNOnKYyvXNGtW3p66GlwOvnBfPQoP5yvXStu6aHyilWI49wcFybd1GqpGqYuijLUsjisxWMS0G1G3u+r+s47zIEs9RhMT+trYRTZsZgWnuqa+nwUgtvb/JvypiovowqZLifMVJii31/bufN49AI+HOaKZ2SkcvXptbXqizyznrkbG1r4KyGsxJMKp1aV1lXofy7H1xnHW2sJWiVCh4YoZo3n2+Ph8bhcuir1wgJXcyqcNxCgJ39tjddanROj2DBbladSwPe/z5Xk6dP8PRjkvayK2RkLeb35Jvfbak9SOdFz6BDn3dwcxV48rougqXPz8MM0iAAc61tv6UJP6noWCvyby6Xfq7eXx3j4MM9ZqQBXxf6uXuU8HB1tT4G/lRXgpZfoBVeGj3Li5vhxXleHg9ft2jWOe31dh0mXtr5TBQwHB/VcV5i1zTp6lD8nk7yvVDGrUIjnZHGR3ycnaUBRoqu0wFm59mK1eN8tMC4WHVp0G8e30nArY0FPD3JwYT41itWdQZwPTuPCwOuY6F3CoHsLz+1O4GruFKLuUeSyabjTCQwMsPZFqYe4lLY5ZKemmJahIl5UKkS5VmSA9WWzO8ABjRYXbMK+EsWFQuFhs7/f8SCfb/NwBKG7UHmKn/oUF0sqvFbFLn3zmxTLqoWJCoV0u3UoJMDfb97kiiUSoeenG1ot1YKZACtHLYvDWj0mqgBRLKYFn7F/7tGjvCY3b3IRffRoscje3eViamdHe1GUGFT5hh6P7hOq+ppubJQXZrducZtKhb+MGCubG4/XWLm2lFoXeaWL/9J2RypEVHlvvV5dGVqJ5VJBUWt7JEAbN44doxGhVOir3qsql3toSBsmAoHi3rpHj3JM5XoZHz/Ovsxf/jLwjW+wGvbmJoWfw8Fz1t9PkVTqTWqVJ6m0Gk4yWVn0qLZAOzs0tG1v83y89RbP2csvc/xvv633oeakQlXCV4JZ5cmq82UU4Coawefje4+Ps5J7Owr8ffObDIlPJMp7etfXed23t2n0Wlnh8S4ucruBAR0mbUR5zPv6eB4MxagAVG+bFY8zReLIERoINjbYBsrv10YFhVn4u7G9WD3t9SwwLhYd2gvAiyvjCOf74MkkkC24Ed0ZQcidwPngNJ4MX8JEL8c90buEifAVrOSGMNt3HzJDh3Dt/jBwawS5XGVBDNTukG2qQJRyl16/zvvC79d91YHyRerqeWbZkFbVsRS6kA5VWNtXolgQBAswy/u9fJmLU+XRrBQKqcJFAXoauqXVUq2YeV8a7b1ci8dkaYnepZ0dLuhVteSdHX7NzQGvv05P4V13cbE0OFi8D1X8bGen2HuqvG7Kg6xCd9U22Wx5YXbjBve3uMj3rWVhe+SIFui1UOsir3Txv7SkK1snk9pDrMSw8k7u7uriQ4WCzrmspz0SsNe4USr05+aK+4CX9ipWnmW/X1f5LdfLeHVVewcLBT0XFGo+xWJ7vUlWe5IqtRFbXOTYjHPDGAq8scHrq6IT8nn+/Y039GJItaxyOHjNVAV8QBs51DlS3lejEae0j+7Nm5zbv/ALwGc+Y805qHZ+vvMdXjOvtzjPXI15Y4P30o0b2qCgRE6hUPxsiER0uy312mRSe3/NFEI9fWsvX+b5V2kWRsye+crDv7DAc1trez2LjIvvH5pzE1djc4hGC8g5CwjmkxgPrmHSv/C+h7iI3V1EvBuIBK8AR1PA+C6eXzFvumBGpdvIkgJRagdHj/JZsLhYXEHfLK+73mdWKTYo89yKOpZCl9HhCmsiigVBqI6ZR9PME6PCRUdGuFr56Z/ef5Uwqnlf6um9XM1joiqqLi1pb1BvLz2NqoKxKo6l8jFffXXvojYU0p42VRgN4KJbeZvSaZ0/rrZzu82FmdvNMNWlJS7aal3YPvwwX/Pyy9aEnxsxLv6nprTnVQkAv5/nJRbTReOUEadQ4FcsxtcODNQX9l/NuKHyYJUxQPUqViJ5d7dYNJf+X6HmQzzO91NVgnt6dN6suo5OJ4/J6E2y0pNUrRqOKs732mvMdzbOZbdbt8NyuejZHh7W6Rf5PBfpqqiWMtIYz5E6n0osuN18ThmNOKUe+95ePpvGxpo//lq4dElHdKiibkZUykkmw/tYiXifj+NUvbR3dnS/7eFhHqvyfB86RLG6sVFeIdTat7ba88j4zF9Z4ffeXoZbHztWX3s9i4yLExPAxG8EsbIxhdnnbiKTc8G7voTxw7uI+Db3viCf57nr7+f8CYfhPTEG9yvNl4qwpECU0V36+ON8M2PYuhFjXvf0dGOpSjYq89yKOpZCF2GDCmsiigVBqE65RX+pJ0YtPqNRLur2Q3EtM+rxvlSimsdEVVRVi/z+fm5/+nTx+Va5sLmc+aJWFXRSYZt+v87L9Pn4tb2tQ4mV4PJ69wozhTJ+qP7JQPWF7ac/DXzta1yYvvwyF9JmlVSBxioDG1MA8nm+VzJZLIqVAFbF4/J5HufoKI/pvfd4TD/zM7WH/VcTE6pYWjzO/29v83qoRa5RNKtFu/H/CjUfPJ7i66c8xQ4Hxw5QQCmP9doaF7+plDVF72qphvP22/Q6vvOONhipuZxOa8Gr2mMNDuqxR6O6BZASjiraQRlp1LFms9rrn07zu1m1ZoeDf7/nnr2h8q1AiZudHZ6j5WXzHvCqeJUaUzJJo5ffz+NWYbPr6zzW7W1dmC0c1nm/KsqjkkKoVv2/Fg+ueuZfucLz/+ijwM//fP2eRSuNi5EIIg8dQWTpdaZ15ONAqgfwhfZuu7GhC97dyZ0ef3gI4eeaKxVhWYGoUndpuartgL43bt/mvH/iifpSlWwgQoxYXcdS6CJsUmHNFqLY4XD8PICfv/OrMuF+wOFw/Oc7P0cLhcLvtHlYgiAoqi36jeGiuRwXpGfP7l9RDNTufalGOY+JyjNVPTdTKd37uTQ8d2yMi8qlJV2Aq3RROzmpF1xKkLjdXHx7PLrg1s4O/6byj1Mp82rX2Szf58Mf5qKq2sL28cfpkVCFfVZX+UGoCm6p3Nd6ws/LEYkAv/3buhDV1hYXjqqisRKgSpT5fDQCJJP87vFwH7V+6FYTE6r6c6HAY/Z6dRV3oFg0q/GEw8Xn3Dgf8nntNR0c5II2ndai0lhEbXCQxoDZWY7LiqJ3tVTDeeABnuOZGX6pfPWhIV0pWM3jcFiPfWCAAtIYYp/P6+rZKg/c4dAe03hcGxTicV6H0mrN8Ti3XVkBvvpVXudWLvTVvXb4MI/b2KNZoVIWVKRHMsnjD4d5vMoDrkTw/Dy/nz2rC4oZ92WFQqjVg5tI8J7+zGd4Pd59l8dcz/PPKuOicdy1tBb0+3lMZ84AFy4U3b5Xr+oOeGbdj8rZ6iwrEFXqLq2WqhSL8ZrfdVd9qUo2ESFGrK5jKXQRNqmwZgtRDOBBAL9S8reJO18AMAdARLEgdAqrC0ztJ5rtvVzOY7KxwdBL1fpKhUma9Sg2Jlg98givVemi9sgRvlcqpdt7qNVeNKq9qMpTqfJV33mHYZLGok3GFcknPwl85COVF7ZDQzwu5ZEYHdW50e++y3zEmRku9Hd3a/cQVTuvv/7rFBsvvKBzb71eXWRM9XcdGuK58Pv53uvrFFT1VHApJyaU13JlReeA+v1c3CaT3P/gIP+melGfOkXjhxGVd6yKhTkcWlhnMjpkXnnBjEXUlFgcHm6+6F091XAeeojvC+iQbiVqlRgeGNCCGNA51cpLDOhCTipyQf2u9qnaOm1t8byqEGrlZd3Y4LU4fZpzr96F/ttvY+XZ1zC70IOMOwDvg2cx/vGJylPDKG5GR829faUpC+q+OXGCr1OGknye13VoSOdsG5WalQqhVg/uxATn2Fe+Un/Ybakh8VOf0gUeGzUu1tpa0OWi4fDRR4ueL+PjfDReucJNlO4srWVoZquztECUmbu0UqrS4CB38tnP1mfksYkIMSLLjAOKjSqs2UIUFwqFLwL4YoeHIQhCJawsMCUUY+YxUQv5kRF6AYztUcxQCVbhcPlFbTCow209Hi6yfT5duCWV0p7hgQGuCM1agKRSxSsS5VU185pvbQFf+tJej0QspnMTV1e5b5eLedGPPVbdQ1SLh16d16EhLt5jMQoK5WEdGmJIuloBK7fQu+/WX8HFTEw4nbr1kPJCq9zwa9f4nkr8qDY8Kj9YFVRSZLO6OFU4rFsSqf68ABfLm5taBGSzWhQMDQEf+lDzC9t6q+EcO1bsnQP4HFHh92Z4PDwfKqRYCWkl8lW4NKCLbakc5bk53SZsfX1v7u2hQzTA1LLQ//73MfPH38SlqSCm4yOI7gwg58jA7X0T4bF3cOaTp3Dxn9xtvgujuCnn7VP3myoEFwjQIFKuDVK5AmxWK4RqHlyvl/Pq7bfrC7ttdf5qLa0Fz53b83yZmgK+/W1tP1JF0dVtNDfHTIBTp/jSUludpQWiyrlLzVKVAIr/D36QETu1YiMRUoosMw4gNqqwZgtRLAhCF9BoDpgNqlp2BaXh2K++ynYuDgfw4IPVX28Mnyy3qD10iEJEeRs2N/mafF63f1EFgZQHwhh6qCoKDw1xEVa6IjHzmn/96+YeCbPKwLkcQ0M///nyx1nvwnpiAvjEJyhCNzfptTOLizTSaAUX43m/fJmteNbXKYCOHdO9mqNRHrfKgy0UKJZDIYrcTGbv/aUqkHu9FPKrq3p8wSDPwcYGr6sSxC4Xz7vPRy//fffVdzxmNFINB+C4+/r4pULZy6HChlUBMtWiCtCtl1Suu6rK7nbr0HhVfV150oy5t0BtC/2//EtM/R/fwTMzD2I6cwIx5zDCrjg8yFD7bQzh+q1FXL+aw5O/d+9eJ12puDHz9qlwfpVTfvQoDWCK0nxSlUOujr0JhVD1sVwuPcThYPj57Gx9Ybftyl+t1FpwbGzPgRqjiA8f5uHcuqUvkcog2d3lrfmJT3B4xtNy5Qq9yJYUiKolFUM9t2ZmdE/pej5TrRQhFn++W5lqLnQJNqqwJqJYEITaqScHzEZVLbsKJSzHx7mAbrRSc6Wc562t4mv4zjtccB89yuuTTPLLrNVWJsPFei0rklo8EmqRZ8yLLidUGl1YqxxeYG9YssLogVlc5HjM8jOrLQLVed/Y4DhVZV6Hgx7o7W2KiePHtfc3n6d3a2CA408m+f5KMAH83/o6r936Oo0TmQxfq8S0Kjy1vc3z2N/P97l5k8JxeZlivZmFayPVcFSRt1u3KA6NYcGlhaeUJ7SvT883lQOu7gMVXq08yB6PDknu6+NcK/X+G6m20P/+9zHz//5rPHPtA5gqPICRwRQme2fhduTfH2NucxHzW2FMXeoF/t0NDPzvJ4tvBzNxU2oI2trivbe8TEPT0aPFYzV6mKNRGhNGR2ncUdEMdSqEuh/LpYaup56qP+wWaH3+qsl9uTL+GGYBZELl9ZpZFPHIyN7akZubnGovvcS3MZ6/9XU+qj0efYkrUTX9u9XuUitESAs/361MNRe6ABtVWBNRLAgHmUasvLUUmLJZVcuuxKoEKzPvrTHc+ZVXgL/4C17HD3+YC1IV2lyavzY+TjFz9ChzlKthpUeimcIwlSq4lFYqzuV0IagXX9Sr5XoWgSsrFDoOB3O83W56/lX1ZbVq9vko4mZn+RUKUSjFYlyBnznD7VQrLq+XCwLVs1cVEMtkOI5gUOclqyrXly/z/2trFPtHj/J8NLpwbaQaziOPUORvb3McpWHBRjY2eI6GhvQ5VL2kVS61aqOlvMMDAzR2LC1xu0yGEQeVqORt+LM/w6WZY5h2TGIkmMFE7+3i/zudcA/2YcJxG8i4MP2CG889d3LvqSwnbpQhSM1ZVTTMzGCjPMw//jGPORLha93uuhVC04/lRsNulYGoFfmrJvflzPYYLm09jGmcRjQ4jlxvv+mtWulwSmsZ5nLAs8/SrjM8zHOmzp/Doeu49fQA997Ly2ZGTenfrXaXNitC2vD5blUdS6ELsFGFNRHFgnAQscLKW67AlA2rWnYtrfQYqNXG3BzF1ZEjutdtuVZboZAOc64ln8eqsKiVFeD//D9ZMEv1RS394Ky0sC5nYFhaYuyjsVLx9jY9jhsbwPPP873vuYf5k7UuAkuNAapydDqt838VyST3k0jw58FBXo94nGPb2uKi9OxZ4GMfY3Lj0hIXqQ4Hx7m+TsGUSmlB73DoauKqevnNm9y2mYVro8aaCxd4LqemKPJCIQp6QM87VYhsdJTGgs1NnSvscHBVrHIpXS7dS3tsTOfGJxI8P6dPlw+PB8p7G95+GytvLGM6dR9ivggmfe+U30cwiOOpOby4fhJXX1jFyqdG9oYgVxM3g4NMVgU4t1QovCKX49/7+2lcuHCB+6hTIVjyWG7EyHXzJo0xrchfNRFnU4nTeGb2PKajQ4gVCgj3vQPP2BBSgRBmrwZx/br3/WmvLkEth5NI8FZMJHhuHn+8+DW7u7w1Z2d1p6T37T2G5+j8bT9C/iAmJ32VD6+V7tJmREibP9+brWMpdAE2qrAmolgQDhqttvLasKpl19IKj0GpQWRhgfmqqvetqjAN7HWXAPXl8zTrkVBjfe01fr99mwIokSiuhm2k3MLaaGBQFXWmpykSBwaYUJhIcEV78iRw//38/fnn2dZJefJqWQSWGgNU5Wi/vzhcOJXSucGqqFooxG08Hl3QaGdHF14zFmwqFHSPaeVVVfm4hQK36++nwSMY1KJT5es2unBtxFhTOpdVsbd4nGMHeCzKg9rfD3z0o9zHm2/qkGrlOVZFyZxOnr/tbR6feo55vXx+mcWyVvI2vPgiZlf7EHWNIuxJ6JBpM5xOuL0uhAsriF4NYnZ2ZO86rRZxMzSEle++hdk3Esi8nYR3KIDxwRgirrW99/idZ/L7HrR3a9PHljyWGzFyra/zZ6uL6JiIs5nECJ659RCmkmGMeJYwmXkR7rVtYJvF6HIDQ5i/dRxTK0cA+HHffbUfzo0bvHU8Hp3ZYGRiglP5vfd056yHJ3QUSm4rjfnEIFYzAzh//E1cuL0GzDxc+b5rlbu0GRFSrkaEQj7fhUawSYU1EcWCcJBotZXXxlUtW0ar47us9BiYGUQcDu5P5baqCtPl4v/qyedpxiNhHOuNG/Qaer0UU4uLxdWwjWMtt7CemGDp2Ndfp0tHFXtyOOgCunWLx3XkCPep+ierheOJE7UvAs+eLTYGqIJRKj9YsbbG41K5tfk7AszlKvby9vdz27k5Fl0zFmyKxbiP1VXd6sjr5Xzs7aXYVy2PlECMxfTxNbJwbdRYUzqXZ2Z43hMJXoe+Ph3ereb1Sy8B/+E/UHF4PMXnSrWo2tykwcHr1e68+Xn+z2wuV/I2bG8jk3Mh5+iBx7FT/Vw4nfDkMshtZZB59QqQie59DlQQNzNbEQrWzEcQ3V1BLpuA++Y2wrc3cSa0iovnVjHxWOT9e7yRIB/LHsuNGLkUVhfRMVH5l26cwPQtP0ZSc5gozOiq3uk0EI/DnUphwrcGuBKYfmkcTmeopsMxBnocPrz3NgZ0+nc+z5p+b76SgevqEvozG8imXYjiBEK+bZzvv44nd/8OEz9eAzZfq8343Ap3aSMi5CB+vgvtwSYV1kQUC8JBotVeXBuV1m857SwkVo/HoNw25QwiySRFxa1bXO2pSrdF8X93qDefp1GPxNZW8VjPnqWQLRS4jaqGXW6sZgvrqSnm16p8VICi0+HQxZwKBQrj5WXuUy3klfhKJsuH5BoXgY88UmwMUNWFlUhQYc4rK/xZtR5aX+c2hYL+m+qdvLCgq1abFWx64QWO8/77ue94nEK+tJDVwIDe1/g4vbBXrzI8fGurduNOo8Yas7mcTPJ/StAb33t1ldd/dZXndHeX28/Pc7yBgC6yFQhQuaj+v4uLxfOjFm+D3w+vexfuwg5ShZ7yx6/I5ZDdcSK4ugjvN18FLl8r/xwoETfFNqoQwodC8IymkFpPYjbmwnV3Hte9Xjz5QB8emmg8yMeyx3IjRq4jR3jNKlUbN1KL0c1EnK0kA5i+FUBsHZh0zAAeJ41JAJ9vLhcPJpXC8a138eK1fmwcccA/MFj1cNQtBhSXBChFpX/nttJIL62jEI/DFXQieLgX44E4JsNruHBiHhPBMDC/3dkUokZEyOXLB+fzXWg/NqiwJqJYEA4K7bDy2qi0fkvpVCGxSh6DaiJ9ddXcIBII6MJHSlgor2Tp6q+RfJ5GPBKlxpuFhWJRqfoqA+ZjNQvDNops1SdZhd+q6trZLMeSSFAYHz5MgdXXx++xmLkoVuI0n2ce8Px8sTFgdFRXXN7c5PXZ3OQ+AQpgl0tXW87lOE6vVwtqle9sHIMKb19Y4Grc7dbvEwzuFcTq3Kl9JRJ83Q9/SAGp7sdajTvNhHfW6v0yCrF779VFyzY39yoUr5fH4PPxGDc3GWWQz/N83rrF15w8CTzxhPlxPf44xkeeQfj2bcxmTyPX6ywfQp1OI7edRdQ5iPHdOYw7bnAe1fAcKB+00wugVwftXAXwNG1A3/52Y0E+lj2WGzFyPfwwjVeNVtE3w0Tlz8YGEV3NI5xfgbvXqaMjgOK+3aEQ3ADC68tIze5i7MIgQqHKh7O7q2+VcLhyqnooBEwGbiLrvY2PHr6Gc+cAryuH8VAckcAd4w9sEmJcrwg5KJ/vQufocIU1EcWCcFBohxfXRqX1W4YdC4lVE+lvvUXxuLvLRpulGPuh9vbydcoraayS20g+T70eib6+vcabUMi8jY/R62kca+nC2iiyQyHmKKdSHIPfzw9eo/dYtT66dUuLTdUqyEhp5eqNDYrYv/gLemyVhx7g4vP2bY43l+PfVBiwqkLtdlPIqYVkaWEpszEA/JsSHIWCeai2EbWvlRUaFFQVodOn9xp3Xn+d1+bkyfKLk1ZWwykVYqOj5YuWbWxwThw5wrmwssIkz7k5zp2eHp6ndBr4zne4v1LRf889iNw/hjPv3cT17Arm06OY6F3aO66dHSAexzyOIeTdxuTDfYg8eFj/v8pzoN6gneVlTo1GgnwsfSzXa+T69Kd5sFYW0TERZ5mtHeRSOXjyGd5PRlQeukpPGBiAZ2UbiZU0jmcT8PmCuHaN0+LMmb2Howq89/eX7+j2PskksrFtBPMbeOhcBo+dWC6/rR1CjOsRIQfh812wBx2qsCaiWBAOCu2w8tqotH7LsFshsVpE+iuvsApsMEgBVOoBNvZDVQJvcZFiemCg+XyeejwSZiF6Rm+2sY2PmQe1dGFdGiHx5ps8Bz09XChvbVHgKLFdKPArm+WX201Dgeq1qzCrXK1Cs6en+VpV5Gpjg++fTOpiXkrY9/ToFjvpNBfwqsduJqPzkXd3eU+WE7vZrA4TXlqqHK6qhPX8PM91Xx9FvHHFv7pKj+wrr7DQ2F13cd+d6DNuFGKrqzyPxqJlKpw+mWQM67lzHOvMDM9FOq2LyPX389y8/HJ5T+4v/zIuvv7HuP7OVUxtngcKozjeu1rcp3h9E/PZI1h1H8L5iSQuTCwUj7nCc6DeoJ3nnqMtpaenuj3KTGdZ+lhuNPfPyiI6JuLMux2De3cMKVcv4Ngs3r5QKLrnYhk/3s0MI3vbi9SPdlAY5K7eeIOPvIkJdgRTh+P3c8i7u7rdednzF40hutmD8f4djIcTlTe2U4hxLSLkIHy+CwcaEcWCcFBoh5XXRqX1W4IdC43UItLHxrhNMmkeFg3ohLi5OV4/Jaqsyuep1SNRznhj9GYDOo9UeT2zWYqg0oW1MUJC9evN5/nesZgOXe7p4c/qKxCgYE6n+brDh4sLVV25wrEEAtpjub3N7R55RPcFHh/n77ducWybm9rzrDy7Ozu8L91uCtRwmJ5NgONS1asHB82v3daWbtE0MmLuVVeoAlUulw7fHh0t9roqwR+Pc1w7O1q4d6LPuFGIvfAC3aYqtHx3l8fj8xUL4lhMzzO/H/iJnyieu5U8uR/9KCZ++xY+9398B5hxYTp+Ai9ujiPsisODDLJZB6KFcYRccZw/uY4nP7CGiVDMfOwmz4F6g3ZUEfKjRxsL8rH8sVxv2K3VRXRMxFmfM4ls3o1rO8fRmy4g3LOJgCut7y+fD/D5sJTow1srI7ixPQi/O4uT+V0MDPK2mJnhd5WtMTqqD+f2bbaKrnr+FnsQ6tnC5NCKIVy6At0UYrzfP9+FA4+IYkE4KLTLymuT0votwW6FxGoV6aqC8eJicahxKaqAE8DF5Cc/SdFjZT5PNY9EOeNNqTd7YYFiZ2uLK9h33qFwLl1YG0W2EpfBoG5pBJhfSyWMNze5XSKhz5kKmTbmtMZiOulwYED33l1dBR59FLjvPr5ueJhCN53mSntjQ7ug/H6+rrdXF9zq6eF17unhexmvm7qXtrboyc3nOS4zr7piY4P7yud1X2RjomSp4D91ivPG4QCOHeP7dKLPuBJiTqfOzXY4eF3VMZw4oY9XXSOPh2MsNbJUi+j4h/8Q548cweCffAvPvbKJq/EIojsDyDk8CHryGHdMY3I0jgs/5SsviNX7lDwH6g3acTp1vbZaMNNZlj+W7xi5Vt5exeyLt5HZ3oXX78L446OI3DOyd3sri+gYxNnM2ylcyn8E0zd6cGNnDGs7g3h+ox+jnhiGezZxEjcQupNrH9vtx5XVEczGB9HrzOK+oVt48O4wcJRv++CDHNrCAqfMJz8JfPjDOgtic7OG87fpxfnBVVwIvQVgqPqxdFuI8X7+fBcOPCKKBeGg0C4rr01K67cEs9WsKrK0u8tVq1G4tNoLUKtIN45pa6t8wSiA493aonfzF36h/uvfbIGMSsYbozc7GuU4s1l6Rz/wgeKeuAqjyFZeZVXdWVV43tnhNup3xc6ODrtMp1mh+ejR4pzW0tBdYwiy0UsYCjEmU4lI5bV/910K2GCQYlZ5dl0ujtM4rrk5beAovZcef5zvNTWlw6hv3+brlEBX4/T7+TOgxaTCTPAbQ9SPHu1ckaCJCeA3foPq5Ic/ZFVqj2evsUD10FGVvVUFbzMqRXR89KOY+OhHMfH221h59jXMLjiRcXs5raffRsQTB0I1HHvJc6DmoJ07z5Z81A/3Ti92U04A1cWTmc6y+rGs6/qNIBod0fXZrleIrreyiM7Fi5h6fhvPfH8I07lDiBUGEfREEcwmEM2FsbXbi7V0AOtOD84NLOLQgBfvrYcwv9EPwIHjniVMRJJA6PT7u3S7gXvu0WUVNjeLu2rVdP4ec+PJjfcwcfMKkHt8/4UY7+fPd+HAI6JYEA4S7bLy2qC0fkswrmZLiyypUFW/n+Lm5MnWewFqdTmpnNybN+nxNCvWpGjUIGJVi6pqxhtjO6K33+Y8+8hHKJbMxmsU2ceO8RqlUhScvb28bjs7ui2TGrfapr9fGx3W1vQ1Vz2dzUJ3FUYvYTRarIQCAb29yk1W3m+Xi/dgKsX3N3o6Z2d1P+VHHim+l44c4TbT0zwmj4de1eU7xX58Pr6vakUVDheP2diQ1RhObVbkq970AKuqiUYidOmpdktHj+7dRkUEFAo8n+pYFhaKjVdqW1U1/JVX6B4s5Z57ELnnHrw/2suXgaUUkGiszVDVoB3DsyW3lUZm6S6ECm5kZ13I/XgD7lMnyor8SjrLqsdy08X3LSiiM4MJPINfwBQSGMEiJl3X4PZs4YjLjyu7Z7C6O4Q4BhF3DiCePYyx1TSurQ8jlevB6cAtnOtbRuhoxNQ4WG5q13b++jBxKQh8I7R/Q4z36+e7cOARUSwIB4l2Wnk7XFq/JajV7OuvU2DGYrrIksvFcxiPUyyphcITT7TOC1BPnvjJk8C1a3R/3L5NAWWVQcTqFlW1GG9u36bo+dCHgP/xfyw/p4wie2uL12ppiULI4+F+MxndssXpZHhxfz+vrfKM5vOsznzzJvDSS7rwlVnorhHlJQyHzZVQqfdbtUpKJHR7IVX5R/WTVq2XfvIngY9/XL9X6WJ1ZobbJxIUwX19PB6vl6IrGOT7K5SYNBaxAsyLfNWaHqCMJa+9xvfMZrmvkycpbhsp2FVtfmSz9ISrKIKtLeBHP9LGK3WtAZ4LFUXwF39BA0K1MTWZilJk95lOYaJ/TYv1bJb7vWOcmM+fxKhvA/2uJDa3XJh/s4CJjTUaM4zX7g7VdFazj2W7FN+/dAmY3jyEkQf6MJFYBW44gFwOh7AEXz6BOedJRF0R3HaMIZHzw73txIA3hVH3On6i9x2EjgR1hERJtI87FEI4HDCd2rWdvwMQYrwfP9+FA4+IYkE4aLTbytuh0votIRLhuUskuOgeGeHi2CggVDjt7CxXhKFQ646/nsV5MEhRNDjI7awyiLRilWy18cYoolSRLVXwqqeH35VnsbeX71Uo8JwdPcrrOzDA++LddynuUing7rtZWKtS41LlJRwbK+8BD4V4bIEABfvyMsd06hTwUz+lz2cyyW0XFzmOr32Nc8C4L7PFavJOwZ9AgMfe10cBWNo7VlW6NopfVZjLrMhXtfSAqSngS1+iEWF1ledRtcd5/XWGQP/4x8Cv/mp9BbuqzY/33tPXOZfj+VLGq0yGhqvtbb7e7+cc8Pl01fBqBhwLUlEujs/jeiqGqSs+wLWG471RuPN3xHwmg9xgGPOB+7Ca6sP5Q0v4xKk5fPvaOKZmQ8B7qziefwduFSaP+nVWo4/lThTfL9VdRV3bTm4Bq2nOLY8H8HgQSqUQyr2L5M4Mogjjjcy9GEECPmcG/X15hI4HdX2CV199P9onme1BbKcPu55lbGIUODGITCZoOojI+Dgij5U5gfsgxLhmrbufPt+FA4+IYkE4iIiVt3FK8047Sb2L8xMnGHIbiVhnEGnVKtlK441xkTo1xTDaTIbCVoUFu93a67u7q3OEjxyhl3NwEPjmN3UBq/V13jNbW/R6mnmJS72EIyN7PUiJhA7JTia1Z7evj0I8caetS2mofjIJfOtb/P/v/u7e81BtsWo2b1wuigtjO6eNDZ4bp5PHEovpHN5K6QEzM8Af/zHbOeVyOrVAVYxOJvn8+da3eC3++T+vb95Vmh8f+ABbb6nICFXRO5Ph77u72pCxs8Ovw4dZVWltrTYDTjOpKFNTmPj2M/hcegcoPIDp9ARe3JpAOLMIz/Yuss4RRLOHERraxfkjS3jy3BU8dGgZ/d4s4DyL6fkgXrzWi3AuDs9kqG06q93F98tlZGSzdwIdXEm4rxqKwo2O6vSI1VUE4nEEtueQyrmRyvtR8HqR3e0BfG7OgztpC7GEGzfyx7C204/tnR7kd/LYLPSgfyWBZ/94CUd/9Dom4lP1pYV0aYixVVkwgtCNiCgWhIOMWHnrY2WFK8JgkOGssVhxHqixPcz4OFcUsVhrWzJVWpwnk1zZLC5yEfjYY3rFbGYQAfi3hYXajCStXiVbabxRi9TTp7nq+/u/L67E7fPxvC0v67Do8XGGNa+vcyWeyXB1GAzS2zg7q8PlzcJZS72EkUixB+nZZymqk0l6MvN5ndvc00OBHI3SEJNOF4fq9/RwrC+8APzRHwG/8iv1eVvN5k0opNs5KUGvxP/6OueQEreDg7zuFy6Ypwc8/TQ9wakUjQGqhZZiaIiCe3WVx/D008A/+2e1jx+oPD/+1/+VorhQ0AYL1WKqp4cRAQDHkM/zy1g1vJoBp1FvoCGy4vzhEQxOjuK5WwFcXUoheiONnNuJYE8W43gZk+4YLpzKYeJQHgBw/tASBn1pPDd4FFffzCCauQu57BiCwd7adFa1+6jK/9tZfL9SRsa1a7RdBHMZHPHs4lAwUGyUyuX45XAAPT3wOApAIQtXD3A7E0Judhrud98FACz5xnEFE1jL+pHO9cDfswOHexfJhA/5+DZef/Y2vvTjHJ4Mx/DQeKK+tJAuMz5bnQUjCN2GiGJBEIRaUavCiQl6JYx5oCpH1Zhjevt2a1syAeaLc5+PIiYWo5Dp6eG4NjcpCNXr1JhmZoCvf71+90C7VslWGW/UIvVTn6II+4u/4DVUYk2FUCtx+uKLPIe9vQyVvuceHsfoKIWpCstVRZ9UOGslL6ES508/TdG7ucmF8qFDfO94nL+PjXExfeMGXzc2pkO5jezssPBTIFBfAmc5Uadybu+IBgD8G8Dxqbz5mzcpjn2+vddmZYXzbG2N58rMi+508u/5PO+TS5eAz3++8eJbpeLO69W9p9U1TKV4bfr7eSyqT7OqMK4MJLUacBrxBpZEVkwggT7/NYym3JjzbAOuHE4MJ/Fw/mVECreB+BkAD77/8olQDBMPx7DiWsRs4QYyH+2D96FzlXVWNfff+DjvySr3f72tpEqj62vVhtUyMnp7gecv5RCNuXGlZwy+4S2EcCe64Y6XGFtbvP59fchuDyOYXsVo3wayviOYjw9gInULMe8YruyewFI6iEDPDsL9G3A6gFjKh2F/Cqd2riKUXsXU+klg7BAGRl/X7bfqSQvpAuOzXXLFBaGTiCgWBEGoFeOq0FgFuVxLplistS2ZFMbF+aVLzJOLxylu+vvplQvdqYb6jW8Um/ubcQ80u0ruFJEI8Gu/xjZG//bf0qO5saF7EzudNCqoCtQDA3yNWiWW9kxW1YLzeVa4XlzktkeOcHXZ11f8/hMTOh99cFCL7K0titFCgWNQAh3QfzPS08Nz2t/fWAKnmag7fJhzR4Vtj47qsFSA43E4eNzZLAXtzEzx+77yCgW/w1G+FZIiFKJaunWrfPXnelE59qdP8xqurWnjVaHAv6k2XP39/J7P61Zl9Rhw6vEGlkRWzMRCuHTjBKbXhhFdySOXjMONHOY2Ulj2hXAx9S1MlOkrHulPI+K6BpyLAo9VOBfV7u+XX+bPfj/PTYX73+t9qOa6foCOro9Ggaeeqt3mticjI5kElvUzNtwbwmhwF1vLeazuhjCX8CAUuFNhvSQaIFdwIpobwLh3Bv/Afwlf7RnEVG4M2D2O9XQYa9keBPw7CPWmkS9QECd3enDIsYQx5yoK2EG+4MCLN49gtH8bv/nYS3yfViRPd5BO5IoLgt0QUSwIQuN0SViYZZhVew4EyhdaanVLJiNqhfLDH3LVGYlwhXPihL4mpeb+jQ3g299u3D1QT/VroDXno5k5ODjIL1WErKdHi8+eHi14UylWLz57ll7EQKC4avTKio4aUCLW4eDrfvAD4J13ilf/Shxtb1OYZzJ8n60t3Vs3m9U/A9xWVW5WqKrQhw/Tc9tIAqeZqPuzP+MqOZuleFxf35secOoU58Pq6t4V8twct+vt3SvkS3E6ud32Nl9nBcpYMzZG0T03R+GuQtRdLh6D389jUH83tpyq14BTizfQEFkxtXoMz1w5i+m1YcTSvQgjCg8SSO16MJs4geupI7iOITwZ/T4eMusrXsu9VM39p67d0hLn84UL3E5Rcv+PfyaEcPhkXUW3e3v5Frdu1WZzK7IbRGLAqzf2tL0L+P0Y3j6ENVc/4rk+RLfzSGZ7EECyOBoAwHx6FCF3ApO+eTza+xbcwWEgeh/e3JnAW+nTSDn8iHgziG77sb3jRo8zD49jB4m0By/t3IuCwwWkHVjLhrH9pg+FAvBzk9e0x9iK5OkO0+5ccUGwKyKKBUGon4NajaPJViwtZWYG+Ff/iqJYFY5aWqLwVX2TQ6Fic//yMsN3G3UPdPJ81DIH+/oqC+ZLlygMHnqI3lCjx391ledHidv5eZ7LW7eKz6eKFtjd5eJ9Z4di69Ahrv4Tib2rf5Vz6vOxIJRa9KvKyJkMf0+ntQje2Sn+3VgVOhzmGJsJ1VeibmWF8yES0Xnz5dIDgkF7rpCNxhqPh+Pd2uK5Bfi7z6fPZTK5t+VUOdHZjBHmjlifyRzBM1fOYmrpEEYCSUyGo3DnMkBuBUgkkAuuYD4zhqnte4CYEwPxa5g4athPrfdSNfef6tvc38/vt24Vi+KS+z9y5fs4c+bzNdf16+nhMJeXa7e5ra7esRu41uF+41XdN7uk7d3J7AbWCycRz/txeyuA6HYvAs47919PD3JwYT41itWdQZwPTuOC92XA6cT5gfcwGLqOpwr/AHO5w3DmAVehgFzBBZejgFTOje20B7mcH7sFJ7yOLHqdWRQcwPzGAL569W78/9n709hI8/y+E/w8R9wMRgQZjEzmTeZZWdV1ZHV1VXd1V0ndbqm7Z2XJ6jKws5a9EjRe7IxXNgY25o1fGB5ggcEMZr3QYAfYgTwCPDYwO1a5dVpWS+ruLHV33VlnZlaymCSTySSTwQjGfT/HvvjxzydIBsnglcXMfL4Ak8mIJ57nfz1P/L+/4/vL1gZWxc/2nDx9CPAgc8V9+DjM8EmxDx8+dobHWY1jH0qxAPvvYb92Tbx7P/+5nPvo0bX5n8vLa8WgTp0Sgjs3JzvX7eq3bOYe2K/x2AzZrITUKg/i6dPw/PPS7q3W4EcfyfsjI7KL24wwd7tHTNPzxi0syHlKpdVNNq2W/G3bG8ez3Rbi2GiIB/WFF7be/X/pSxJ2fOeOnE9t+k1TfqpVOb/rermx3aHUIG0Jh6VPsdj+haarHfLJk5JHvVV6APTeIZ8+LS5CJWK1lbfYcWTcEgmvbuxeMTYm4/jxxzLuzaYnlNZqybgFAt7115ec6kU698MQuELWr947x0R1mJFYjfFUEYAaMQraCWy3ilGFI7ECtJpMtM7wRtZgnFnvPP3cS9u5/2o1j3AeOyYh/5uEanff/6/+nRyTk+m+RLdVcMFObW5WoUJwfgYaK6rSPcrepXI5LpduUXSjVDojfJw9QiPUIdjUaLsmuc4IKbPClfgErw3/hPHiBESPQSLBeOQm347+nM+bJyk5cQLRAWbbR6l2NMqtEJatEaBFWGtjuQZNN4iGTiLQJqDbXFsQQb1EuCUe48OSFrJLPKxZMD587Dd8UuzDh4/+4atx7K0Uy0F42NWcvP227ECPHl27UVZ1kxcW5G8lBhUKycb5xIm9uQf2Mh5b9enf/3uPuKvw7GhU2q5p0tfTpzeuwbk5GYulJSFmTz4pHs/1RpuLF3u7RwoFKdWSzQohdhzpg+t6RoxKxav9Gw5LPnGxKO07eXLjeK7f/ZdKMia5nIxl96Y/HBY2kct519c02YnqujefqmSUIpL7FZq+foe8VXoA9N4hP/+8rKuFBRnP4eHNP18oyNieOCGf2w/MzUk4ebnsXd8wPIPD4qKnJG5Za40LsJF07pchcGyMbOQ0EwsDFGy4mJ6lsBRlpnWUfDtOvanjdJroVotos0XSXaYQOMKtlkG2licTKvV/L23n/lMRAMoYE43K371Ctbvu/3H3Nt//fhrYWnT74kUZ/tlZeSRshW6b25EjYC7N0yjWYSi2uUhbJsNo5Tans3NUtAZnRnSCzRaW7hJ3aozF81yMzvFK4iPGmze8OT52DO7cIXS/TFyrUdUGKHRiVDtBbMfA1B1CAYuIXQPXFT02LUzNCqO3dJLhFiHTYiI/zBt3TgspfpBpMgeAw5AF48PHYYBPin348NE/fDWO3ZdiOSgPu5qTwUFPGKobSuUXxDN05478retCCLpDRrfCZu6B3Y7HZrh2Terb/vzn0l5NW1s+Z2pK+njkiHgy1xPaW7c84SC121PX7DbazM56x3VjZsYLK1WEWOX1uq4XSqxpEm46MOCR1JMntxaWUrt/lT8MG0sVRSJyfzmOkJ922ysXVK8L+Q6HhRBfvuypXe9XaPp+7JAzGSFsU1Myh7q+sZ+K3OfzQlpffXV/YjGVkahSkbGp12WNJxIybrruRU80GjLep06JcaGXAWc/DYHVqnDVcoi0Pc1Sq82N1gnyTowmIaIRByMUpu0aFNtxlt0YEOTWQpvpD0tk3Lf6v5e2c/+p9a3uf8PYmFfdja77/8qL24tuDw5KWe9+QnLVI+WTTyATLROt5ZiuRbBOJ7fcpFqZYzRzEb6mv8VvHP2cauoUreuThPLzjB2zyQSLGw1IsRgMDzN2f5F0aYGfuV/GaUcIGjZt28B2dGJBGxwxvGm6Tti0qdvQcXTKrRDPD+d5a+4kt3LDZEshMg8yTeYAcJizgnz4eJDwSbEPHz76g6/G4WGnpVgOysPePScnT3okqhcSCSF7KkTScaQNm22C12Mr98BuStP0wtQU/N7vwU9+IoRFlfNRZKrZhNu3PTJ17Rp87WseEZ2ZkddVeaLu/ipVYdWGe/ekjd21hWs1TxFopcYpmibX1zRPnVqFpi8vyzVbLXk9k9naq2qaQqJnZmTcEwnpy3oiHY97Yd9LS3K9QEAIfDrt5fSqz+0mNH0z7NcO+e/+XVmbP/mJkNByWcZGxdSqNRiJyBy+9tre2q2gjESnT4vR5MYNWROqnng4LD+Visyhaco8LC7C9esbSaeSTd6rIXDFKNbKtrFsjXZH44Z1igVnmBh10mYO3Vrx2OodHJqUSLDkJpismEzbJ3nxRbv/e2k744ZhyLpWzwsl2raZkWzd/b+d6PYbb2wfkqtE2/N5GX7XBYo27mKcElFu5CI8fTS76ednrVFSgyUuhu7zpPUx5D6BSBkCi3B/5b5db0ACOHOGzNQUR40sTkej1I5yZKBGxzYIGA6aMoKtoEmIkGmhAZV2kJZlko7WydWjTH/WIrNf914v7EeqzTbnOOgsGB8+Hhb4pNiHDx/9wVfjWIudlGI5KA9795yk07KhLhZ753HquhcimctJe1Mp2ezuh3tgJ+OxGa5elRIxliVjtZ4sKhITjUof793zPN/dOZIqHHmzkNBTp2Q33ulILuW5c3LeQkFIqCJrKty23RbSoHJRFXGo10VFyDQlbL2fnFiVf3z0qCeGBhs9qaGQGBoqFWELIyPwzDNrw3x3E5q+HfZrhzw+Dv/oH0k/3n1X2livi2HBdeUnk5H863/4D/cnomS94c40PYVwVZLJNIWpJRJyryQSYqjoZcDZL0Ngl1EsNPQi5vEMc/MjVNtBYtRJmZWV3OoVMbVQCD0eIzUYpVSKUDGiXD/zn8F/Hez/XtrOuJFKec8Ly9qYV92NLe7/zUS3t+PkCwuevaLZlEuEQtBquNRbYap2hI8Wh2jbBs+O3sfUvQgYy9GYLSVYqsW4krnDK8dz8NxXvLFuNsVglUxKe8fH1+aLFwoQj3PymE143qLU7FCpajgdG02zwW6BruMaJk03SMc2iEfahEybeidAoRkmqHWwSjVagRpcubA/91439iPVZgfnOIgsGB8+Hjb4pNiHDx/9wVfj6I3tSrEcpIe9e05WwgJZXu7tfQQvRHJ+Xrywg4Ne4t9+uQf6KU3TC9ms1FdeWvLCbdfDcYRMqdDsel121+fPr82RVORys5BQ05TcwoUFOUb1X5VEcl0hU5om57MsL5S61ZLXHUfa4Lqy+T52bPuavCAbdpDPqGTLbk+m8qRWKtKPZNIj+HfveorKuwlN7xf7tUO+cgX+2T8TI8+1a0JOVVmp06e9z+5Xu3sZ7raqJ/755zJ/v/ALkrKw3oCzX4bALqPY2JEY0eUQ2YUjaHqHdOA+OCvrVYU0dzoQCuFUamitCK4ZoOQMkCVJ33fWdsaN7ufF/PzGvOpu7MI9uBUnV2n7Cys6WkND3iPp2dNNQvYEHywe47PmaW4Xhig0I5xMlAkaFm3bJFePkgo3uDK6wGvRNxk/2YFf+zW56PS0xGH/7Geeqvvioly0+575xV8kPfA9Tv3/gtj32lSbJnUnhI4LQQPXMOnoBqbbJk6dtFPEskM4TbALFdp1l3jUJvTEOLz20v6mCe1Hqs0Oz7HfWTA+fDyM8EmxDx8++oOvxrE7HKSHff2cnDkjm9zNvI+djvyUy/DlL8O3v+3VKYYv1j0wPS2kSRHAXorFKowZZLfW6YinS5Gd7hxJ2DokNBgU72skIv0DIcW27V1HKT4rj2Mo5Hk5TVP+DoeF4Nl2fx73SkWuGQqtrXWsPJmNhvxWRL47jFtd3zB2Hpq+E+znDllFEHzvezuPINhp1MFWhrtegmGDgzKWly/Diy/u7Hy90MsQuM4oljFrDIZaaLqGGwqhx+My542GrDvbXl3jpWaIiFUmbrRpfFhi+j8NkvkH2xjWurGdcePECfEmqtD248fXfn4P9/9WnLw7yyGVkqFZ5eTHEnAnzAvlTwkOhpirJEmGm8SDLSxHJx5sMZYscDGd55Xjtxm/9R6kX/DWRiYjc/nNb26bzhFaGufIFDgjLexqnU8mNUq1AEQ1DNMgHICoCQkaRCyT+6UgrutyvzNETk/y1bMVxv6rc/Dcmf7nZDvsR6rNLs+xX1kwPnw8rPBJsQ8fPvqDr8axOxykh339nKRSssGHjd7HTkdCfdWmUXkZBgfl+C/aPdBqyTU1bfO8RhW+3Gx6JXVs2/P+dedI9iq10412W17/+tel7xMT4om1LHmvVvPWeSIhm8tQSK6tSiMp99bTT4shYiuPe60mOavBoPwsL3tzpjyZn38uG1plEIjFhDGEQtI/w5D5fPllKeu011JeW2G/d8g7iSDYbejofhvu9nI+Reg/+EDcogMDq8/MJzNZ4qE2uXqUQiNEol1BV8YXw8DRDEr2IDU9yuhwmbRbwloq0PrLD8leCjHtnunPTtCPcUNFjESjMs/5/L7d/704eavlhUyrMthrhNS7PNhPGpNUwl/ibGqZ716YJBboEDIsxlJFMrGarJOtwve3SecYG1CPzxAvfSuEm5AhUIEqUso6SKMxwnwuRdaGUNDhpj2EFjS5HTL5s+vwanofH437kWqzh3PsRxaMDx8PK3xS7MOHj/6wn2ocj9M37kF62HvNSS/vowrJzGSEBP7jf+zN32FxD4RCshl33a0VcCMRGctuAq3CYbtzqtfX8e1Gt9Hmu9+Fb3xD+h+Nytq0LGlDPC6vJRKeArYybiiyOjQk4bfvv9/bI1coiDiYKts0NCTtyufhRz+SnFqV263CPQcH14pwXbgATz0lc3z/vtw73/zmwd8zX8QOeS+ho9sZ7rpDqEGMGi+/vLnhbjeGwFRKyOcf/qH8PTcn86/W9pkzjCWLnE0tYzk6nabDXGuYqNbEMDRsy6XuRggHNEYTFS6n85RaEepVi798L8Wf/8syuWM7SDHt5/4+cwZmZshem2P6jk6rpBEKuoxddshcObHr+78XJweJZrYsL2p7vQ6WingxFxZIO1kaHYOhcIMXT9zzxnqqTw/2FsaY9Y/PixdliSwsyBIxTQnsyOWgWDTpOGDq0NYgGZPb+T/+x90VDeiJ/Ui12ad0nd1mwfjw8TDDJ8U+fPjoH92m/2bTIxuKlIRCW4fbHUSd3sOOg/aw93LHdHsfcznZfZbL4iHuJsQKh8E9MDYmrqKPPpJ2Dw31DqFOJoU4Viqy7gYHpa/Kw6SIiK6vrePbjfVGm0xG+v/CC3LeN9+Uz8fjcs5epYSqVS/09utfl408rPXIVauy5nM5eS+d9vKIs1l5r1KReVlaWqucvb6UzBdZ7uxB7ZD3Gjray0hUq4mBaH7eEy3TdXndMGQeqtXe/dupIRA8xXNF6FW7SyVZO8vLjI0FuJS+RLYSYci+R6ETom4O4qAT1DokzSrpBJw+2iIeavHB/aOYWpzGkku9ESEdaBIcDPefYrrN/T01BVenYUKrkaOGhYOJTlqLccGN8Sqw25W2npN/8olMQSgkTur1QurAmoiX4GwT636T1tQ9aE/tewTL+sfnhQvyO5+XoWo0vJLkwaBc9uhRad7IyO6KBmyK/Ui18QUxffjYNXxS7MOHj/4xPi4b+I8+go8/lk1mMChfrqYpnrszZ3pvVg6qTm8vHCZP9EHXu+g3//PLX95+A7kZ+XkQ45nJyLy/+aZcbzOxsEjEy+9V5ObuXemvbYuxptn0SFX3ObbLkXzySfiVXxEDwuKinG+9AFa9LtePRmV3/OKL3rh17/6np+ValYq8t14F9+hRePttacsPfyjh4PW6vD83t4kLjYMrd3YY7pn9CB1VLOenP5Xf1ar0rdmU+QuFvLz0WEzcgv/6X2/+3OlXdOzOHfl/p+Pdw6Yp67NSEaV0w4CFBTK8zYXIFSaDYSKNIpcGligERrAdHaNeJjXoEDsu9/BH9zNUWkFM3eXcgMXTyVuY6YjkA9Nfiukqetzfax/LMdLpGMEENNowfR0m5/f+WO7m5H/yJ/CDH8gye/bZLSqYrUS8tNtF4q0lQvHggeTSr398zs/LGDqOF9ptGBL9ruxT3SR+X+1U+5Fq4wti+vCxa/ik2IcPH/3j2jXZyCsxosFB+UJVJT3icdlBvPTS2h3UQdXpXY/D6ok+6HoXBxUC/aDH89VXpXzPX/yFVxppfZ1iiWUUcnzunOTWqjU4OirrS7V1ZkZI0U5yJLtJlWWJW0vlEQeDsuY1TcbhK19ZO1fdu//f/V0JdT5+XEKf1+/+T5yQ1957T0iwItvhsHjJe7rQ2H/vzn7O8V6I9X6ptI+PiyHhJz+RvpVKnjCaMqIEAvKMefZZmc+tnjv9Gp3icVknx46tPUe3yrOuy9/5PK8ev8pkPM61XApMh1OxZcxmDcIOxIexzBATS8N8vHgUy9EZSxY4Eq1gYq1JL9hLAMGDeiwrZDJic5qclNt8uwwRK54iF08x9lKGse8YEPv6gRhsej0+BwbkMQNyuZMnZdn1IvH7Zqfaj1QbXxDTh49dwyfFPnz46A/rd1DPPy+b3+4cvWpVft56S7xuagd1UHV6u/EgPdE7xX7Xu+hFPvY7BPqLGM/xcfgv/gtp+89/Lt7abNYT12o0PHI6PCylmC5dkh1rOu31t1rdvYFg/VwtLgpJVZ7idlviPi9c2HquVFLi889vHsa4UhqGP/kTIWsnTgjRV+Hg0LuUUD/enX7WwX7N8X4Q6/0K+5yaEmEr0xRm0+l4ZbyUMQOEoObzXnj9Vs+d7YxOo6Nw86YIpanw+G50q8Kv5MSPN67z/eNpyI4xUT/BW8sXSLs5glGD5dZJpm5maNs6lXYQ19UotkK8WTvLcKzBmXqI9TEUuyFmD+KxvB67Cpx5Lkbmu88DXcv6s/3lx+sfnx98ILeBpontZCvs2U6lLnr/vjxfumunb4bNUm18QUwfPnYNnxT78OGjP/TaQZnmRtP51NTaHdRB1untvuaDdHnsBvvhze2XfOyH9/CLGs8rV+Cf/3P4gz+Qvn7+ufRVCWuppL5jxyRsulr1CKoibipHeLcGgs3mSo31dnO1U4I3MiJtDARWw2IpFLzaNUosTZWrarfl2r28O/2ukf2a4/0i1jsN+3QcGZ//4/8QBnP6tBggVN8zGTEkqHBmkPETSWFpaz4vYc9PPbX9c6eLNWXfvyuCVIQInT7KWPEDMn/919Km+/fXGjVgoyp8vQ7z81wZe4tk7B3eqFzgVvhpcoFRFkMnmWsM4zgatqMTNi10zcWyDeZrgyyTYvlOistJ4eIKOyVm+/lY3ult9uSTMk03b0pAyKVLa8uS9wqceVBBKyrCvNXygqL6wa6ikHt1amZGBrRbhK8XNku1Oeh0HR8+HmH4pNiHDx/bYy87qAch/PFFuDx2g714czcjH4UCfPih5OJevQp//+/Dt761t3Ye1Hj22+/xcfhv/htRdf4f/0f49FPx+qk4RkU4+hFe2u1mby9ztVOCNzQkHmlVpmlpSbydqnaNymlut71ER9MUg0A3dkJQP/xw73O8n8aTfsM+CwUpbXX9uozzrVtejnc67XnzL1zwUjqSyY3nSSQ8UaxWq6/njnCYDBMTGeEwhQrm0jzpXI0LuSd4NfQW48Vr0pbhYfEQK1LTrQo/OSltDAYZP1FnPPDXZOMz/DTz6/zg7mkiyx3OD+fBhQ8Xj+I4GkG7wUCkRSMywkIuCDfkdN2caSfEbD8eyzslqt3Hl0oy1Z99JuQ4k5FMg1BoY+BMsfjgg1YOPAp5s3s1Hpd7pluETxnKoL9Um4NO1/Hh4xGFT4p9+PCxPfaygzpo4Y+9ujy+CIGhnZK1XuSjUvE8iZYlXtOJCSkN9PLL8Eu/JKrIO+3LQXj2d+vmuX5dvG/PP//FGTu2mqvN1k6PHXW2FmO6kKRlm2trrYJ4MFWI9o0bslldWBDyn06vVb/WNBmTSkW8SSp0ficEtVbzUh/2Msf7aTzpJ+xzYQHeeccTMFORKu22sKzZWRmboSEhpY6zec1r5XWv12UctnnubOAwxjLB+RkaxTrTpaNM2t9gsnmc1wJXea54TQwcy8viIVYuXaUKD2Sbg0yf/Tatjk7I+JSx8keUsk2aHZ2jA1XatslMIcFyPYJtQV2HQChJJBDFND0ndzcp3gkx2+tjeacBAr2OP3dO9McWF2XJN5tw9qw4SFUwBogO2gMJWum6n8dqMdLRS0xPx/Y/Cnmre3V8XNIz3nlHBuWv/koiGYaG+k+12e90HR8+HhP4pNiHDx/bYy87qIM2ue+WsP/0p7KRPmyiXL2wnnwsLKz1JJqmjFut5uUuvvWWbHq+8Y2d9WW34/n++7JxW08Qd7p77s6v+8lPZMe8nSfjoBSZN8N2JP/JJ+X/t24xZZ3i6v2LTFSOknOHsfQQpu6Qjta5MJzn1RO3Gc/lhDyFQvDXfy3q16rUlIIqBdVoSH/T6bVEcycE9ZNPPGGy3boJ99t4sl3YZ6Ega2lmRtZ8JCJh9IpwOo54fhcWhEx8/vnmhFjBMORzyru8yXNnA4fJFDA//gAaCzAUwxqNMjujc63yJegkSBwxGG9/Jm2BNS7dqaU4Vz99gQn3PLm5E1htF7OVJlp7isnmce52AsSjNgVngFrHQLM62G4ISw/RdMM0KibhsDQ7l5NbPhbbOTHby2N5pwECpRL85V/2Pv7pp+X9W7fkcZZMwt/5O6JhB/D7v9+1rI/U4P7a/HozFtu7XazH/ZwxTS7M/zKTpeeZvZFm/On4ph/fcRTydvfqyZMSGfPeezIolYocu5NUm8NSf96Hj4cIPin24cPH9tjLDuqghT92Q9gXF6UuSLN5+ES51mM9+SgUhBArT2I47JFjTZPNomWJWEuxKORyJ33Z6Xi2WkJG/t2/E6LSTRBTKSEx09Pb754LBQk3LRRkDSwsSLs1TUjcmTNeuHi36FQs9mDrbfZD8t99F+7d49psmtc/PcOEc5KCnSAdqhCM1GlEEkwXjzO5PMTklMZrR57juReflDDJd96R9anrIhC1vhSUKtM0MuIRzevXd0ZQr1+XXNt+x6mXF/Ug0iI2C/us1SRveGpK1rlhyIa/Oyxa1+XvYlGOWV4Ww4Jte/nY62Hb3jrf4rmzgcN8MOPVlE6lMIHx1AK02kyUjvJG9DnGjy7Kh7tcutcWRnn9rxNMLCYpaEOkIzWCEYOGluBDa4z7zTgNN0ik2mYo0uD0YJ1sO0m+E0IPhRmMmTSbXpmgQkF+YrGdE7O9PJb/7M92FiBw/77YeTY7PpEQEjw1JRkBN27I36uPvvk6F1MTMJXbmF+/EqZ+6lRqd3axLe7nV4t/xGRV49pHX4J2m1PPDu89CrlfY5IS4XvjDXn2/dqviRFoJ5FMh6H+vA8fDxF8UuzDh4/tsZcd1EELf+yUsC8vC4mLRES9+DCKcnVjPflQIdOKEN+/L54EVWam0fAKaxqGuGF20pedjOfCguxCGw3ZcJ09u5Yglkqyyz17duvdcz4PP/6xtDmRkL52OnLOZlNI3M2bsgnW9Z6b4m3D7vdjY9iPi+yDD+Av/oKpzkleL/wdrrUvMRIocjF8G9NuQ9MELYI1lGG2nORa+RgMfo/EmbOMRxbES2TbXt1ipbadTIqhKR4Xo9P9+zJeuZyQ450QVFULOZuV8V5vZFiPXl7Ug0iLWB/2+eMfyzool8XIU6uJkSQQ6P35cFjaX6/LuonF5NhSiWxsjOnmKC0nQEjvMBa8R6Y+K+Naq2363NnAYWo1zwiVTnsHJpOcqi/yVi7NreU02eQgmYSzmrc8NWvy+s+GuDafYUTPc/FYBfPIMOgO0CS4XOfO5DFqrQAGVcLBGvpwikQoQSMfpFIBmtJFkMtXKjI1U1NbE7PNlv5uHstqavq1v7zxhgxBILDzgI/pach9liNduIdZmNiYX18sroapm5cvk06P7swuts39PH7O4vsffAiftZm4/RRvFSKkT0b3FoW8U2PSsWNy76ia6LvBXrQVHnf4BoXHCj4p9uHDx/bYK7E9SOGPnRL2qSkhGufPH25RLoVu8rF+Q57NCgEIBITkg5AG15XNY6Uif8fj/fel3/EsFEQAa3FRvJdf//paCVkVM5nNSlh1odBbSbVQkM1tNiubXXWeuTlZD4WC9EOJS2Uy0td1m2KiUVlX68Nf91O2druwx0pFCFyjwdXWl5kIPc1IpMm4u+Bd17JkE18uMz4yAqNPMBF9ljdmUoyPz0g/Ll6UvELlFa/XZTwrFRlvZRRQO/Njx3ZOUKtVGb9yWdbLeiODmqvNojcOKi1ChX3+m38jCadLS9Jvy5I2qvVYr4tRRoWVqn5Fo/LbtsF1mdLPcXXhKSY4T04/goWJqVmk7UUuGE/xauNzxiuVTZ87GzjM/YJcWxloFCIRzMww6UaDXDvB9KxBZmhZ5mp+nqv3HCaKKUYCBcaPNGH02OpHa+0Ai7UYlqtjY9DRgpRaESK2TWQwSFrzulwuSztaLfn/J59Ibm4vYrbd0h8bk987eSzvlNOFQnJrnzixCzmK6Xms2wsEiwUYCWzMr1cpBSth6sGRASwr3r8CdB8pB1degGTwPd6YW+ZW0iUXf3pvUcgHrbHhY3/woOTOfRwq+KTYhw8f/WEvxPYghT92QtgnJsTzZFlCrObmNveOPeg81c3QTT4KXRtyy5L/W5aEiSoogmMYnpBQLCZCXP30pd/xnJmR8RsYkF15NyEGITJKTbVQ2KgK1H2eQkGOCwblc4mEHKvr8p7yDhqGvKbOozbF8/Py//HxtcRtP2st9xP2uOLFzybOM7EwToEBLp6pQXNY5qHTkT5omvQjHufUV8d461ZKpuZIjIxpesJPti3EdX5exmW9p2xpSYwF770n66SfjfbCgrRTbc4LBRnv9UaGFYGo7K0C084LtHiF0HSGMVaWz0GnRXQ64ha9dEnm9vp1GYNwWH6aTU992zQ9o1AyuWpIuVY+x+udv8tEa5RCO0ZaWyYYaNOwdKatC0wao0xGv8Rrz+Z57rWXe671DRxGhWP3yleOxwmmo1h1jVbiGATugGGQdUeYCD5JwRjmYuwuHD0NQKERZqaYJN+IcL86QL0TwHY06lqYbMMhWqgwONQmHg9imrLU63WZKpAmnD8P3/veRmLWz9JX6e/Q/2N5bm5nnE7X5fjt0rsV1shRfPo+ZiVCIzgAqR7rq/tZkM/TbueID8f7k6PIZkWBfWYGnnhiy++C8ScjjFd+QPZsgenvnqAVG9q90/DAZa197Bn7+b3h46GCT4p9+PDRH/ZKbA9S+KMfwn7jBnz0kWykg0H4+OPNvWPwYPNUt0I3+QgGvQ15synEIRAQkgVCiBWZCIe9DTzsrC/bjWepBLdvy1heuiQ1YtdDXTseF+LWrQqk0O35jsc90SOQ47oJyOCguMYUKwgGvU1xpSL97s6T3e9ay9u5yLr6Mj14iZyWIc0ypu5I6GO7Lf1U81EoQDSKGQ16U7MQJjM/LwQwlRJmsLwsvwcG5Dxq/BzHG89SSf7WNDFQ9OPdHx6W+3F5Wd4bGpKfFc/bVP0oV92nmCg+QW5wHOvzS5i/1+0oyTB+UGkRykNz4oTHxGZmpL+uK/1UJLjRkDarvyMRCIeZKqd5vfJtrlVOMmIuc1G7jul2oOVCIICVjDMbf5JrkWcgHCORSNGrBxs4jBLnqlY944aqfQy0zSjxtEHo8kUIt2BqimnreXLtC6Q7DcxgBKpVFmqD3CgNke8M0nRCkj6uudgaWI5OnQj3yqAtt4kfDRKJeAESS0syDEePwt/7e/Crv7q2zTtd+t/+tgQmvP++LGGQpdGtAq2md6ecznHk+H7r/a5ywNoyY+WPSLvjTGtnsJx7mLrb+0OJBNbdeXJ1i7FojbGxHkbObkxNwf/6v8o6K5f7/i7INO6QGfp892HMcPDGJB97w35/b/h4qOCTYh8+fPSPvRLbgxL+2I6wq5qPluXlT7rupt6xVRyG0LVuz+3Skhc2q8KkXVfap/qjNnfBoGz4gkHp7076st143r4tBOXIESkX0ssDrLy6lrW29E03Ke72fHd7uMFTE1Lhkkplu9OR/ysDQakkY2GaYiBQnvD9rrW8XdhjV19ahLAwCdL2SHAwuPazytNfKBAMxrAW87R+/HMvJB680GnXlT5nszIP8bhHBM+dE4PBzZvymX69+5cvy/wpFfO5uVUv9LXaRV5f+BoTwScoJM6QPjJEMBqnUVnnKHnp2zx3YZ/TIpRHfnFRctHv3JE5V2uk3ZZ+a5qQ0fWGklIJSiWu2t9hQrvASKjEeGABHB0sY9XAYj7xBOPPPAOLMSaym0//Gg6zVMCcm5NnRakka1TXV9MXrMEhcvUoY8kCY6MtCB2FmRlaJ89hTQcJVueAZQp5hxv14yxYYWJmhXQoR9VMUAsEcAliOTqOq1HvBFgq6JgJ6bKyg7iucLcnnhBivB69ln6ttlaj7sgRef2DDyQ9PZNZS1wNQ869/nG+U07XasnjQVXNqlQ2T2FfwwGZJtO4w4XMMJPVFrOlBOOpYu8L6Tqz7ilSWomLgzqZzNnNG6W8gD/7mayxUOjBfhcctMaGj71hv783fDxU8EmxDx8+dob9ILYHIfyxGWEH+SIzTfEAlMuyyV4fgtujfMqhCV1Tnts33/RKL4XD4q7pdDzy6brSVnVMvS5jkkpJ+PRO+rKVAeTCBTlPJrN249iNVEqITLEoO99uL7CC8gRrmrRXtRVkB+84svvvdKSvjQarcaTttqfIfOyYF1I+PS2f3+9ay9u5yLq82iG9g4lFgwjom2yiu8oBtZerxOemCEWui9BWMCgh062WzO3goPy/UpE5rtW8kkqnT8uc3L4t783Nef3azrufSsn43bkj81uvM9UY5XXn17jmnGckanHxmxHMU0Orp1nrKDlB4sX/XDys+5UW8dOfws9/LkS6WvXyp1WotG17JZlUWL0ylNg23LtHtpVgwnyCQuwMF88tQfuMZ5xQAm6NhigKn4ptOf2rHObdArNvTDNuz8rnNU36GAjItRsNZgtJUgPLXEznpQb1lJCaUETHzC3QqFlAjRn9EnkrSUyrk7KL0NQJGy5hPUpDN3EB1wbLNShWDdx5cUip5X7kiMxDLwdiL7F6pc23XrhZ18VeODUl/RwakvebTeGLhYKcrztKdKecTpHvmRmRGFC2rF6O2TUcMCZr/NXjk0zmnuTagjxnTiVKazzGlqMxW0qw1Na4kp7llScdYBNS3O0FVCW9vojvgoPU2PCxe+x3mTkfDx18UuzDh4/d4TAqWvYi7D/8oZCIc+dkh/bmm14Oqq5vyEtbzX09TKFr3Z7bH/5Q2p/LyUbNsrxSTMoDXqkIiRgYEJISCu2uL5sZQJaX4T/8B7nOZojFZMe7vCzHDQ1tTCxUnuBiUXbI6bTnOlIkc2BANqelkvRBfU4pMqfTQvAKBc+TcxDlgrZzkam+tNuMRe6RdrNMcxorWOz9RbtSDsjCIDdVYsy5y9j5Djz5tGzKlWtPET5Nk/HI5+X6Z8+KN0ut3ZMnpe/JpMx9v979VEp+Vq539bOvMtF8mpFglfGROqwLWd3gKDn/FOO//dv7kxZx7ZqUSrtzR/qi1rQKPdc0GQ+17sJhL2LCtmWdVipM60+Si50hnbIxwwEIr1OrLhRW73Xz2dS20//q2CyTjdtcWxiAwWOcOhXHXFpYDaG2BhLMVodYakW5ErrOKwO3YWpGSM34OGO1z0m3okwzTslIkWeYphYhHaoCIbAsgladCFXqWhCbIFG9SSjkUtEGVwNAjh3ztKYMo7cDsXvpLy2tLWe+Ph1d2ZlsW27V3EKberGDY0uI+lQlyPR0gGIR/uk/9aZwJ5zu2DGZympVpkcJqFuW55hVthPb7uKAS2KEGg/d4/uXJQpiIj/MW3MnSUfrBA2Ltm2Sq0dJhRtcSU7w2tlPGB/75c3XV7cX8MgRWUdfxHfBQWps+Ng9DuJ7w8dDBZ8U+/Dh49GDIuzZLPz5n8vO75ln5ItMEbVSaW3Yr1I8Vrmvi4uHK3RNeW4tS0iTIojKCx6JCGE1DNnsKQKbTO49DG+9ASS7Em+qCGKr1bt+8Jkz0s7FRSG3SiVYQZUXqlTg+PG1ucldJHO1b42G9OeJJ+R83fGXd+4IObpxQ/5WQl/9oJ/QyO1cZF2e8Yw2zYXoPSZ5htnGCOPh4tpjHWfViz+bj5Fy7nJRnyRzcWU9jo6KEWd52avL67pePZ5YTLy968M7IxH45V+Wz+zUux+LkSXDBBcoaMNcTM6D426aDLrGUfK9cTK/ucfoEeXFm5wU76sykigMDcm6X1yUPpXLnvdY06TPK2kFrWNjWMYRguFN1J3W3evBYGzL6R//6Ad8v3MTBl9hwj3PW7kM6UCaoJmj3XDJlQdJBWpcCX7Ca+0/ZfzarChYXbkCgQCZ7HUuHD/PZMfmVvkCdTtA1Gihay7gebuTTpGCM4jumkQDHY4fdci6+mqQy9mzwtW2ciCqKP92WyQU5uZkKgYHvawKkPfL5ZWhLDrcuV4nSIuo1sTAxsag7oaxjSA/+k8hMpkg/+JfrIxHn5xubEz+zuflM0qEvlaTtsRinqB6JgPf/GYXBxzwjFBXzt0leaXJG3dOcys3TK4exXJ04sEWY8kCF1NZXln+Q8YvndictK73Am71XRCJyCBPTUkjlTd5P78LDlJjw8fu4CuDP/bwSbEPHz4eXfSy/J45IxshFSKXSHhegmhUNtrXrwsJOWyha+PjQobGx2Wn22zKzlaFJivPscqvNU34/HPZEe9nXxRB/PBD+NGPZOzWx2Z2x0WqMkqffLJx9xyJyPvKY6nQHX6twhpjMdkwXrrkHVcoyOb1k09kk/mTnwh5npmRMVp/3l7oNzRyKxdZLOaFqefzvHr8cyapca0gm+g1YZ+lElYwyqx7hqUljSvhu7xyYg5ML0x51Quucq7bbdmcK4Gx9WHcqg9jYyIEtAvv/nQhSa4eJR2tiyiVHtxUNrino2Qv0SPKi3fypFyz24MH8vv4cXmvUJDXXNcTzkulZHyGhghdegrz8xCN9iZbHLVGV3K62+1Y7+mfmoI/+RP43/93rtybJRm/wxuNr3DLPkuOI1iDA8QjDcbsKS4at3kl8i7jlU8gcQq+8Q146SXxfBcKvPpcmclOnb+qHKfUiRE1WrQNg6YTwkEDXDoWhGgSMtuEwgbZdgrHkFu7WpUlvp0DUdmOPvhAptpxvPR1VbktFpNHh+sCjk2rA23HYjxyDz1grnrfnXaeQmeQuXsZ/uDfWhw9GuXZZ2WJ9cPpsll4910vPVOJ0K9E6uM4QpQHBqRdp093ifmuM0KNj5uMpwpkazGmC0latknIsBhLFcksfgLh5taktZ/vAqXDoFzoc3PS6EBAojLOnNl+He8EB6Wx4WN38JXBH3v4pNiHDx+PLnpZflMp2eDABoEhqlX5oksm4eWXD1/omvJ2BIPwne9IHdeZGVHKaTblJxQSj6IiQqGQyMjud1+Gh2UDOTUlm+hUSjaPSrAmn5f3BgfFBaRCnNfvnlMp2Smr5EZFNGMx2S07jhB7w9joTV5YEM/w7KxsZI4ckbFpNr36NYGAhAtvlvu8k9DI7Vxkql5yu834kTrfP/I5TIS9sM9wlWCzTLuRIhc6QSpxlCvDeV4rvcN4sgh0kWJlFFha8hI9VSh1rSZuwEpFNurx+MY+bOfd7xEe2LJNLEcnqHWgVl+b490D++Yo6fbivfSSp7q93oOn+tVuC9NStbufegq+9CWRTw4GGTtik75XZ7qYwnK03qrFKzndVtvuPf1KkOnNN2V9GQbjoXnGzdfJViJM62dpRdOEzh5nbLRFpn0P7CMwtyJg9uKLwjpXiNj4SIXvX5lmvhzjr2bSLFlDBK02DgYOOrarE3JbDJklLo6UMM6OkbMCzM9LU+NxeWxt50CsVCRSXpWzjselGWoJKbFuywLHsnEcF811CRg21kCCoOmNVcs0aFcNHMth5o7J//z/bvKVr4fXlGr9zd/szekA/tW/WpueuS5SfzWwJB4Xwq9ymFeXbQ8jVCZWk3xj2Fnu7XbfBffuyZpzHPlRg6YicZpNSYpOJPa/DM9hTEV6HOErgz/28EmxDx8+Hl1sZvkdHd0gMLTqlRoZES/Pb/3W4SLEsNbbMTIiP+fPSz9ULVul4qxUcTMZ2Szu50ZuagrefluuNTLikTWV7BgOyw7XdYUUf+c78Cu/srlHpLsu5FtvyeeXl+V4lUOratPOzHjt+PRTT1jr/Hn48pc9EmVZstOenvbK5vQieDsNLd/KRfbKK9KvpSXIZrly5wckE7d4w3mKW8sZcqUAViBK/MgAY1cGuPjKAK8MTjL+5/NQaa+9Tizmrd1y2ZtPtVnP54VVLC97dZ236kMfCkkhw8LUHRrFDkTDXo73ehazEra+b46S9V68zaI5wJvL5WU5/rvfhd/+bRnziQmoVMjEalwYzjO5PLS5avFKTvdsLrpx6LoFmQIBL4x7Zf1khhwypZsrpcZG4dQVyJzwzmsYq5aCbCXCdOk4rTunCRkWz48X+Jv7GlY1gOvqGJqNjoOpWZI2bgQoxo5z+WKSsajojl24AL/xG/D881sv0akp+PGPZWjUculWd1Yi5rWaNNNqu+C4hA0LRw/StAMETVmHlVaQpXqUhhXARseyNMpLbZaWwj1Lta5v19tvb56eGYttLAfcMz1zP3Nvt/ouaLXEitCtYq/UzC9eFINLpeKX4XnU4SuDP/bwSbEPHz4eXWxl+V3vtmi3pazNV78Kv/M7h/OLrpe3IxYTb8flyxvJS6nkiW3tJ1So67lznqe327gQDksCpOvKBlIVP93MI9JNNK9eldjPYlHIdjotv21bQpOXl2X37zhChCIR8S53i06BXF8pLs/Oyvmff957fy8Kr9uFPU5NrZLm8VyO8ZE3yXZSTBvnaB0bI/TCBca+flSGInsM3u2xRlXypRIcUxEAnY4w0WPHpH83b8p6+OpXPa/XZthGIWksniPdnme6cgLreBozmZS56CFdbCXT5AoXGHslujdHSTYr11Cq2bXa1tEcti1jEwrJ+lNkaGCAbOQ00x/epxU8QSLc5Hi8zK28rP014euOg1VrMssYS81Brjy3bvq7BZmCQVkj7S6jxWaCTLAaUjmVG+TqB3Embn6HXCWEtTBEwwowWxyk6YYYDLeJmS3iZgMdh7BhYdotSu4gC9VBuCGXP3NG6gh/97vbD6Vq9rFjEvRSrwsHVHpkqrxzuw2Nuovr6IS1FqGAjeVqVFtBHFejYxsUWyEanQAB3SEStLHaHYJuk3TM5KmnItuWat239Mz9yr3d6rugUJC/jx2TdWXbMucnTojHPxaTyQC/DM+jDl8Z/LGGT4p9+PDx6KIfy69yW0xNyQ70ypXDSYhh+5yn9S6YalWO38+cp16CNb1iIlMpuW6/ZSvU3Hz4oezcjxzx5HbbbSEe2axsRnI5IWiBADz9tHx2vRdYESsVfv3JJ6s1avdN4XUzkt+DNGdCITK9cgU3W6MzMzKm6bRXQki5ADsdMRCo0kydjhz/gx9IPvyrr/buzzaet0wux4XIIJOZM8zaxxn/8EMxTrTbMm6q3FexyOxdk1T0NhfDg2QypzdeaztMTXks7sYNMV5YlnjkVD76lSsbDS5KdTyTgb/zd+C551ZOlWHi9q+Qyy1h/SyImYhhOTqG7rBUizJfGfRUi0tNcvWnSaXjXPlqaO30r1/frdba3HblsYaN4nwrKu/XIi/z+hvnmJgyKZQc0o05gjGYKiSZKSYJ6DYB06HtBnBNm4FwEx0DyhapeAcnZjA7K5f823+79757vT1mYMBr9rlzXtS9Y9mUlx0Choumg6sbOI6BK4Wf0HWHlhPAscBxNMptIcNtWydgCFlv2wECho3ptLFLVUwzsm2p1n1Nz9yvMoC97rNazZPnPnFC5rdQkDV27Nja5+mjXobHz232lcEfc/ik2IcPH482HiXL72HIedqsbEWvmEjYWdmKq1clt+/8+bWbDSVipYj3p596RVC7vb/rocLklQvKdb0kxgeh8NpvruD6NTo8vHaj3mhI3rhleaRY1eAeHJS/63X42c82xrWuxzaet1cdk8k3sly7GYV2h1PBKmbYlPO7LtbgELPaWZbyOlfan/LK4j2Y+vWdjWF3uHyhIIwuGBTPt8rtXF4Wo8azz641uIAQ6K99Db7+9bWnKp4nHYFgcYmGHSSnpQmaDqbucnSgiKnZWOUGcbvG2LkmF3/tKK+s39euX99bqRSvE+yi3WYqcJHXc69w7f4AIyNw8aka5tQSNbvOLUYwNIeQaVNrBzF0m1rHpNIeJOrWMNwEtp2g1gzQaEgK/Te/ubZ93bYENXWmKfv1mRmZxnQa0gMNalmLKA0ajkHHMnDR0HWNREjHCQZpNHVadhB3xXigaWA7Gh1Hp+MYaBqUWmGChk3AsAnpFgae8NpWHPFAHlV7zb3t9V1QKHhiduBFaKga4N14VMvwbLaoupPHHyfy5yuDP7bwSbEPHz4ebTxKlt/DkPN0UGUr1nvoekER73Zb+tduywZ2i7zX1TFot+EXfkGIVj9ekAfpNVm/Rn/6UyHFjiNkrF6XDdnwsPxfhRgPDwvpz+VknM+elf5vl/u4meetUmH8xz/m+6W/gc7zTHCBt+wvk24UCFYbtPUwucVhUkM2V85WeC1xg/Glz+CNdP/3TXe+7siIF22gcqVVKS6VT6xywZXBZWpKjCEXLzJVzaw91S9GMZcycCMH+VmsxiSznVMstRMkWOCV8DukT7qEzowy9ve/TuZbPeaz1/reKsfZMOT4u3dB17lq/CoT9tlVxWVSpyks1vlgMs5MY4A2Ji5CPNu2jqk7ZMwCTsfGicQIpqIkk2LnOHlS7AUK620J6jHWaEgwRD4vy+R4aInh8hLLVpyA02Y4YtF0gjiOhm53CGs2uj7EPVJ0MDBxiJodBoIdWpaBrrkEdBvH1bAdHUO3cWyImh1SCW9ctuKIGx5VRza5P3mA6Zm9vguUsr1ty70VDgshXp+OofColeHZalH1Sh5/XOArgz+W8EmxDx8+Hn08SpbfB+X53mwzcFBlKzbzQPdCMCib13pd+tps9sx7XQ3DVW147jnJEdwKX5TXpHuN/tVfwTvvrIpBrZZnqlZFUC2dXrthX1FSBtg2rrUb3Z63qSn44z+GN9/kip4lmZrljdh3uNU4Ra6TwHLCxDsNxtx3uWgWeOWsxfgJF94q7CyctDtft7tt3cQzFpMQ+u583VIJPvtMjnniCbh8ufepukT0zFyO8XoRSjr3Okcon3+KX/+7ta3v9V7re6scZ0X0RkbIfulbTJRfpjA7wMVTcvhCM8UN60vcdSzqVggDCxcbw3WoWmF0W8ONOZw62iZ1aQgjEyKVEt2nLr2uTW0JCpGI2FJy9y1uFKucdeYYDp9ioTMCRodErImuAa4JTYu2pQEuOg665mK7OvVOgI6jYTk6jqth6g6GaeE4GprukB5sEzt2bM1wbcURX30VJt8rcO2NGriLnDIXMLHW5KXPBs+y1Ihv+ajaV16y/rvgxg2vDrhK1zh9enPV9UepDM92i0p9lzzOAmO+MvhjBZ8U+/Dh4/HAYbD87se1D9rzvR0pfPLJgwnh3okHWpUrun9fcmhVvRlFVFRZqOVlrw/f/Ob2bfiivSZqjR45Irm1lcrafOk335R+rhdOU+RZ1RTeTe6jmvNwGIJBxpPLjKd/SLadZLo5SssJENI7jLU+I+MuQvECnHl2Z+GkW0UDrCeejYYYOW7cEGJcKIhSVDwO5TLZf/tDJm6HKBTPc/EXo6unqdWgUEthp1IYAw1SboFTRoe3bia5de4Jst+Lbd3MzeJ+eynW27b8nDoFv/qrTJ/4Prk/P7pq1ykUpPkLlTiBVJsYFk5HI6KvhL5rGjYBFrVRogmd02OR9Xpdq9xrM1uCQjoty6aabZFrmgwnh7l8sgpLEfKNCHPlBNFAB0NzaFgDLFuDmJpDXCtjGWFMA3TNRcdAx0XXXSKmBa5L3TJFmP+YuSFFYiuOOF68xvebb4J1lIl8mre006QjNYK0ad+zybk6qeEZLl45wsWLGebmxJbXrVd3IPap7u+C99+Hf/tv5SIvvCDEbzM8amV4tltUprkzI5sPHw85fFLsw4ePxwtfhOV3v3d3B+X57pcUhkJCYvYzhHsnHuhYzAtbvX9fki/T6bUiSCoscnraK1m0XT2bw+I1ef55IYjvvgtHj0o75ua83Mf1/azX19YU3mnuYzdZPXaM1eK4QCZYJBMsrr3eXNMTl9pJOOl20QDriac6vlqV62QyMtfBINNv3ieXWyIdAXMpQyE8yszM+oCBCNFoRKLMj0Cu3sdwbJWisF6x/u5dGB4m+63/nOkX/yHvvCOObpWeqtojUf9BWk6QSsnBjQTQcNHbOoZpEIob5GueU3w99+o3s2B4oEXOrFKsRskxzPnQPa6MLnCnlCRXj1DvBHBcjUYnQMh0GGaZF+PXmbOOsminqboxYkEbx4WWZWA7GgEsYlqHgaiDe3Rtre8tOeLK/XRl/hrJS5d5w/oatwo6uXoUywkRT1mkaku0Kx1aN2v8jR3mx5HB1aXbVdns4OxTmYzIet+/L+w+n9+aFD9KZXj6WVQKh0VgzA9l9nHA8EmxDx8+fBwkDsr7uJ3nO5uVYqH9biB2QgrHx+UYVSN4P0K4d6rMU6sJcTOMzY/bCQ6T16QXMVOlmdb3t1QSIqlqCivslqwGg0K6u0sQdaOHuFTf4aT9RAMo4nnvnjDMVkvW11e/uoawtIInsH4WJFhcYuGdFjfMJPlaZNOAAZWq3Fcq6HYpCisq3FPNY1yN/5+YmPsmud+T5k5OikO7XJYhVY59XZcQ50ZDp+mGiETAdUA3Vp3fq3aGxcW13GtNzd9WDe73zs09kyiwHChT0kZYrA2Qq0c4nSyTityn1g6Qq0eYr8Tp2AbxUJtLoXtcHFgmo8GdUlOIsxYDYxDXDhN0OwyF6hAMEE4PYCu2v4ItOWLX/TQ+HmecT8jWYkwXkrRsk+lCgg/uj5Jr6RTmIqQDeYIXB2k0xLu+vCzz98QT8NJLB2yfepTEGPvFTtJVvmiBMV8IzMcDgk+Kffjw4eOgsF/ex60s5Os931NT8Gd/tvMNxE5IYTYrYdSp1P6FcO9ERGxiQtqTSIh3sVDYWMtWieaMjckYFAqbezkOo9dk/UZdsTpFVpUnfDOl3N2SVRWa3qsEkYLKYVZz3W846U6iAbJZOX8qBU89tcGDFwq6mIkYS804pbshFvQOsdHIpgED2aw0O5fb/tL9pChc4wqvW99lovUshc9TpNNCejVNSG2jIYQ4FvPak0zK69WqpLCqSlfRqGfn+fRTObabe7VaYBUqBOfvw9ydTXPnU9EWlxPzFJthKk6cjxeP0rCCUobKNsnVo6TCDV44fo9yM0Sw6UA4TOrcMVKWRW2hQKFYpNjMM1k9QskaIDQYoROKocdCq/aYbTniJvdTJlYjE6sxVUjxF5NnuZVLMzJY5aL+MWbgKBzJUCPG3JyQYtuW+apU1qb47rt96lESY+wXByWYuN/4olNafDxW8EmxDx8+fBwU9up93KmFfLcbiN2QwlZL6sTeuLF/Idz9emzu3hXCe+6cKC5353m22yLdOzAgLOTiRdlVb+XlOIxek/UbdcW0FFltNjdXyt1p7mM3WY3FNi9BpKBymJeWdhZO2m80QK0m567VRIK5RxvGUkXS0To/a13AbTSJxaqkYmHQ127ydV34dDYrQzY3t30zgS1TFKZSV3h97pe51jnPyGiUi13LVNkslL3CcWRYIxH5GRnx3rcsGcpaTYhyqyVtffnltdwrNP0Z5mSFRr4FgfnervDlZUinGY2VOR1dohJwOJMsEjRsLEcnHmwxlixwMZ3n8kiWH9x8gnc/T2IlTcxkEk6cIHa+RqxQ4IRtM1wIceP+AEvFINksHAlIm6vVPjjiNvfT1ZnTTOSHGYnVGE+VwA1TKMDM2y0WmjHurPB+05THQaslj5L1y2Bf7VOPkhhjPzgowcT9xGFKafHxWMAnxT58+PBxENir93GnBHcvG4jdkkLXhd/8zf3L9erXY3PunOzQVR6tCre9dUvGCoRtVKtw86Ywk2PHNvdyHFavyfqN+s9/LvPf6WytlLvT3Mf1ZHWrEkSOIywOpP87CSftNxqgUBBSHIvJZ1bCg7vDb0OGRSzQxnF1SvYg5/UlaA70nMNSyevCwsIOCNQmKQpX33qCidwgI6mNXVBDV6nI342GXD8Skb9V9bBmU7zEg4PiXdZ1Ecr6xjfgt36r67xTU4x98B9Il88ybT2Jdfokpql5F1Su8IUF6HSwMGk24Wtn7vAbz35KtR1cHa+xVJFMTObu+v00k67DrDXKuFo/XbXGR09DuADvvedN3cCA3P7bcsQt7qdsLcZEfphCM8LFtLjtF1pD3CgfJ18LUWzLrW4Ycq1qVWxgb78NzzwjNiCFfbdPHQYxxgeFw1DzfjscppQWH48FfFLsw4cPHweBvXgfq9WdE9y9bCD2Sgr3U7ysH4/N4CD8+Z97zGNhQcr15PO9Vag7HXE9zcz0JnCH2WvSvVF/4QX4wQ+EVI6Obr4udpr72IusblaCqFSSsUynJc93p+Gk/UQD3L0r1xgagtOnmSqkVr2LItQk9X3zjQh1K4DlapRaYRK2Q3ewt+NI80slOdXgoJx6xwSqa31nszDxh5vbupSIdqcjy0nlChuGkF8V1X/xoixnZe+5eRO+9jX4nd9Z17arV8nc+4ALR0eYLGrMVlKMp4re+7ruGUXKZWbbx0lFW1zUbvFkZmnzaTB/xuTw17imnYU7Oqdic5h4ecpWKEahIGP2wguylJQA1rYccYv7abqQJFePko7WMXWXQiPMjWKChVaS2CCMJCQownU9Q4JtyxIMBLyy1QoHYp96HMrwHIaa91vhMKa0+Hjk4ZNiHz58+DgI7IVo7pTg/umfCjHc7QbisJHCfkTE3n1X3ltaWql7s1Lfdn1SqWXB7dvCTq5dg69/feOYPgxek0wGfv3XxRWpIgj2M/exF1m9csULTa9WxQhhWeKp/7Vf211+ZT/RAI4ja//IEa41L/P6jSdWvYvpYImg3aBhGdypROlY4jWtWGEqS2GiK7yu0ZDbwXVlOlstIVulktgVNru1tkM/ti4lot1qyZC2294to0pOdzv4p6ZkWp97bt1+vosYvPpcmcmP81xbEFfpqUQJU3dXD7XiSWZvd1gKJLly7B6vmG/ClL1pCsJ4c4nvf2kEcqNMfLzMWxWTdLBC0LRpm3lyWprUmQRXrgzsPF1zi/upZZtYjk7QsACYKSTI1yPEYjapkQDlphgPVNltXZf5DIXWlq1W6PtRtPIsyd53AoPpsAAA9v5JREFUmM7FaaWPEzqaeiSdwH3jMAuMHcaUFh+PPHxS7MOHDx8Hgd0SzVpt5xby998Xd8puNxCHlRRu5rHp9nJ88IF4g0Mh2T2Xy7KTXqm3u6rSo0Kse4XYHXavSTcOKvdxM7I6OCivtVqS3zs2Br/xG/Ctbx1cH0ZH4eZNpj6u8vqnF7m2OMqIWeCi8SlmvSZuWNcl4h6lbF+haMUwwy6DIwaOIbdQuSyEWNOkC+Gw3FL1OrzzjiyV3Wjz9GvrSqVkGpor1auSSdEL6xYJ35ZzdBGD8ZEK3798E4CJ/DBvzZ0kHa2vFdEyF7kyNMM3f8FkKfsV5mYWCN1cZux4m8xgc63h5NgxrvA5ycpd3tBPc2vwAjkrgWVpxOsFxuK3uWg4vPLSE4w/9+TOBmmL+ylkWJi6Q6MdotYOkC/qNImQTroQDBJGPMLNpsyf68rtvF6hOxbr81G0ossw9c4SV2+MMFEYIdfuYAWamENx0pczXPhK6vEUMD7MAmOHNaXFxyONQ0WKNU07Afy3wHeAYWAB+EPgX7quW/gCm+bDhw8fO8NuiSbs3EKez8vfQ0P9ta1X+PPDQgoVXn0VPvpINnLlsuyabdtjQmrsdF2MB08/LQRssxC7w+w1WY+Dyn3cjKyOjEhtnP0UG9quD7//+1x9r85ENsJIMMd4/aYYmCxLWJOmkdYKHLHnqTKGbrUYidUZPJng5k2ZuqEhL3DAccQ+cuKE6IjtVptnJ7auVEqWUSgky/PuXflc35xjHTG4MrpAMtzkjTunuZXzQsmViFaqfg9X1/mr+ZfIWV/FshYxOwXS0zkuxBd49fgk4y+MyUVnZmB6mvGREcafL5Ntfe7la9NirPoJmeoUvHUFnvztnc/5JveTEkibLiSINJapN3WiERc9JeriwaBE6jcaYsBoNiWMWmm7qUpgsVgfj6IVXYZrb3d4/fYzTFjjFKw46UCZYGeZRrHJ9B1jRZ4htWokeRxSildxWAXGDlv0ko/HAoeGFGuadhb4OZAB/gj4DPgK8E+A72ia9rLruvkvsIk+fPjw0T92SzSVC2QnFnKFzWrLrkevDcR+kcIHtaMcH5cxU7Gp+bxXY1eVCwoEhPVkMkLs8vnNQ+y+SK/JbsfsIHIf97v+9Qo27eImfcg++YtMBGYolA0umh+A1ZK5UMpUrkus2WQ4UCFvVyl2ElTuFnADJpYVY3h4bZitKuecyUg1samp3Wnz9G3rqtWwcgXsXIxnjlsMn4yyWIlRrcrbfXGOHsRgPFVgPFXYIDpWaQf58XuDTDROUriVYOD4IK34IC1afJjv8KnTZDLa4rW/FeG52T+S9IOuGPKMWVsV4RKMwFRl9wJGm9xPmWCQC+0BJmsO89ogTiSGMTjoJRCvdFsZMUCmO5fzKq3l83JLbvkoWhEenPrpPK8v/xrX9CcYGapzMZGXsHPHhNISVnWW2fuXuPbTEIVClDNnhHQ/VuVwD6PA2GGNXvLxSOPQkGLgf0YI8T92Xfd/Ui9qmvb/Av5r4P8J/N+/oLb58OHDx86xG6K5tLRzC3kyKfGg9+7tfgOxV1K40/JRe8XUlIytpoksbjgs1+yOmQUhydms7HS3C7HbiddkPzaQ/YzZwMC+bVR31OR9qn+922Ux7Z4hd2SA9MwNzGpdWFJ3XG2nA6bJmWSRZcemWDKZXw4Tc5s0gzHSaTlPsykkql4XDqhKIq1PrYetx6Z77ExTvJk9bV2Fgnhh83lu3E1RqqUIZSsE77WwQ2kYPIIZj3H0KPzKr8BXvrLFhG1BDFTNX4CpQoo/vnmea4tRwsMhIqnwaoUyxwmhhUNMlweYeQ8K1Phn4SXG9yBg1Pc62uR+enVslknzIj9aPE7NThIIeIa9SkWGsNXyQqctS/rSakno9FtviWHjxRe3sE+tLLqrnV9iwj7HyEC9p0CZCYx3JskXR/jxj6MMDIgd7bEsh3uYBMYexuglHw89DgUp1jRtHPglYAb4/6x7+18A/zfg72ua9k9d163hw4cPHw8DdkM0BwZ2biF/4QU4elR2jnvZQOw2lG639ZH3gqtXYX7e83gPDgoDcpy1OcWFgqfQEw5vH2K3nddkagp+//c3sLxs5DTTg8/Qeup5QmPHtueu243ZRx/J+yMjsgb2YGTYs71il/O71cdu3ZLc3h/9CL79bfjOd9aOV6sFVihGcCAAndBao4ea32iUVGKAy1aZojNIrmhSzoeJDtlkswaVilc9KhSS5XHzpkztmTPebfa7vyteyF5jMzYmx3SPXb2+Vij+8uWV23RhAW7cwFoq8GHuODebxwkaNkHaxBeWCYbrUKlwvzxGqzW4yvOfO77JWutBDNZ7iMdSRVHmnougB3VyjJCfC60RYVdttm348Y81jgxf5F+cv7Zj/YGpambn66jH/TQeCvH9ynlqfzrEf/pPcP++HKrUwqtVWSdK7VoFfqgAmmBQHMvf/vYmj5MVgbLsossEF9aUf9qARILCdJGia5GtORjHdb7+dSHGCn453C8ID1NKi49HAoeCFAPfXPn9Q9d1ne43XNetaJr2M4Q0vwT89YNunA8fPh5z7MUruFOiuVsL+SuvSDv3uoHYaSjdXuoj7xZKlbfTkWvev+/V3FmPRELquWSz0q6XX+4vxK6X16QHy5tqHefqvXNMZBPktAhWfAHzXJD0xfTmRGG7MZubkxDlpSXZ/T/5pPSv0SB7q8D029D6kUXo2x3GvnNxy6W4Z3vFLud3s48pR6pleZW0PvkE3nxTvKZqvEIhMBsVCq0wc/EnsKNxjE6DVKBGLNjxjB7AKFVOJ0vo7RA1x6ZlmRQKxmpAQCwmt5tpih1leVl+QMKq79/3yF332Lz7rvw/GhUurt7XNGm/ZQnJvncPxkaqBO8sUF6MMNU5T8mJY2k648NLvHhiERMXSkWozWGZeWbtF7j2UwM++pzEyb9g3Pq8N8tcIQZTP53n6uRxJrhArjmwWpYqarSYnI9yvxIlPBhgsTVMLLJRhN1xZOzn7wT4i/plvpu5wFZO6lWsRFdc+yTA69N7WEfr7qcrQHJcPMM/+5ncyq2W/I7HZbknErL82225fcNheawdPSrzMTOzSZtXBMqmQ5fIVQdWyz/1hK4z45ykUAsSj7QJBsNUKmtJsV8O9wvCYRYC8/FI4rCQYhXDM7HJ+58jpPgCW5BiTdPe3+StS7tvmg8fPh5b7FdI8E6J5m4s5Pu9geg3lG4v9ZF3C6XKe+yY7MqLRWE33UmkCrourGZpSdSTdxti14PlXVs6KeWCqsMUtBBpN0cwV6BhmUwvRpmcjPYmCluNWaEgxhPFxlbySqdSz4tH0EqRW3CwbnUwPymTfrOwqXruvtgrdjm/vT624khdU07atuXvq1dlStV4aRrMLxpcz58gGUhCPYyuuUQDHYYjDc4EiqRoSj8cjaYV4Nmhuyw2B7nlxnF0sZEMDwuZUnAcWSqzs+JFDgTg+HF4/nnpSq3mhe9+/LEsrWPH5BZTodcgVamuX5f2GgZUZ5cpLkSo2sMU7EEaVoCBQIuGFeCTxSOcSRZJpYSlmoUc44H3YXmQidtN3piC8acrm7LMa5d/g9d/cp+J2RCFeoj0QIug6dCwdD4sDpGzU7S0MGE3RDwZ2PQ2GB6GSs5moZrkT6ae5CvH/1ImYKU28aosdjfababcMV7/2RGu3e+9jkolWbJ/9VdidPgv/8ttwsJXMD4O//yfi6f+pz+VdRCNyuNOzZnjeN7+kyflPorHtylLuyJQ1tIja8o/9UKtHSDfGaRpB4hHLBxHhqQX/HK4XwAOqxCYj0cSh4UUK5tcaZP31evJg2+KDx8+fLBzF1s/hLdforlbgvugNxBddVR3m5+4K3Sr8h45Im6/hQV5L5HY6CJTCYnHj+8+xG4dy5sqpHj9xhNcWxhlJFbjYjon3qhCBTrLWEMwG3lmI+HcbsxW8lGJxVa93Ndmhnj9/pNMlEelVm+0TtAu0si3mL7aYDKX6km+92yv2OX8Zq8vMTExsuZjhULvctKOI47xZFKOu3ZNPLehEGRLIeq2DW6MRNCh7RgUmxGWG/JzeWSJ0XiV2VKCVLjB8+FJ/mLpeWpVkyMrKtPrsZJKSj4vXsp0WkolVSre0Kvw6HJZPpPPe+PYPXbPPCO31sSNNnfvm2hNk1owgmnYBFydaNBivjK4tr0JR54TlQqnjCBv2c9xK/ki2ZOaJ3TVZa2YKqR4XfttrpmnGTk9z0X3Dq1Kh0IzgmFCetjlfilGuRWlXtMZPrb1NMVjDvllnem5INk3b5MJFDzD0fCwxJUrVr2SnnE19BoTjeEN66grfZp6XcjxT34iy+a11/qzGY6Pwz/4B2J8uHpVCGmxKJe2bbltBwakStfly17TtixLu2JICjmN1fJPm6HQDFPvBIiaHVz01brIveCXw/2CcBiFwHw8kjgspHg7aCu/N4l/WXnTdZ/v+WHxIF/Z70b58OHjEcVOXGyFAgciWbpbgvsgNxBddVR3VR95t+hW5U2lZLcMsjufm/OSKZVcrQqz/va3dzcXPcjh1ZnTTOSHGYnV1gr4rBBZs7DE+KUaEFtLOLcas1rNc6OusMYp8wKv3/8a18wjjAx3PPK9wiatZItZLcW1a5HVy6vp37O9YpfzO/3WIrncyOrHajUpJ333rnhmYzHPbqH4WLMpbbdt+PnP5XPnxkyClSUW80FAZyhSZygCpWaYheoAjgtLtSgNK8CVI/d4qf0efxH8KpibsJoVtNuekFMkAouL0lU19MGg/F7R8qJUkjDv0dGNpPDePbj5mY7TSjEcNAlqOvVWENNwiQfbpKP11fYChE2L1Ir700ynSQ9ArjnAdCHpkeIua8XVdyNMUGTkiTFSqXN8cusk+VqLuqbhuDoNI0QNk44FaELuezl8AahUcEs1wnSodMJMLyfIZJZlQIpFL6788mXp7Ows2chpJpwLFOphLj7tnaqX1z8alfVz/brMa78yAleuSE75p59KUwoFedSBrBfXFc9xt8d/S828FYGysVufkQ5XmS6msBytZwi1bWs4HQctolGzgySjvQNO+rquj4PFYRIC8/FI4rCQYuUJTmzy/uC643z48OHj4NCviy2fhx//mAOTLN0Lwd3vDUSvNqyro7ot9mtHuV6Vd3RUdsx37tAlu+uV8CkW4atflZ33brCOHGZrMSbyw70FfBTLWymoeupUbC3h3GrMCgX5XDS6yhqvNr7CRPMUI8MlxlPWhuuYzRrjg3kIn1hDvvfFXrHL+W3VbSxLCM4HH4jnd2ZGuhaLyWkjEbH5RCJiv1Bhq6q6ViYD554Mk6m10JsN8s1B5tqDRAMWhuZgOTqfLw/Ttk1+6extXkv8Ne36IHEtSDpk0GjIcPYKHFhakjaEw/Lexx+LuJPyYFerQoRjMWlfqSQ/H38shCmV8kjh7dvQbGkEXAjoNh07QK0TxLAcFrQBRqJ1UhEJ8843ItzJD5DqdGRcYzGCWFiOTsveOEnZ4SeYWEpRwGLwQoNr1yLk8yGazdCq3UdreSJUritLfWiox5Q1GjjZHPVqmGjIIRI0aekrZZCGhuSnVJKOqUFqNJg+8rfJNc+QjnvraDOvP0gbAgFpz05kBNRSA+lXNCrXMwzp3717Qr4VX9+yLO2KLkNmcpIL9yaYDKeZLSXWGq9WYNTL6GaCohsnGjNJp7cwKuCXw/Xh41HGYSHFt1Z+X9jk/fMrvzfLOfbhw4eP/UG/LrZCQXag2azs3A5SsvRBWMi3UlveLK/aNIXpaNr254f921H2EiNTbEUlhapcyXJZwqZffHH3Y7iOHE4XkuTq0c0FfLpY3gbC2aP27CpsWz63Er+ZbSel7qyd4GJ8CRjY9Drrvb37Yq/Yoq29VJAzK/MbihoUi9IWkNuk3faaWyk5NMo2jaLNSMrCJkQwGqDTkWM1TYhVoQAnnj1CuH6DO3eK5Bimrg/goJMKC9HMRCv86sBf8Zz9Hm8c/3UijRHGm8LvNgsccBwhu4GALJdKZa1Ss+N4lb00TYZBOVPv3JE+3bgh57YsCJgQo03MaKFHXBqWSbNjUm3L4Ju6QyLcZK6cIFcJUmuZxAIBMAzabZN4sEWoR97rdCVNTj9CuFNn4nqHhWpkAwkF6dP9+9I/Rei7Q73VJJTKGuGgTWzAIB4PEwoPQruzdpAsCz7/XDr8S79Ea+xbWD8bJNiVZ9sd4b/eq2oYMnZHj0p7Ng3L73rWTGln+eCDNOWyjP3Zs2sNOSoPXGVImGYfZWlXdBlezf6cSSPDteoTAJxKlLxIi1KJeMehHbhExYpwPAWnT29yPvxyuD58POo4LKT4xyu/f0nTNL1bgVrTtDjwMtAA3voiGufDh4/HCP262GZmZNcejwujeFglS7civaGQbGCXlnrnVUej8hnbFuWh3dRH3i02EyOLxeRHGSUqld2V6+jeuH/+ucTSrriyWra5tYCPbcs4rZDbNYTz0ua1ZzEMYTvtNgDT9SPkWnHSoQpmtAe77brOevK9FffuhZ72ih51cqcKqdXQ8Vw9uqqCnA5XuVCEV1910Y6PsrgoYcnHjglBW1wE17KI2A1c16LZ1qnWDdxqCwyL00eauJUY9XqcSESIlW0DqRSpK+OkwjeoLX5GoRrADkUxTMgZMUYaWdxWB756hdDFVzD/Js5ARYhVr8CBZFKGeGFB3lNGAJV6ruty3WZTCHEwKG1RxDiX82ofK0+mEdDQbQ3d7mBgSNtdHc21qbWDlFphjgaqRAMd6p0AhU6M2ICFFYyQK0YZSxYY6+HFbNkmlhZguRWhWDSIJXqH9qbTQtirVelPubyWFDvNNqWCS60d4MhwBzSddBrGnkjD0oW1g6QukMnAr/4qIfcC5tveOlof4b/FkuT48XVh+dXez5qr87/MvezzHE0dpRiOUKms7afKAwe59ocfyrraUjNvRZdhnNf5/ts/g9tVJpbHeSs7TDpQJtip0jZHyBlHiWTiZBxz1a62GfxyuD58PNo4FKTYdd3bmqb9EFGY/kfA/9T19r8EYsD/169R/JjDF1nw8SDQj4ute2cYj/PQSpZuJSZ244bkF7bb8MQT8NJLvfOqFWG6fl2UhzbDfu8oD6pcRy8jQacjcbKlEgwPEzKOby7go9hVMrm6w15DOLcquZVKiaGhWATHoVVpYxlBghEDgua21+km35cu7bzc9QZ7xbq2Xou8LGrbK6Hj6WidoGHRaIeYXggxabzM5FyMwFvDdDqSVaCEizSrg1NvAQ00xyFiGOAGKbdDxPQm6doswWkDp/UEEF0reLQSHh+7c4dYLgd1cSm2CWKFj9B68RX47YuMDYyTvil9PncOnn12Y+BAKiUEfWpK7CWq5LFty7Jvt4UEOyumeduW8UkmJRK/XJbPqVu/XAbH1dECBqXOAJ1ygKZl0nF0LFvD1TTcWpRooI2hOTiWg60HIRBgtjFCKtzgYjoPwNtzx9d43kOGRceCQnuAVsAgvUmC2eCgRD83m56at67LnLsu2DWHWBtGB8okIjqRgMXFdJ7M8QAc7zFIuZywatfdYBeZnxcbmesKCe+qjLVhSa4x1Pz5Z2Qm/rcNz5psIcDE9TaFeoXnTi7wcehLLFTiwMbQ93h8JVy9KaXZt7VzregyXDn/Bsm37/HGjTa3CiPk2oNYgSHiQ3HGLg+TGotx546siakpvxyuDx+PKw4FKV7BfwX8HPhdTdO+BdwEXgR+EQmb/udfYNt8fJHYr7I4Pnz0g35cbN25n67LQylZup2YWLUqYZWdjpDB9e4b5QmvVqVY6+Sk7Fof5I5yv9W2NzMSWJaMQbkMb7zB2HMR0tFLvQV8SiVhCivJiT0J51Ze7uFh+cDcHKH2CGbYpBEZBCpr27ruOrCWfO+23PWG5dlVJ/f15aNcqx9lZKC+VvCrVMKKNpiNXuLN3HmaP5SXT5wQAhrS2pitOs22gRvS0UIBXDTAoG2HGAxZjESruMtt6BylYQeJnjDXeu16hMe378aIH40R+rUIjEOGjX1WgQPqYyrVv1JZ8fIaMvQqEECFTbuu/NTrckyrJX1qStT2arRxpyOvt4wQHTeO1XYxjQ6WptNxDWxbo+YGmC/Hiel1EtgQiTDVjrFUjTI2VCRbi/Gv3nxprec9WudotES9DmUrRiJmrCGI6zEy4nmxlYKzYUhfIjoE9Q5Rs4PtRrgwnOeV03e8D6tBUlBJyq3W6jr66CP40Y9k3HI5bywCAS8/vNncsCTl9ilUaP3V30Bu47Nmeu44udR50tQZKU1xOW5C6kvka5Geoe+mKUaAK1f6vK1XdBnGv5dlfHqa7H2H6VycVvo4oaOpVdt6963vl8P14ePxxKEhxSve4i8D/y3wHeB7wALwu8C/dF13+Ytsn48vCDsti+PDx17RI2R0A1Tup6bJbrvLW9cTh1GydCsxsVrN21UPDorr6c6d3n28fFnIs2nKPTo//2B3lPultr2dkWB4WMj3wgIZ/oILI88wGR7yBHxU4mOtJp7NleTEnoRzKy+3it1tNhlL5UgHDaYrKSynKiS02ZQxbTSknStxsr3I927KXfcc3+9/n6sfTTNxe4QRe4bxSBlKXUwlHMY8doTxy6Pk7kaZvil9feopsRflb9dotnVszaBsxwjg0LGF/A0EW8SCbdzBBKngfax7Fq7bIZUyewserRA4y4LcXRg7uda7vb7P8bgsT1U2KJuVpa1CojsdmTJNk+UeDsv/WysCVo4jY2ZZsrwHBoQI2rZXz7jTAcMwiYRDDJpVNKtD0G1T1yM03QCOq1NqBKhqg2iDBrejT3HEnueYNk/bivPuvWMbPe/FFNF2jOn2EE1CUAuQbG8MYGm3ZUlks/K3ml+VN61p0GrozLeStCyDrx1d5LXLNxhPFTa5EdgQS2+aMoZzc9JvZQdUS3VFU45QSIT4u/Ny222IL80TMqbgxMZnTcs2sVyTYCIAxBhtzRBOD3Dn+OWeoe+uK7fXmTObN78nVnQZMojxZD38crg+fPg4NKQYwHXdu8BvfdHt8HFIsJOyOLA3ISMffni6Qj8uNpX7WSyKK+NhkyzdTkys2xOeSsluOJcT9rC+n9250+fPe+zsQe8o9ypGtp3i+MgIfO1rUi+oUODVxv/GZHCAa0vjUNI5pc1hRoKrBVWteIrZqS0I52a78NHRVbdfxrK4cOcGk50hZqcdxp1JmQOQtdRqiZc+m2XWOEcqFV9Dvvcrwjx74goTJ8coTDW4mLwJzeBappJOCxNKpUg3pFm12opH71KdO/fniVZM5pxRap0gmqatkGELcAmbNm3LYNE4hmbbDIfKmLYGhHs3iM292919fvttuY1VCLS6ZVXeayAgpM6yPK+xUkBWNi/DkKG2bVaFoMDzkjqO/LTbEAgEsKJxAlaTUKeD3mnhomO7Di4ajm5gpAZ5+ZcNUrducmfSYmoxxchwm4sncqsRB4VakGqxzVQxxYI1Qs0NUssL+e62vxWLcptWKvIbpE2hkJTvjkRW2mtpWPfraM02Yb1DIryFca7LujKlneUP/nv4wz9cyQlf8Z4r257ysjebnpHhxIl1ZY7nW4x15hkLfA6nLm24XMiwvFSEISlnlmrMk3r2NLXzsQ2h73fvHtyj1C+H68PH441DRYp9+FiDfsviwOEWMjrs8MPTN2I7F1s8LrvgSkXUZB42ydLtxMS6VZDXlRjqSf6Vss63vy3JrA/bjrJfxfHBQXn/vfcYD8/z/SM/B9NkojLKW+6LpOMmwZE07VKc3O0+COdWu/BqFd54g1ffzjL5ozmuzY+CO8Qpo4k5EJa2GAbWvfvM3jVZMhe48os1Xnnl6JpL7IcHbHoaclaK9NMpzJOJjUm6XWsiGBRvq1ouJ1gmFb/NeUNjEofbhSSVVgjH1TB1h2o7QNs2uJlPcyZR4pWjn9PUo8wXvsTUVHhX3u0rV4TAfvyxLN9uBWnTlJ9oVJztyvPpumBZLobmoGsuYRPcgE4gpDMw4JW7VvWNOx05p657f5fL0AqZxOMDhCI2ZsdCr+kEdZdASMfVTZ58Fn7j/xHknX//BO8uVBip5xmvzYIrccIL1Tg38kPknRRNM0Y0ZtKs6liWLIlaTZaLrnvp7uApdtu2/D8alcdWMgmGESA1l2PxZp5sLsIbd05v7ilesTZcC32V1/8ozQ9/KEEiyj5WqXih5rWaeM5TKY8Ud2edzM5CKlDlojZDZtTs+awZSxVJR+uSijBkYHY9a2InYmseNw/qUeqXw/Xh4/GET4p9HE70u0mFwy1kdNjhh6f3Rj8utkhE1trDKFm6nZjYOhXkNYVke2F9Muth6We/2M5IUCh4dWhUCapmkyuh6yS/NsIb5ii3jGPk6hLWGzd36CDvNWaZjORCXn6H79/7j1CpMOGc563gU6QHOwQNi7ZtkiNMijxXeJ/X3DzjfA9Ye8GBAdFKS6W8bh492r+9Ys1yWZ9/ug5KKyyfX1k+hhhYYiGXZ1KLnEqUuFNKkqtHqLWDtKwIR2JVvnZijudG7/OK9jcU7TivJ04x0Uju2rutsh+Gh+VzjYZ4NLtJbSCwQmodF8d20R0HTbcIGx0ieoe2G4COgYlJKBRc9RgHArIEGg2PlIK8V6vJ9WIxA9c16DgQjYsadjQq7ZmdhYnWGQpDdS6ec6BgQb1OoRnhRu0Uc24aM2wQHwqjhUPU73rh0K2WEFPwiKrydkci0gZVWzmXk6/HVAqIneBUZYm3Pgtya9IgOxYik+jyGHdZG6bGvsXrS9/gzZvSx1gMTp6UsTp61CtNpUKbh4bERqMCSlQ5rKUluHKsyiuNm5s+azKxGheG80wur6QiGMubPmsO46PUhw8fjw58UuzjcKLfsjhweIWMDjv88PStsZ2LLZXioZUs3U5MbJ0K8voSQ2twGD3hO8VWRoKFBVHiVmrj0agwItuGxUXGY+8yfqFE9pshpge+5Dl7B5akBM1cC5a295hvGrJ5/bqQ7xcrvOEOcSuHCDK1HeKdMmPxMheTWV4ZuMZ4eRHeGFi9T7cLAhkZ6e9xuZPyTrGYDFGtJkt//PhaA0sq0iQVuU+tHeDTpRES4SbfODXL77z4DplYDT67B/E4ye8WeKN8elfe7WxWbtvPPhOvdavl5QWr8GgVKm3qNq4GBlKcuGWbuK4obXVsDUeDqFZBjw7gOBKzq2leyLS7orGmahprGqte3WBQCOOlS5J6XyjIe6pUVPpkFPPSM6sqYDc+jHE7G8MKGBiGQaXoXUv9hEKe2FciIT/ZrLzX6cgYHT3qlY1alQJIpTCfeoJ0IUuuFmH6p/fInM31tDZcDfxdJq6n1ihLd4t8ifdZQpmbTbh3z6vvPD8PP/2p5PxeuQKvXSwz/jcFqLQ3XTOvnrnD5PIQ1xZGwRrmVLKM2fWsOcyP0h3Dj8324ePQwifFPg4n+imL043DKGR02OGHp2+P7ZLMHlbJ0u3ExJQK8vKyl1+8mZjYo+C+2Yz1FQpCiBcWZEzSaWEHuRUy8fTTQo6vXRMBn99e8aDuIB1hS+J6tMyrny0xXigw/tJFxs0Pyd7rMH2rTatQJ0SFMfsumWoJrDDMFOWD3/se1+YyewoC6V7ytZp4H/st7xQISGp0qwVT5WFOhWOYysCi61iOxmItBq7Gyyfv8lvPfSiEuMvAMv71Y4xn+ucQ3cf9/OfwzjtC2AYH5RGXzXp1h1VesNV2xEPsuhiGTcBwsRypMdwmiGtAwqxxlPvMVE7SbgUIR/RVPTTX9YixUqxWcF0xDnz5y16lssVFIa1qnFa/3mIxphZjfLYIpYaMX1D3CHGn45FtRT51XebSdWV+dF3OnU7LXIVCPaQARkcJXhrAykZpnf4SRN/bYG3IXv4FJn5wmkJBagHPz3u2MCXqpa5/7JgQ4lDIy782DHkU/K2/tWK4GDgCN7cWLhxPFfj+5ZvgOEx8rvEWF0nn0gTbh/9R2jcedJqST759+NgxfFLs43BiJ64JOHxCRocdfnj6zrBZSPDDKlnaj5jYmTNCim/fll36utzRR8p9s5mRQIVMx2KeQaC7GGu3wNrEBPybfyMMpk8mum32gtthMv8krx1Z5jnTFOXrz26Q6fZaGwa0V2rwdDrw5ptM/Zuf8nrh13cVBLLZ3n1+XsJi+ylHfewYPPmkGooIbxUvke6ECM5BO5okV4+SCje4MrqwVgm5h4Flu2j8Xu29dk0Iocpvtiwv1DcSkfHVdUCzsV0NFx1Nc4gEOph6m1IzjKG7xEMtnhxZplY2qC/r6JqDaeqrocqxmDfsuu6RbcPwBK8UUVY1fsfGJPd4eVmIJMjcf/yxjG8gIPOh3oOVWsNduc+RiPeayh82TfEQRyLymc2kANrBOPEn4oR+fRiGnt1Amqbf9oK0gkE5T7Uqy02FiysjQCAgxwwMeGnw8Tj8vb8H3/2uan1/tcGujC6QzE7wRnucW5kUuZHwQ/Eo7QsPMk3J1wjx4WPX8Emxj8OJfsriKDys4ZtfpCXXD0/fPzyskqX9iIklErLLDgZlF//ZZw+HJ3yn6GUkqNXg/n1hKsPDwmTCYXl9fTHWU6fgxz8Wt1k4LBK82zDRqdIwr//lKSGu8QYXT+YxWRGvOpLCOhdj9l2La0snwf4qiZmPGL/dw2ut4DjCBJeWuPofckwkq4yMDOwoCGSrvXuxKKTn44+FGD377NbZAv/gH8jrb7wBt9JRcm+GsJYKxI0OY0d1LmYKvHL6jhDiXRpYerVXVcZSisj378sSVjnEgYBcrt1y0V0H0FcUonWpnKy5GLqD7WoMRRqcGCzxdvkEbcckYHbQXB3H1VdLNyniqcZVeXXV/3M5WRbXr3tEuNWSsGalhK3GV9flp9XyzqEEteJxTz07HJYl4LrymFH5w+ttwuulANZ8VT4/BJkXN4xpd5BWKiWfz2alLd351KpOsePI8bYt7bt8GZ5/ft1J+6wNNt5cYvyXwmR/dZBp9+F5lG6JB5mm5GuE+PCxJ/ik2MfhRD+eLIWHLXzzMFhy/fD0/cfDJjDVb72e73xH+qXq4z4y7pt16N64VypC0GZmZCwUq1CuwNOn1yqOKwa0tCQJpH0w0av3Z5lYGGKktMB4pUu1aMXFZw4PM54MQ7TKRDHDGx8lGG+t81p3Y+VzWXeEiXsxCsUyF68MbNnl7iCQd96BP/ojb+9+4oQMg22LJ/ArX4HPP5cKULdvy5775MntbSTj45D9XorpP4/T+qsPCd2bYsz6nEzYhEIQFndnYNmMa8zNSch0pSKPq3JZlq4Syw4EhMhi23SsFYLnguXoVNtBwMVxNUKmxZFYFcvRKTSFARvY6FgYgeCqJzcc9sKKQalYy9+a5n2FtdtybDwuYxYMypR/8IG0rVr1CGy3vp3remrZ4bAnYDY4KK+dPi3LrloVcty9NNZLAfTzVdkdpNVuSxutlXEaHNzowS6V5NjPPpOvr57n3mFtsMxzZ3rWEn4o8aDSlHyNEB8+9gyfFPs4vOjTuvxQhW8eFkuuH57uA3YW/v2wecJ3CrVxv39fklIXFoTZmKYnVwyexK9iQSDe43pdXhsZ2fo6p06RfeMzJm4VKRTvcTH6CbTrXaHQbXEHLi/D4CCnoh3eWhrllpMia8bInI70Pu9KWPf0wEvklgZJR5cwWwkwN1eK7g4C+ZM/kceSUi6emtrA0xkehnPnpGnJpCyTXstlYEBqBHcvlRf/r5fgG0F4I0D2Woy37+i0ShqhoMvYZYfMlRM7MrBsxjWUxzIa9bysSnFaOdZDIdA7Nq1Om6oTwtVcdM2l4+g4roaGi24Z3MqnuZVPYzk6A4EmrquhY0IXMXQcL0Ra/d91vSj7alXG+cQJ+IVfkN8gHDAQkJT1atUT6VKV0FS+MggZVsRYCW2VyzJ3KqtheVmWLAjfAS/KPx6X+eznq7I7SKta9XKjFdFXHvJu6LoYIUxzi3M/rKkme8GDTFN62DVCHvXvFx8PBXxS7OPwYofW5UP1gO+Fw2TJfRzC0330h37Dvx82T/hukEx6DGRoSNihqnEzOCjvGYYwkhs35O9UyhMjU6HmW8E0mbZPkbvXIs0sZsqAzIlVxlZrByiYIexKHWOuTirYJm0WyVVCTKfPkdEXep+3VIJwmFYig1WNE2yVZYM9PNyznrBCMCiEptGQkN5AQLqzJmW5i6enUtLUc+ckiCAWW1taeasgmLGxcabdcSa0GjlqWDiY6KS1GBfcGK+ytpjUZksymxUP68yMlJqam/O6p6qJRSJC3lRdXRWWrF43TbB0Bw0XU7eJBjo4ro6GQ8MK4Goa5WaIoGljaA6pQJWOG6RkRzBXSHCnI9OuwooVkVWCXsqWYpobhz+VEh70+edeAIIqEaU8s6bpEdByWT4fiXiebxXBH4tJ2DKIJ3luziPonQ588kn/X5UqSOv6dfnKsm0h8rmcrJFy2QuhbrXk/IODMj8jI2IQ2RRbPGuyZOSluUeIEz2oNKWHWSPkMETOHQR8kv9QwifFPg43HiXr8mGy5D7K4ek+dofHgfRuh6tXZTPz3HOyu//Zz8S9lskIQ1SEt1BYW+9Gxc8ODW1ds3oFrVITq+UQHGT1+EIjzEwxSb4Rod4J4LgaertJtFbDsRyOdZq0Go7nulVQSbS1GoyOEhoMY35eotEMwmd3PZepcvWeObOmjaqGr/JqSo3d3inLpZIoKAeD8ntoCF5cSUvdLgjm3Xfl/yIEFSOdjhFMQKMN09dhct4LkkkkNt8nJ5NSCuhv/kYI78cfr+2emqpiUY4H+X+77dkzAgHotAJoro0LBHWHowM1YoE29yqDOOiEDYvBUJuWpVFuhak7cY4MNnAtg0bDK/WkCLcq+aRpXrnuXE5eP35cpme1PNIK6nU5NhTycpF13fN2RyKeUFijIeOqRK4UYVZjMzoqx05NyXirUGply9zJV+Wrr8rXz7Vrcu6BARmzUkna3G5L31WN4kuXpA+G0Sef63rWTE3B1T979DgR8ODSlB5WjZDDEjm3n3hUSf5jAp8U+zj8eFiFjLpxGC25j2J4ug8fu8X6e9Q0hUAqud3ujW0isbbejVI5Um67rVCrEarmMZ02jdAg0GChMsCNpRHyjQhNK0A00MHQHNpGlGI1RMc1qRNgpnWUV+be9Vy4ti0sJRwWVpTJMDb3Lun6ENPtp7E6eUzlvlSu3uVlcSuOjq4GgRw5IlHjtdrmlbd03Xs9n5fc4nfekb81bW0+8vogmKUlIVkL8w6jyQavPF1kZMBddZ92B8ncvy9DubS0cZ/80UdChOt1+VFiU+u7Z5oyJLYtw+K6crzynGoaDAzq1JZ1TN0hYdYJGRZ3SknqnQCmbpMIt4iYFiFTp9RwaTkhCh2TwZS+ahNR+cOm6YlOGYaXe2sY0saRkY3lkWo1OYeuC5nP5z1F63Zb2tldjkmR0UBAvvqeekreWx9A1WjI+8PD8PWvw5e+tIOvypXv2PFWi5dHT/D+4ElKtQBzc17oNsi4JhKyVp5+Wr6ep6Z2zud2w4keqm3Ag0pTehg1Qg5T5Nx+4VEk+Y8ZfFLs4+HBw+zJOoyW3EctPN2Hj72g1z2qylJ1J2sqieBoVFyr168LIxodXeu62wy5HGPNm6Qj32TaSbFUgxtLIyxUB4gFOqQHS+hdOZuW2+R27QhlLcU1nuPryXuMMyWMKRj0SkMlk3D7NpncPBf0s0wOPMFs9BLjqaqcSLl6VV/CYWYLKVIpIcWqGyoftRcaDflZXpbff/zH4qmdnxeycvJk78fE3EQNO99m0Lax8y3uvb/ISHpu1b1rnjnD+HiKalXSuU1T9ozd++RCQTzEpZLn9VUKyeu7p0KVCyuVnuJxeS2ZFPJcLgspbbkBNM1Cd9tMLyewXJNYsMPxwTKDobaw3maTcKTAZ83TlNthQq54R/N5j1PYtheurOoHqzzhUKh3eSQVcR+PC7ktlz3PayjkeWXX22RGRuA3fkMeyTuRAvjssy1IZA/v1peWz/OE+58xY4wSGIpTdyI4jvQjnZaf06e98d8pn9spJyqVpB8PlQPuQaUpPYwaIYcpcm4/8CiS/McQPin24eNB4LBach+l8HQfPvaCXvdoKrUxWVN5aVWscTIJL78sLrzr17dPR5ifJxMuc2Egx2Swwwf3Ryk2w8QCHVKR5obDK3aEVKhOKtbhnnaBN4xfZPyZpCenrBjgBx+sui9fHbnBpP4y11qnoGByKlHC7HL1WksFZt/LszSY4soVyQ/+67/eengqFc/TqUrwOI54dK9fFwIXDAopHR31PlebWiT/WYNmKcIxM8u8lSHXjFGra8SK82u81+32KPm8kLYjR9buKWdmhEiOjAhRzGbl76NHPTuFImi1mpwjHJb2ZbNyviNHxIs7NaXEsAxCMRvaYYyGTVyvcSxcIuJYUPcSggeSIY44UKjrNJsy3MmknNeyvDaqkOZu8a1yWcZufXkkNX7Km6xUpWs1aePRo15Uvm1LPxwHvvxlz0a5VQDV1BT8/u/3QSI38W6NaTOMN66Tr2t8afgWldNPYCfTPdPTd8PndsKJ3n5bjC/h8EPmgHtQaUoPm0bIYYyc2yseNZL/mMInxT58PAgcZkvuoxCe7sPHXrHZPaqSNe/ckc1ktyTzyAh84xvwW78lx/7rf719OkK5DMkkrw5N8VG9zPsLozQ6Ac4O5ddc1nGh1AxT60A6WmP0VJCpmVP8eL7GC0dnefKZgHf+Ws2LN45GGR9t8P0TMzB3hIn8MG/NnSQdrRM0LNqdIXLZDinqXHmhymuvDVCpyOOmWNxY1gdkSHI5IXeuK8MxOChdVCQJJM9Y1z39MQoFCh/PUi8liQZMzMQA0YZG3YhTiB4jlomtundrnSBFK4mmRVbFvhTxUqHGzaaXJ7y0JG3J59cKfqvIdssSES4lYpXJSG5sMikhxbUafPopOE6QwqID2Q6no1V0ywFX8zoSjUIiwUAzTGBA2nD0qJx/eVkIq2kKSQuFJARalU+an5cxy2bl9YEBrzySEgRrt728YqXs3G17URHyhiF9+Pa31+6lewVQ9RPF+dFHcOVEljMfvU9ossbYiQyZlzzvVga4YIeZ/LhB/l6L8fBHcOpKz9j6nfK5nXCieFxKgGmaGAReeukhc8A9iDSlh00j5DBGzu0FjyLJf0zhk2IfPh4EHgZL7sMcnu7Dx16x1T2aSslPrSYbn3Zbkmq/+lX4nd/x7pt+0hFefBHKZcZn73B2MIepn8N2g0wXhoiHWoQMG9vVqXdMDBx0p0GTMFO1DAXd4e1miP/+Y5NfuP0er47fZXyoKOzrzh1p87FjcPkyV0ZrJDMf8Mad09zKDZOrR7EcnXi4w9iRu1zMFHjlFYfx557l7bdFDGp5WboIXqQ4eDpeSuQpFBKyokib63ph1936Y8zMYBerOEYGI2iCZmFoDo6rYTtr3buFxRZ1p0YkEsF1PY8qeKHGSjNMTUm5LG0zzY2R7bWaV7P4hReEa6TTnr1vehp+7/fEA21EwsRHw+iDIS85WJHilciBVkn6OTws14pExAhQqcjYmeaGj9Bsrq2VnMl4nDKV8gTBNE3Oefy4GAK6bS/BoPShWJTl9p3vbL2Mt4viXFqSoIL334efWDrn7KdIRc8RdSIMLrZ4MpNlLFlkLFXk1fG7TBbTXLs9ArMFTiVnMZ/3SPFu+dxOOJEycChDzPrjD70D7kGlKT1MGiGHNXJut3jUSP5jDJ8U+/DxIPCwWXJ9+Hjc0M89qoS0pqYk3/jKlbX3aJ/pCFP//n2ufpLlrdwQHdsAFyxHo9AIEzJsBkMtBkMtIUa6QdmNE3UCaCFoaUk+1b5E3Rlmcu4ur+nv8Fx4WdhaPC5tWGFe46kC46kC2VqM6UKSlm0SMizGSh+SGahD+iwgTRsflz2a8tIqb6XrrhWIikSErCk7QaHgeTyHhroEpbI1Yvk8RruNHjJpO8JmbVcnqFsYuuONWyKBnW3j2G0IWei6uepRhbWhxgqqtJJSbl4f2d5qCdF8+eXNw2rTaeEQKhK9TZAmQRxAB8KAvaL6nM3KtVot+TsSkalVFa+SyY3nTySE3C4url0+6v9KSTufh7NnJVK/2/ai2lUuC2F+8cXtvxK2iuJcWJBKYsUiNGo2nbqJwRCzbpTs0gAaLvFQm7OpZS6l81wYzvPiiTlwHCY+13jrkyhpo0lwMLzK56JR8ZyPjQnfGhjYvo39ciIVIWBZXnnwzXCoHXAPIk3pYdIIOcyRc7vBo0byH2P4pNiHjweFh8mS68PH44j9uEe3SUe4dg1en00xUZ1jZjmIZneIBiAcsCm3Qui6i+1oaJ0OjmUQG9BJnDbRVzyIwWSAp59JY9diXLt7ChJPkXjyScY//WOy1SjTtadolVfIb6pIJlZb/VlFNQ+mt8nstgdYlhAq5a1UIdOqTBMICVY1csHzeA4NdQlKzdWI1eukBjWidYt8KYau2Sw3woxEawSNLoaj6xiRIJQ6NGoO0dNro3S7Q40VbFuuf/68DPH6yPYjR7zI9l77f9Xnt98WG0enI0RUCVtpmqdW3W7LeVV/m00ZF9OUa6vSTGpPrDzGKixa1fVdWBDBK8VTVqLdabeFQMfj8nlFntVyq1T6+0rYKoqzUBBCvLAg5z57pMb0pMuiO0y05aIBLtpqREG2NsDk8hAXhvO8dOou560yt5o1cm4CywgD0jcV3v2zn8lY9iN81S8nUhECgZVMgW6jyHocegfcg0hTelg0Qh6GyLmd4FEj+Y8xfFLsw8eDwsNkyfXhY7/wMOWq7+c92iMdYTW0dSrFyFmHrw/c4N0ph/l6gkywRCaiUWpHWKgM4hBmJN4kdTICMVH+rdc9senY6QiEI0w0kvxBfYiRgs7E9Ta51Hks18TUHdLROheG87x65g7jqRUp5k02md32gJEReatSgXv35HWVN7tSDpnTpz2PJnj5vaa5IijVkZrKbSLU2kFqnQDLjTCG7lJshvl48QjDkQZnkkVSkSapcAOroOOyUcipO9RY5QirsTh1yitx1B3Z/rWvrY1s74VXX4W//Evpc7PphT5rmizXWk1In6ZJG44dkz4OD8vrtZr8qJJQruuFUev62rDoaBSefNLzMMfjwk9CIblFlpb2/pWwVRTnzIy0PRaTczay0LIN2k6IiNvgZEJUzwuNMB1HZyhaJxLocG1BVNN++9gf8b3QTaZ/YZRPzAw//an0vdGQvth2/8JX/XIi25afTkfGb7sS4A+FA+6g05QeBo2QRy1y7lEj+Y8xfFLsw8eDxMNiyfXhY6/oUebl8NdQ4UDv0bWhrcNQeIphq8LyXYOSPUAqWCMW7EDbpGGHsQfDEA/SbnvqwyqnFoQQ/vCHcO9enOH6CzTqJdLUCSYCNNohpospJpeHmFwe4rXLN3hu9P6mm8z19oBPPvE8w7YtIbzDw0KIT5zwSFa93KFR7tAoGxRzBoapMXLUwAjoLDRT3MhnKFtBmpZJxzaI6G0Chs18ZZDlRoTlRoSLwznadR1N0xgetDDNtWGIsZhce3lZcohBCGy3t3p9ZPtzz/W3h45ExBOpagMbhvxuNr0awSAkfG5OwoMjEUnjLhblGMuS4wIBIcaGIb9VOaZMBi5dgl//dfGm91KK3o/ltlkUZy+hsmItQMd1MTSHWLC9WgYsEW4yVx6k0IhwaVjE3ybyw7zRPsdvPn2NakZj+n0JCR8ZgWee2bnwVb+cyDBk3NVjY7sS4L4DrguHXSPkUYqce9RI/mMMnxT78PGg8TBYcn342Av6kb89lDVUVnAA92jP0NZUijOvpFh+u83CnAOhFJquoROGmkG1JTmnlYoQmkhEyM2bbwpJTKUkf7ZSgcTZNC/FbmMuzgMxGEpgDRnMlhK8efcE90oxvpN4izGryNiLGTI9Npm97AEgRMNxJO91YEDIYf5+m2axSdStE3Q6xDpBmq0ByvUgzbrNz5sDtApPUqnpGCGTkWgNy9UJ6A6OqxM2OzQtk8nlFHfLcS4bn/PKmbs0Lw0xXxCi2L1PPnPGC40FmYrTp72272YPffWqkP0rV+S8CwtCIB1HzqfrXshuqyWkvNWSOahU1pZj6laVjkRkHE1T5u3uXXjqKXj++d7LZ7PlNjAg8zs3J/3abvltFsW5Xqis3YaGFcRyLeJaA/HPC3QNogGLeidAoRnmVKLEW3ePc6ueIBs5zdW74/tSeaYfTlQqeXnVx49v3m91vO+Ae4jwqEXOPUok/zGGT4p9+PiicNgtuT587Abbyd9u5kp6EEainV5jH+/RzUJbUym4/EwQAkK2ikVoruSwLi+LB1IpKicS8vf8SnlfyxJyFo1C4miM+62nsSsJjHKBVDFHOxSn1BggWzaZvn+MyYFv8sSJr5Aun+TC1aO8ysa9Zi+C9pd/KSV8DEMI2sJMk1hrmbRbRLc7EAgQ1oPU2gFaroHV0bgzZ+ASJ6S1SWhVzgzVOR4vU2xFyNUj1DsBgoaNoTkYVotjqSr/9P9coPi3vrpqT1m/T+50PJVryxJvpQqZ3ukeuttI8dJL4sF94w1vzFXNYdP0hL5sW+ZnPVT+sVLNbjRkeY2Oyv8tS9q+3VJSy223QRabRXGuFyprNqFtG6A7BHWHsF0FPPdyt0K4qbuk3Rw5LcP7ZpqJ+4P7UnmmX050+bKswUplbemt9fAdcA8hHqXIuUeN5D+m8EmxDx8+fDzsOExRB1vJ38JGV9If/IEc2wcD2HU3D0Eo91YCpd2lkKenZYOvvJCxmIhGJZPigQQhOPm8OB2aTSFlN2+CYaRxrDi6U8FptKgXDVwHLAzqRohiKMzSSJDp2RiT/3FrZ70iaNmsDNnMDPz859CqdUjZBVJ2TuKFY4OUWyFmqwlqdhDDdAi4bVq2CbpGJGChORbNaodQssOzR0vU2uKFtG0NqlVuL6cYGTUY+IUvM77FPvlb3/LySguFve2h1xsp6nUZ33TaI2Gwlhir8lPqdQVFiB3HI8aFgqeaHAjITz+qyHsJstgsinO9UJnjSB/NoE406BK0m9CwVwslryqEIx0JtuNY6RR3hk6Ru7N/lWf64URnznh53+A74B45PEqRc48SyX9M4ZNiHz58+HhYcQjI3hpsJX+7Hl5CrLS3Xt+UAUy99H/hau7J3XXzgEO5+93LbSdQqkocHTvm1QsOheDkSQmV7oauy3vttqdi7DiyHwuFQlRDIbJFG6sN0bDN8ZE2MT1MMGqSPg1PHfWc9bWatL+7hm8vb2U2K0SxWoKmG6UVGiES0CiXQizWYnRsHVN3CBoWjmPQsQOYrkUsbBHQgyzUTZhqE87kSUUKxJRscThMYzRB7uhTTLtpMmy9TwZ57f59j9SqkkA72UN3GylUzq3jyHlUOSTbFjLbannEV40/eMRYiX915yCruUmnJQfbsrZXRd5tkEU3ekVxdguVWZYnIBYKGySORKE8IAuzXMYxg9SbUZKhMqnCFMSgnRwhfu44pNNYt/e38kw/nGhwUH77DrhHGI9K5NyjRPIfQ/ik2IcPHz4eRhzGvN2t5G/Xo1KRhMlyWdjcSy/1ZADXflzi9Z9kmUicptAe2Fk394NlbIKd2iP6FSiNxTyhoHDYK9PTjUZDSGGz6eW/KnVq1S0zYKDpYGkG+WaQaBTMlRBg0xQiMTkJ/+k/wQcfSFtV+7sVkdXS0nUpG9XEAhfKzgCtpk2xGcZydHQNDN2lZQVoOzqWq2O7Qe6WEyQTEAi2WXAD3GnZpKJ3ZBJXpLSD+jhWIr6BPHXvk6em4M/+bPPxHhnZ2Z6zVhPjQ6UiZLFU8nJu43GZh0pFxrXT8YivUpVWomfq/wqKOINH2pRK9be+JbWGN8NOgyx65etuFsWp+nH7tpDMREJeCw0NQMyQAajXKVUDhI0O6ViD2MkhrNQIueXzjF2Mcvo0vP/+wVSe2YoT+Q44Hw8dHhWS/5jBJ8U+fPjw8bDhAMnenrBVjPB6zMx47tAjRzayRNNkKvU8r1fOcG0pycjZ+1z8xXM76+Z+sIwe2I09ol+BUhV2q7xsi4uy+Y9G5bVKRciq8myCkLNOR35qNa/W7tCQEOdGQ8hwNCqhtAsLUrO2UBDyq2kyBboury8vC6F54gnPVnHnDixMNklEl2lZOnkrSaNp0rQMXFwCukPbNnBcDccVd6kLWLZOsaIRiQ1QcSLMhMKcv5QmNqCt1l5qfwZxc3Py1M94f/SRkKczZ7Z2zChjxocfSp8WF0XQqlSSz8ViEvIcjXolh+y1JZVXia8KmQYvr7gbmuYpd3/+OfwP/4Oc/1d+ZWO7dhpksVW+bjeJ/OADudUCAelXq+UZPu7fl36nUhGcUIRSvkPNsRkdanL60lE4fYHZxRipsLTp+eflnF9E5RnfAefDh4+Dhk+Kffjw4eNhwwGRvT1juxhhhe4aMaOjngLQOlydOc2ENc6ItsC4lofWKJheXZYtu7mfLKMLe7FH9CNQeuuWEJVAQN7L56VJoZAXyttoCAFTnkpzhVCGQkKaWy15zbLE21wqCVEOBOT4GzeEGMdinhexXpcw5FhMxLQ6HflcpSLc1TDkfIVWDENzaFoBmpa5qlvccGQOdVx0zcXuIsa2IyTbcQzmlyPcWWpyOSKFhYU8xTYlT9uN99KSEL/334ef/ATOnZP2RiLiEX3qKY+Yzc2tJdfBoPxUqzKmzaaMaTot81YsynvdxLf7d/frm5FiNQ+WJdf97/47eW89Md5JkEU/+bqwNuQ7GpVbrV6XuWg2vfErlaStkUiA0bEAly+HiY8kmVqXq3sYKs/4DjgfPnwcFHxS7MOHDx8PEw6I7O0L+o0RLhSEGIO46ZR6UheytRgT+WEKrRgXU1Wom/K5HsVKe3bzIFgGe7NHbCdQOjUl7Ve1blMpIWuNhhDdel2IWCDgeZJV6LQiZsqDqnI5AwGvbSosOp/3ygUVi17+7OysV3ZoaEiOu3NH2tFuQ7FmUmwbGNjYLjishQ7ouosGOK6Gi4aDjmNr0HLRXIdS2+GD92xG52+RijSZbR8nFRniYipGZmXc1ytff/JJ7/FWHu9iUfrc6QipNU3PAx6PC1E+ckTIXC4n03vypBz32WdCli1rNa0WEAPB4KCcu1tcS4lpdaMXIQZpi657gROGIR7j/+V/gSefXNufnQRZwNb5ur0864mEzOHdu/I7FJL+maYYPlxXxiqdFpJ8+3bvXF2/8owPHz4eVfik2IcPHz4eJhwQ2dsX9OtKUjGl4bC0rwfRnS4kydWjpKN1TEPzauL0QM9u7ifLWMF+2CM2y490XelHJCJN6XSEmCnV4FJJSjHV616YsWmKbcF1va6qEk62LZ9T4dShkPyemZH2K1Jcr3ufq1Y9r6Ei4LmcaKFNT0PbMTH1FrrVwXU3rj0XcBytq+qt9z/bdjBwcNDI1gd4c2mcTLCE3bK5krnGKzPTTP3Jd1cF1e7eldDm6Wnpw5e+5ImRgfSh2+N99qwcm82KV1QR1VxO+lIuC+kNBOR8S0tynFo7yujQ6XiCVK4rY9Ndq9i2vfrFSo262yPbDdWGYFCuEwjI+T//HP70T+Ef/2Pv2H6DLBQ2y9fdzrN+7pzcmnNzUuf5135NxqhU8owpprl5rq5fecaHDx+PKnxS7MOHDx8PEw6A7O0r+nEl3b/v7epPn+55mpZtYjk6QcMS9tHNTnpgQzf3i2V0oV97RK3mKULfuCGhvd/9rvf+ZrWAGw0hLaWSECfJ95S+hUJiQ1AE2HVVyKuQNFXXWBFiVS9XHes4QoSqVS9MOBwWohaPC4Gq16XtikzruhDEW7fEa5yIdKhUmpTcCBYG4KIhJFhRYTFbyKs67sq/cqSLjq45WJjcqpygEh/kF89M8drohxQ/LPD6R1k+CJxhJhvDdaWtxSJYHYdrb9vM3Ojw/OU6F5+JMDMTI58XQqw86q2WtD0SEU+wroshIZeT91Sudakk81AsyhjEYnK8Ychr7baM27Fj8l6zKfO9uCjvqbFTedy9bDWaJucLBuUc6ph4XDyz77+/1ljSb5AFbJ2vu5NIhmpVPMj/5J/sLFfXF77y4cPHowifFPvw4cPHw4QDIHv7in5cSYq12HZveWUgZFiYukOjGYBmXXbhPcKsFTZ0c79YRhe2s0cUCuKJzeeFYJZKQoz+3b8TO8B6ReruWsB//ufymaefFtK0vCxeUJDhUrnCmiZtsG0huqmU5zHuVqJWYb7KjmCa8n9FHJWnOBj0RLwUWVa5x82m9KnTgeUli3CnieWshEQjdYmUg7SbHgPoOJg6ODhYjhBjTYOA4RI2bQZDTQaCHc4MlUmcTfOv73yZH8+PUom0cAZi0kY6mI6N7rg0axrzNZ1GQaM5M03eTdNsDpMek/jwYlHaaRhCQnXdCz2v1bxQatP0lKNPnJA5KhQk3/bLX5blMj8vx8TjMvZ37wqBVJ7lXnWL10N5k8NhGdt63Qvt1jRZI93BG/uRr7vXSIadBJL4wlc+fPh41OCTYh8+fPh4mHAAZG/f0Y8rKZuFd9/dlAGMpYqko3WmF1JYiSjmJmHWsEk3d8AysrcKTDsv0OIVQtMZxth5rWGV36r0w6JRjzTduiWkYbPSUdPTQrxAQpUNQ/rRbMrf9bqcS3nBlZfYND2i7rpC4JS3XHlFOx1J206nhewuLXkCXe22R9zA8xw3mzJV1ar81OtgN20syyRg2IRw6FjiBe4Oke6GBqDraCtqVBoQC7YZCLaJBdo8N3qfXD3GXGmQ/+ntL/Nm/iRLdQPbckkkOmSSTar3yjTtCLarEQlalK0IhVaU9++MMBhqEQ3l0Wsx2qH4qlc8FvPmZ3lZ2h4IeHMRDksodb0uxys7Sz4v9aBffRXee0+OUfVxczlPvTsWk88uL28sxwSeh1h575WhodORaytSDBuDN/aar/tFZFb4wlc+9h2+pcXHFwSfFPvw4cPHw4TDIAHbD7ZzJU1NiZtuEwaQCZW44HzGpHuR2cA445uEWcMW3dyGZUwtxbn6wSAT958gNziO9fklzN/rv9ZwqyVeuWJRLlMqCZFKp+X4el1CcF94QUhXL0XqqSn4wQ+kpFCzKSRFEapSyQu7VUTLsjxS67pyjUhEftrttWWCwFOWrlY9D6fjyP9VRLpSIg4G5TxKidl1V7zTOISxGTRqaKEghm3RsANYrouOsxIaDW6Xp9hFw3Y0nBVV6oDucCRWo+MYjMTqxIMtpgop/np6jLZtsFSP4do2IdchXGzQcouEWxUCeogmMSKBFoMBi3wjQIlBbKtB2i3CUp1mPEi9HsKyPPEwpeWmcoCV91zTvNxe5SlPJCS0PJeD8+cliKHRELGxTke8yEtL8lou54lUqbrQCobh1Tp2XS+v27K88HclcpVMbgze2Gu+7mHPrPDhY0vstPi7Dx/7DJ8U+/Dhw8fDhodJAnYzV1IfDODVRIHJs+e4xjkoDHIqvsNubnGNa/eP8frn55nojFEwM6SPDBGMxmlUtq81/OGH8KMfCfmp12X/Vi57JX7CYSFcSkcskZAf1QylSK1Ugt95RzyPilRVq2JLsCyvlI7jCNFT5ZhUbrEiusvLHiFWRFopUoOEXyu1YSX+pLyqqkxPMChkrdGQa6nzBAyHgGOhGTouGpajo2tSfsnUXLkmGhraGkVq12U1tzgRbmLqDobuYOoOn+XTLFZj1DpBDM2R/rgmmmOTL7g0CJMOW0Sj0Kg7NG2TiGkRMS1qnQANPUxLC0OjQLXdoFoNrYaPq7FRBgAVSq6MBsqg0F3nORr15nJqyhunel3Gf2hIwqoXF+X1ZlMMCKGQR0a7x1t5jC3L8xIrJWpNE+LdK3hjL/m6hz2zwoePTbGb4u8+fOwzfFLsw4cPHw8bHhUJ2G0YwPjFi3x/6Dy8Pbj7bva4xlQhxevZb3BNO8fIaYOLzw5jjnj5ylvVGh4eFgI8NeXlqTabQnxAPMKFghCNM2fW6oh153G+8w780R/JNYaH5bj79+Vaqs6w64q3UxFsReRaLS9nVZFiWEvKTFPCplW4sPIOp1JC9JQn0zTXek1VvWPl7XRd0E2Xhh0QsmkHMHWHgWCbtq3juDq2Brat4+D5iQF0zUXXbEJah5Bh07INUuEmtXaApXqUtm0QMjp0HANNc4kZbSJGm6YToGJLLHcy0CQaMKm0g4CJhktAFzZbdgcYaJbJdQJYHRfD1EgmvfxoqY0s8wneeKpSSbruzY1hyLGTk2JAME0RPXv6ac8Qc+6chLlPTMj6CATgxRcldP7mTS+HORDwiLmaD9v2wtJPntw6eGO3+boHkVnhR7L6OHDspfi7Dx/7CJ8U+/Dhw8fDiEdFAnYbBnAFSD61x26uu8bVHySZKKQZuRBl/HJkw+Gb1RqemoK33xbCMzIiZLJclt+BgPwoL10oJEJO3dpg3Xmcf/zHa1WC220J+1UiXe22fMayPA+nCs0FT+ip0/HqEysiq/KElXc6FvPOo0KvTdN7zTAkVLvdlmuHw+IdvXdvJaTacKh2HGxXIx5uEQ1YhM0Oy40IpWYIAw1caDviSUZ5jF0NxzVwNZew7XB0oImuOdwtJ+jYOk0rgKnbWI5O2zZwNIeArhMxOkCAeidIJGCTjkqccr0ToG6ZaIDuguXofN4+iYNOMOBgBIzVusyKjCpjgAqhrtelv8mkl0sNnpJ0pSJ9Pn/eWwPrBdQqFW9+7t6FZ56R89+8Ke+rcHRlpFDXBTn3kSNw+fIW63UFO83X3c/MCj+S1ccDw16Kv/vwsY/wSbEPHz58PKx4lCRgt2AA+9bNTIYsGSY0KGhw8cLWh69X6FV7t3PnhFDcuQO3b3tqxaYpYbZK0KlXGGswKKSqXl+rEnzmjIRAT0/L+8rzrDzBilypckDNphcaDEL0VN6qIsoKyltaKnmkWhFjFU6sQnuTSSE+SjAsk4Ezoy6fvVliuWQSD7gMxxroGhiaeITr7QBNzJUAapdVaS1dw8AhiI3hdCg1g5TaYaqtoFxTc4kEOtTbQWxXp+UG0RyDGE3CeoeyE6LeMRmK1Dk6UKXYDNOpidhaPNjGNGza7TCG5jCcbFOzI6thzYbheWujUfGaV6teeHWzKQYNw5Dxun9f5m5oSMZCkdZeAmpqHup1IcWhEDz7rLz3/vsy7yp/Wc2DZcnrxaKsmx/8AK5f339yuR+ZFX4kq48Hhv0o/u7Dxz7BJ8U+fPjw8bDjMZGA3Y9u7lah9/331+7dVCjywIB4Ddtt+VspDCvhplptrWh2u+2R5e42pFJCxEolIWDtNqteT0XiFIFVJFaFN3f/rXJpOx0hMrYt5E2RNBV23el4BDEQEGJ28qR44PN5yZ1NJmW8Lz8XJlUsc+O6Q74zyFx5kGjAwtAcwoZFleBKaSKXgNYBNGzNxDB1YmFI0EBrNVmopGg5QUzdIahbxENtRmMV8pUArXaSjhag7RpgOwwYDgHDofP/b+/PoyM7z/Ne9Nk1DwAKhakbPQMcmmxKFNkUSVEDB8mD7Di2Yykn56xIjnyUZGU541k3J+ckXknOcL1uxpPEORnuTRxnkHxvLCm2YluWZEUSaYmDJDYpUhy62Y2e0I1uTAWgUKi59v3jwctvo7oKUwMooPH81qpVqKpde3/727vJer73fZ+3HkapFkFPvIJSrYbB1CJqjTA+ePQqDnYt4mtvHsV8rQt1n5O8tOSMo0zoWxTfUqb7+nhetqhQrbooayrlrn0uR0E8McFrODDA75t7tX1/fNylsGeznEMz/QrWMVtk2u6NF15g0OtTnwI+9rGtWdu63coKZbKKHaUTlulCtEGiWAghxL5hsw69ly+3/u02PEzxcP06BbJFYs24KZdzotjqOA8ebD2G4WEKoUuXVtaE2j4tKhyNUjRZtNgolVY6Is/M8LlSoSBLJrnPTIbCfH6e81Euc/zRKI+dzbJWdmGBAqhWA4YfOoDE0pu4fHkO0+jHUqgLDYTQFa+gWItgsRJDzKuiO7yEaDyEcrQLlRqwVI6gGsoA9RTK9QjqvocwfHTHlpD1FlHNVxEDEIv5qNU91H0PVT+Ksl9DONaAD6De8JArJlCoRpGMVnGkO4cfv+siRnumcflCHRNdx+Ad6cL0cs9hE8WplHNXLpddD+OHHqLYm57meS8s8Hw/8AHga19zAtdSptPplWnw1rrKFhTicaaaA7wXslnu8/p1F+Xv7eV1n5piRkAqxQWT8+e54DIw4Fp2J5P8ezOpypOTFPnvfe9KAb/ekoONZrL+3u9x7vZykoroILJMF7sIiWIhhBD7hs069AKtf7ul0zTKmp2lyDTxZMZNJrAAV8c5MsJ03Xz+1uN1dbl+w11dfDZRY+2F6nX3GnCRZKsXBvi3GU1ZGyL7PJnkc6lER+pwmGPJ54EPftCJpmefBb7yFatPzSJ7ehTZxJso3HwbucUo6vEUZmvduFy8B2g00J9YxOhAHqGhARQjEczPU/jl8xEsVcLwvQY8nw2cPAC5ajeqiMKPRBBKxOAVQzwvROB7cUTLdYQjIUwtpZCJl5GMVtETq+D08A08efwyps7lkE2fQGTIx9EnY++2x5qcdL2aCwVeF6ufjsf5/tWrLmr6/vczalqpuHujUHAp09Ziy4jFKGrn5lwkeGGBnw0P89naQUWjrv3V9LTbN0ChvLjIqHwoxG17e/lIpfh6vanK7WqAk0nWML/nPc5Uq51o3Ugma3c3+zmPj9M0zs5TNcdiQ8gyXewiJIqFEELsGzbr0Hv8uKsXbcbqgScm+DqToSCyPsDBOs6TJ7m/sTHWIw8PO0MswDlAW+qttfSxiHC97tKmmwm+F6xnBdz+UikXvbaxhMPAa6/xPD71KeCBB9z3VtanDiNyOoH05ctIT0+jtriIH1y+C0uNBJKxGg4P+wgNHgSSSSTheifPzADXr3uo18No1Buo1mOYafTC84B4wqNBlg9Ea3aOHiqNKBpeCKlGBelIBZ4HHOlewOnhG/jkydcxmnsZXeUKBoafxkXvAO5eNjY7coT7KBRcW6mlJQrYs2dde6xWUdPJSXdvJJP8XtDcLIgFrCoVXp9ymfM9Ps59FwrOiToa5XalEv9OpfidqSl+L7i4US5TxDcaFOzF4tqpymvVAGez3Pda7crXm8lqddb5PMfa1cX7WDXHYsNsh2W6EJtEolgIIcS+YbMOvY88wvrPVr/drB4YoAC8epWCanCQv+EuXaIYCocZUXzhBZeO/Yd/CNx1FwVpNsttursZQbQIcVDsriaIg2nW5jRtEWKLGKfTrB0eGKDQt8h2sUghtbjo9tm6PjWLWE8WFZRwvVDBfCyGcDyEwQNRJI8N3jKuWMz1811YWG7d1AB8hGgKVgd8z/V0ZmTZg9/wkAzVcCwxjffG38HRbAEn+ybxZOZHGL30JpDNYuiJe3FvdATn30jdci3TaT5MHM/N8bwffRT4+Z9vneobvDfMPC0cvnWu83lG+oO13Da/CwucQ3Mk7+nhd5aWuK1F/qtVdx1tP3ZPJZP8rkWQBwfbm+5uZQ3wejJZg3XW0Sjv1SNHXOsx1RyLDbGVlulC3CYSxUIIIfYVm3HoXeu32/Awhd3ly9wGYBqs1ZhOTzMieOUKxd/QkIsu5/P8/D3v4bbZLGtUgwI4WDtsEeBmcWyuyJ7nWjN1dfF1Ps+/77+f6d6WzjszQ3EzP899NJfqHTnCBYFGw9XIhsNA92ACI5kE8gD8aSCRRltKJT7q9ZWuzLWai4SbS3Q6TYFer4dwfCSEv/n0JYwsvYOuwg0slqIYxxFMHb4PI4/0YehnHsNTOI7zv37rtbQ2SlNTfNgiRbHICP1TT7X+XW33xje/SUFtZmdGocBFj8VFCsIDBzh3N2/y3Cw9u9FwNcf5PL9nDuLBtHa7VpYS32isTNmemeF9tLDQ2nR3K7vZrCeTNVhnbfdCcOFA3XPEhtkKy3QhtgCJYiGEEHck7dx8N+vQu9Zvt+5uRgaHhvjZxz/OfT73HCOLg4MrvzM4CPzoR0y5ffttV8tZKLg+uNZiCVjpNu15Lu02mCYNuMiw71PgWNQ0EqEIv3qVQs0EsJXnZbOMXFsKcnONqomgAweAxx7j31a7a27MzanGxaKLnJqIj8Vc+rE5OBeL3MZaKcXjwKmHEhj9pafxxgunce5MHtOlEGqIIFLvwsBEEvc+y2vSfC3DYQr4uTnn/t3Xx3G/8w7Pp116r90bhQLw1a/yugEUt/U6xW+57CKk3d0U8zMzK8dv5l5XrrhIsl0ru4ZBMWnO4eEw56JUYpR1fNylRDeb7m51N5u1MlmDddZ9fZzj3t6VJmQbOZ4QAG7fMl2ILUKiWAghxB1FO9OhoAnQ6dP8Qf/cc/zhbtut5tC73t9uTzzhBNdv/Aajvq0ieRZdHhykSCsUGAzp7+c4rCbVoqqWEm0mXoBLvTWxZaI0HHYtiFIpCtNikWPxPFevDFDkWNT2hz8EfvVX+f7Cwsoa1VqNInFpifs/edKJwkZjpdGYYQ7XkYgT9/E4o9YmqINR0nDYRdhLJeBf/kugUOhBLtfjamUrwMXvr6xd/exneS1feonp6ebwfPQoBZmliq8nvdfujXwe+O53XXurUMgtIBw75lzFzeXbzM3CYbdoEYz2BxcrggsZFtUPh/kdiyTbtVtactcrGMnf6m42a2VD5HKuzjqfdynv6RZZAtvaPedO6MsuVrKZ/yALscVIFAshhLhjaGc6lMsBr75KwfTss8CnP83esGawtN7f2Bv57baeSJ6lS4+MAN/5DmuLH3yQgujCBQouE7smfFsJ4mDkMRp1DtOhEMWwtSSyHsWJhOubu7DAbVMpbvftb/P9Bx9km6J2NaqFAj+LRnkON29ym0zGCUSrn7UIqol6+17QSTuf5+fHjnEfFy7wPE6eXLtW9rOfBT7zGYrws2cZFT56lOMKirb1pveOjgK/8ivAr/0ahXZPj2vD5PvcZ6PBazw9zXOy1GkT/80R/KBAtpRpwF2XaNSlkgc/s5TqSGSl6e52dLNZLRvCrpXVRw8Pu1rizR5vQ6xntUuiae8yOrrx/yALsYVIFAshhLgjaGU6lM+7OshajanDFy7wd/XLL7tsvObfXKv9Llvvb7eXX6YpUaPBCGuzQAuSydBwK5lkpPj4cY69WnXO0db+xwSwpR4H64593xlbpVIUxAsL/MxEiolma+VkgtjO2yLIvn9rBDIoKq9do1g8dMgJpZkZpvyawLZzAJwTsxmOWRTc950xVTLJfr7Xr/O7hw+vv1a2q4vzHArRUGu16Ol60ntHR4Ff/EVes3PneH8tLnLM09M851KJ5zM4yIURux8A1z7LaK4BD74OplIHxXS9zvPI56n9gqa729HNZrVsiOvXeX1DIS7enDrVOnV6I8dbN2tZbMvy+s5haEgiWHQEiWIhhBB3BM2mQ9Y6xuogUykKp/l5/n7+whf4d/B39EaCUe1+u9k+vvEN4K23KGzm5nj8/n7nNN2MidaBAT5qNdZuWiufq1cZnTXHY3sETZssbXdujs/BtOpikc/ptIvgRiKck4EBztPUlIvmTk+7mtxmTFSm027bRIJ1tktLTjB6HhCN1BFBAz2JBuABPT1hFKuRd+uMQyF+1/c5lmgUmJxgPvd9XVPAuNd2RSEobg8c2Np0YmBlZsC3vsWocbnMa5VOM007HKaQr9V4HqWSa6sVXLRoh21Tq7m5t0UPS1c+duxW093t6mbTLhvi4EHX9/nBB/nvbCuOtyZbabEthBBtkCgWQgix52lOVQ62jkmnKR6s3jaTocAsFplObe/Nzd1+MCoY0Lp0iQLKakRv3OA4Z2cZZRseXvldi6wdPEgB/sYbbiyxmBO/QSfqYDquGVRZpLFQcJHK7m6Xlmsp14kEBVcmwwitGVP19LhaVutp3Ew+z2jvK69QQBWLPDff57GiUSBcr6BR8pHwyrin+wbCqGOy1INo3kN/dxil7gwa0cS7onhhAYihjPEzc/DyEQxF55F55zVXXNtiRSEobi9f3vp0YsBlBjz6KPAP/gHN0R58kNfrrbc456EQRbAJ+1jMLUoETcaAle7hdj2LRZdWbvuzPsueB7z3vbea7m5nN5t22RAvvsg0/3x+dVG8pd1zttJiWwgh2iBRLIQQYs/TbDoUbB3THJW1aGksRjF27hzwxS8yAnY7wahgQCuR4HEnJphya4J2bo6PUgn44Afd2Joja8Uiv3PzJoVqc69iiwAHTZxM7FprIM9zac3d3e476bSLzgYFpH03mJ4dTP81LAJ/8yYFX38/cPfdTEu/do3nF2pUkfQLiNU91BpAtFHGsa4c6nVgIt8DlIvI9BQQGmLecaMBFGbLQDUHVJfQXfNxKL1cUF2pcKezsy1XFEzcAlufThzkgQeAp5/mnNbrbqHCUp+DJlrVqusTHYm41PdW7uF2TYMPayM1NEQx3M50d7u72TRnQwwOUijvWPecrbbYFkKINkgUCyGE2PMETYeCrWOs32szJvoGBlgr+eyzzhAqHL61Bng9wSgLaIVCrgdwuezcns1IqdGgiE+nKbKAlZG18XG2RsrlnCuzpRk3i6dgix/Pc3W52SzF3tycc5ZuNCgCe3tbz0nwGCb6grWuwMoIvOe5FlfhMIVQoQDkZupAtYKEt4RMooHpWi8ulI+gmujB0EABSFYwMx/F+HQYqWIB4YEY5hdDWJqvYCAyj/cM3MRcpB/xaMqtGpi99cQEX9uqA5y4PX6c0eKtTicO0ixCzRkccJkIFnkOXpOgsVYksvIamgmZbV+tMtp88iTwkz9JU7h2gc+d7maz491zttpiWwgh2iBRLIQQYs8TNB0Kto5p7ptrmOiLxShEXn+dYuTgQequdhm77YJRFtC6fp2vb96k6D1xgn+bQVN3N0XTwgIjq6OjFFUWWTtxwkWbfZ+RuXze1QAHhbBhabf9/TTrGhqi8I3FgNdeY/S2XqeuzOdZp9w8LxYVTiQ4nkKhdQ9ai8Ank9ymq4vjCaaqHwpNYWaigqVGAqlUFQcbi7i52IULuV40fOCevln0p5KYnvVQKEexMJtCvRrC3Ylr+Pnjr+LpRxbw22/dj+9fP4xaw0MktKzWbTAzM1S/2ewKcfvII1zM2I50YiMoCl97jfdasejEbKnkRK2lqttiSKXC+7Snh9cvn+e1s7ms16npHn6Y6dl//I+zH/Ra7HQ3mx093nZYbAshRAskioUQQux5gqZDzWmtzZiBUW8vhcrYGLNyTbyEw+0zdtsFoyygVa1SAAfTtq32slikEDIH5tlZmje9//0usvbqqxTX3d0UytYP1iK9gKtJbTTceCoVmlw9/vjKGuD+fh5nacm1aGrXTzidpmibnXVR9OC+ghH4dNr1qZ2cdKnqiXAFk9MhFCoJzPk9KCzUkImXEA3XUaxG8fb0AGqNME4OTAO9UZRvNHA0egMn+nP4dPKL+NhPc3XjjckhnJ/tw5X5DEazc24QmQxD6csuYFdupleI2+1OJwZWisJGgwsCS0sc2uAg5ykapS7zfZdCbb2OrfbYTM4iEV6bdBr4U38K+Gt/beNBzp3uZrNjx9sOi20hhGiBRLEQQog9T9B0yByUK5XW287PU9Alk/xBPzfH7fv6VqZbt8vYbRWMsvZD5roc3E93N3/Xz8+vdH2uVBiN/shHgJ/5GQqk3/otRh9TKWq/YpEiywgabZkoPnqUkedq9VZjrBMnKHLn5pwIs/1lMm4+CgW6N3d1cV92rGAaci7H7cwYaniYIvCtt3jOiQRw43oDS0sJ1PwQQh5Qa4RQ90PwPCASaqBQjeJ6vgs98RIOdBXwY4cv4mTiMp7sfwOjAwtA5D4AwFMnLuP8bB/OTLB2+Fhm3kWMUynUFku48sYSpvz0CnG7U+m9JgpPnQL+1b+iMO7vBx56CHjnHd5XlYpz/QYopONxzmGpxPvPovHVKq/Vz/3c7YnKne5ms+3H2y6LbSGEaEKiWAghxB2BRQlfeIGCpFBYmSpsIrdQcD5N09N8TiYZ0QvSJmO3ZTAqHqf4aZe2nUzyUalQEOVy/PvoUUZ3R0fZ7sdaG126RJEdbKsUDruaX3O0LhaZMtzd3doYK5ulcJuZ4baWNj43x+8BPF46TU3R0+PqnBcWVorK8XF+Jxbj/J06xf0tLVGrzMwA+UIYUc9HT6SIkpeE5/lIhGsIeyGUaxHUG2HMl+PIFRM41L2Ig115PJl6FaPRG0DM2RmPZnP4xKm3AADnZvrx4vhRDKSWEAvXUFlMYLrSjWwvcPpDt4rbnUzvfewxnrs5jl+5wuvc3c17zcSvLcL4Pq9JMsko9tAQt339dY5HWq6J7bTYFkKIABLFQggh7giCUcKvf52pnVeuMCJq4i2RoKAbGWHa9NwchTPghGazoA1m7M7Ptw5GjYwwylostm5hZMRiFFFzc/z93tvrIs5WPjk7S9HcaPBh6beWNg3wtdWhTk+7KHCrlPHBQR5rZIQu0Zcu8VEocJ99fe58TDACrUWlzdWBAzy2OWsXi9ZP2UfSrwI+4MNDveFhtphE3Q+h1gghHGqg3gihUI3hWr4HS9W7MZmM45OHnsfDlRsrxn16eAK9iRKeu3wcZ6f7Mb2UQq0RQneogJHBWZz8SAJP/tJgS520k+nEJsJ/7/eAl1/m4sDwsEvBt3pva4E1MEBTMFtwGRuTlluVnciJF0LseySKhRBCbA07VdC4CiZQMhngd36Hv5UXFynoDh1ygmRhgQZYAM214nGaZLWqtzXTraUl4O23WwuYoSGebiLBCG9/f/sxWvp2Or0y4hyPuxTopSW3fbMgtjGZa3GxSCE2NOQiuvU6P89meZ6HDrHPrjlSHz3KyxQOc6wWkBsdpbYYGQE+8xl3SS9eZCT72jWmk7/zDr9br/PYS0scS086DNTD8MsVlHwq9JoXQjxcR0+8jKVqFKV6GLFwHe8duI6Zq0s4U34PUOhF5up/wujdK1NkR7M5jGZzmCykcTHXi3LFQ/ytVzHyxEEM/eX3A2vcXjuRTjw2RufxiQkXqU+lgPe9j3OzsMAx2P1niya3q+V2wT+3nWHHLa+FEPsRiWIhhBC3h6mCc+dcWHHZAWry4IO4ePRJlAcO79gP99FR4G/8Df5G/vznKRwKBf6O7umhSHznHQrQgQGmAScSFBdWP5zJrIwYex7FbDTaXsD87M8C3/wmo6szM/ydHtxHo8HpWVigcC8WKZ4s4jwyQqGZy7n2PJEIp7M5tdtcqE2YLi3xe6+9xr+t7rhWA7x6DfcPz+Hy82VcnUliYrEL3dkYEgnOwSuvcPtvfYtBuAMHOC/33ssgXTTK9N7xcdf3OJ/n2PN5PixC7kVohV0qefDrrAGOR2pIRmvwfdYYx8N1+PCQz9VoopUdxbnKPXiu8gGMXnmppagZShcwlC7wXjtRBE6//90bqZPi8MwZlzqdy3He+vqcVotGOU+NBnD1KufpdrXcKv/c3r1md5wu3GmLbSHEvkOiWAghxOZppQpiMYxNdePZ7/bhXCOO6cR11I4lEDnQv6M/3H/sx3iMVr+j3/MephB3d7v64lOn+DwzQwEYi1Fw1moUxN3dwP33txcwjz0G/MRPcBoWFijEUykKV2sVZa7D8/N8Pn8e+P3fd/MxPEyxWy6z7rRWo4Aycy6LGNdq3K8Zb9VqLsU7meQ2xcUa/EoF3aElvD5RQbUeRiKyhEisiNmZBErRbhQqsXf7GEcirnXTxYsc2/e/z+Nfu8Y07GeeofCemODxjx51ZmDFIo9d95Ioe1V4YIPlRKQKwEOpFkEk1EAiUkWoUkZ9qQKM9uPYg/148dU4zvoPYHL8jzCEsXWlyHZaHI6NufZZg4PUZa2GfPkyF12OHHE9ozer5dr8c0Ox6K7Z+fO8Rx9+eHvOu2PstMW2EGJfIVEshBBic7RRBWcmhvGl+ftxzs8iN+9hYH4asfplFBtxXLzYtaM/3Nv9ju7qAj73OYo+E1PDwxQvb75JwTw353oDmyg9etS5NrfiF3+Ruu2555wALhYpkq23sInP7m4e4ytfcfNx773OmRpwArda5dhDIVdrHEyhjkQYoezt5etQaQmp2iSy0Sm8Mz+IK5UDiHgN9ESLyFTyqC/5mKnHsdgIIxYPo6eH516vc18f+AAF3R/9Eefn/vudcAsuHly/zu+FQhzjzAzQ3R1BIt1AbamBUKMKlCsoIo5qA+iKLCFRLSEUqiE8mAVOHUFkMIuBo8B0+T24mHkKQ4Vvrpkie2ZutOPi0AT54GBrURuJuPeLRc7h449vXsutV4Rb6W0mc4cGTnfaYlsIsS+QKBZCCLE5WqiCsVwW//GHD+Kl8SPoiZdw9EAeA5UC0vVJIBJC7QMPdeSHe6vf0a1MbUslPqynb08PRUwiQSHz9tvAr/96e7E1Ogp89rMUp6+/TnFdKlGwJJMUMckk63hPneLUXbkCfOc7wA9/6Fo5mXmV9U22NOxajX/HYkxXNufnoSHggx9cjtTO5RE+/zaypUuYSwzglcI9qFUiCHs1JJPAQBcwkQsBtRq6I0vwokkUCpF3z396mud84AAF9swMx2HY4sHly858zNKozSk7koyhXAujVq2h2ogighq6oiX0JwqYr3cjNRhD9tF+YLgXKBQQW1hCza+jfPoUkKkyFN0mRXYMo/jSr7cXh/PzvE7f+AYj3L/8y4zibyWTk06Qnzy5+rbHjlHjT0zcXlBzIyL83DkuzNyRolgIIbYBiWIhhBAbp4UqGMtl8f987iN4/upR1BseirUIppbSSEX60F+6hhOpArL3FDA6Sqehc+fo2Hs70bPbodnUtrubUeKJCQrOoSEKPWvh9OCDfL2WoA+WP37hC/xOJsNHK/fhZJKO0xcuUIQPDHBay2UKTDPNSiRYoxqPc6yWilsqcXyHDi2bOE2dByoXgUwUL82NYLESRyJcQ8gDSrUICtUYil4KNUTRgyV48IBoF0olim2rTwZ4PM9zPYrNJCqb5aNQ4GeZDIUoQDGdzwN1Pww/HEZPTx3dcQ+ZNFCqDiIRimPg/gjSqRwLmmdmULneg+5IEfHYd4FTebqfPfooJ6Ppxnj2N1qLw1yOixBm/DU/TyE5NcVFjK1Mp754kZp9YGD11rmAS+menub3NnN/b0aEnz3L7ymoKoQQayNRLIQQYuM0qYIzE8P4j68+iOevHMXkUhoHuxbh+x4qjTDmSknM1sOYHS/i1PlFDL8vje5u4Ac/YB3s977n2g7tZM1xs6ntD35AMReNUohaarD15B0c5MO2Xy0SNzrKFO0zZyhM7r+fgjObXdmyKZejEF9a4jF7e4EHHqDYvH7dRYlrNX7/0CHud36eD9+nkB4aAtIoAO9cf7fXVGH4buSKCdQaIaSjVfjwUK2HsVCOo1oPIxrx4TXqQLWKRKKOhUIYnsdsZXNR9n2KdhPKze2m0mn3mJriuebzvJbh8LKwD4XRiCcx30ii5gPDQ8Dx5CRw5nVgZga1YgXTSwcwMngTI94l4PvLPYruvfeWkHw7cTgxwXmcmeEiQSrFx+Qk8MYbHMtWplNb+6xYbH3bx2Lc3tpvbZSdFuFCCLHfkCgWQgixcQKqYCyXxZfevB8vXTuMuu/hYNcihtKup1DDB+YXQpgoZIALcSwkKIbzeQq7ri4Kz1b1oIcPb6+nTrDH7Pi4M9QKh/l+c1QXWH8k7uJFntNdd7UXzxbZ7Oqi+CyVKEQfecSZc1n9cLFI5+y5Oc6FldsO9JRxfPE88MIElen0NNBoIDdeQKVQRdSrwYcHDz58AHXfg49l065l+2qvXkM0Gka16lK2AZe23Wg4odyKUsnVXy8ucmHB9jE7y3lNJlmTferIArLjr78bkr8SvgfZZAgn765j6KFDQG2obXFsK3FoCwsW4R8YcOO2eutabWtT9uNxVy++HiqVle23NspOi3AhhNhvSBQLIcR+YStdWwOq4NlLx3Fuph898TKKtSh8f2VT3ZAHZKOLgOfhRq4HN1+myIpGKRSOHKHwBJxZkNXYHj2KFe7I2xFJHh1lCvf3vkdxeuSI6/HbHBkF1h+JW0vIFAousjkwQOFo4tOioC+/zG3Mgdp6JnseM4yXZgo4UL2G7PU3nKJu0PW5vlRCpFZEtFFGtRZHJOwh4vkIez48AA0ErtOyC1itxktriwCpFOtye3udyG0mlwN+9COO3/o1FwoU71NTjDJbxDsSARJTVxkhTnbjCo5jqpjG6eEJPHn8spvgQHHs5O99DxcfH0W5TPGbz6+c07NnuaBhxmPBObcxHzjAed2qWtuREV6zixfdvdmOWo33ysiIa7+1UXZahAshxH6j46LY87wogF8G8BCAhwGcAhAF8Od83/+3HRyaEELcGWxH75plVTB5NodztSxypSSO9sxhaimNSqNJPS3bN2e6qri+FINfpHgyERMUW2ZEZTW2Y2Os5b0dZ+H1rAWUyxTpw8NOoK/GeiJxawmZXI6CMZXiXNTr3K/Nx8mTHOe5c0ylnpzkGO+6i+c9HJ3GW793Hu9cjqOWjiNyZIBh2lIJqNcRDiUQr9UQrVfQqHsoNpLoS1WXFy8iKJUj8EPLEWPPQ6Xirsn0NJ9TKV6+Ws0JZasjtlrn8XE+urqYZv7QQ26byUkuciwtUczeuFbHD66ncbQ2iOnUUWSTZZwensAnT72JrlgFL40fRrkeQTxcgxc5gDfeWMS58QOY/l4RtWgSs7OMrsfjHOuNG06Qp1I8jvUGzmRWzunhw1tXazs01NqorRVXrnDu7Hpuhp0W4UIIsd/ouCgGkAbwT5f/vgngBoCjHRuNEELcSWxXY9NlVXDxJWB6ooGB1BIGUkWkolXMlRJo+IwQA6BIi0RQi3fBL4ZRLvNH/eIiI5DB1ORWNbZHj7qI7UbazmxkLWA7InFrCRnrCRwO83lp6db5yGYZxS4UWBvr+8DP/RzwC78ADP3+7+I3wkuY7no/roSOYzQ059y4SiVk04tIxWrwq0C94aG+3Cs4HKojGamhWImgVAkhEWtgcdHDUslHPOFhaYn+V6EQr1E4zCj1hQs877k5jrXR4Ps3b/ISnzzpFhSszvjIEc7D5cuMOF96p46JegrdqV6cGpzG6UM3cKI3h1dvHMRvvfEAppdSqDVCmCvFcbPQhWqhgtiMj6PpAmKHkvA8CuCFBS4UNBoU25YuXa9zLMWiu4dGRjiPW11r22zUto7Wyptmp0W4EELsN3aDKF4C8NMAXvV9f8LzvP8NwN/t7JCEEOIOYLsbmz71FMrfrKF2topYfQ7pvgr6U0XMFpOYLyWQTRRdsWlXF0rxzLsisFCgfhsYWJmi3KrGNmjwtN62MxtdC1hLwAajowAF2Yc+tHokbi0hYynFlQqFXqv5MNJpGmp1d3O8Q6Dj1FOxcZw/8gDO3OwDABzLzCOSTALFIiqlOhbrSSz6Xaj4EYS9OkrVMN6eGkAcZTSqFRT9BPKlEOoAPK+GSL2OqB9CvR7D3BwFZ08Px/nKK5wHz3P9kxcWKD5jMQrUUqn1XPj+ciupiI9SOYIblV505ZewdDmKZy8dw2IljlwpiYHUEsq1EM7ODODmYhe6QgUcieSQSVUwPOqO+fLLFJupFBcmwmE3Jt939008zvdtTrey1rbZqG2N1sq3nbK9kyJcCCH2Gx0Xxb7vVwD8QafHIYQQdxzb3dh0dBTxH6sg8noexZkyMD6OE5EyZkPARKEXKDSQSfgIdXUBg4No1OPvRkfLZTopB1OVV6uxbWY1s6vNrgW0ErDXrrHf8NTUSgOqeJzHXVxcPRq3mpDJZimEJyYo7prnI8gtKbHLjlOjR6v4ROYsCrU4Xps8gDcmh9AXHYJfzeP6UhY36wOoI4ywV0d3qIhQyMNSLYZyw0PYbyCCGop+EjWEkfKKGArPA7NhFOJZxNJxHD7Mc75+ndehr48C00RudzcjxwAF9Jtv8pws2h10hc7ngXLVQ60ex81iBtevDKJS54Qez8zhw8euYDBdxCs3DgIADvUsIFQu42Ypg9CVJBLLEd9wmMFwq7M2I7L1sNW1tkGjNqv/Bvjeo4++21p5S+rfd1qECyHEfqLjolgIIcQ2sEONTUd+6j4MvJjDxWeLqPWWkS0VcAoTgBfCTC2DcW8QqUQc4VocCwt4txfukSOsP21OnV6txjbIaqmwm10LCArYfJ51shcuUKw3Gsu1t+BzKsVtf/3XV888X0vIzM252l2bj+aa3WyWKcorUmLfpovXWPkwfnjjAMr1COqNECr1EC4Uh7BYPoxK3UOPl8dhbwJVRNHwQ6jWouiqz2Ix1IVyKIW6F0XMq6MnWkF/YgmJRg3VUgXhegR+1EMjxohxobAc6Y1x8SCV4thKJYreSoWvZ2aYKp3NrnSFtrmrNCLw0UASJVRCISxWoqj7IVzL9+B71w7j/oFpzCwlUapFcKR7HqHKApAYxEwxhcuXXbQ/Hqf4np3Fu47ZRrXKa9zby+tWLHL88fjW19paiv7ExMrFm3CYRmhbJYiNYA/ss2ddWUB3N89pK0W4EELsJ+4oUex53sttPrpvRwcihBCdZocamw4NAfc+lsX56SyueFmM9sxguF5HohDD5XwvpvPxd+tPPY9p0fE4Ww5Zz19jPTW2QYKpsG+8QcF58yadq2dngR/7sdXH3rwWYAL2xg3ga1/jvup1ejSHPJ9uzR7geSH4PqPI3/4297Va5vlqQuappyi+FxYYjb52bWXNLsBtPY9i592U2HgcZ+ZG8aWz78E53INcKYlssohIqI63i/1YqCYR8hoohVIoh6uI1Eqo+SGEUUMsBgwlilhAFPOVKOKRKj5+1zsIhYDJxTSuTCdQq5RRLZRQS8TeNbWuVjk3XV3A+95HU7JCgSnvc3OMdF+/zvObnKQB1tWrzqhraQnwEUJvuoZ+FHCzEkM83EAkVEWlHsbl+V5UGyHU6mGkojWEyqxFz/SGMF6NYHqaUeqlJecM7vtcwLD65kSCDzPaKhRcj+VKZWtrbVul6Pf18TjXrvG4k5Nb1xvZGB3lYyvN5IUQYr9zR4liIYQQy+xgY1MXYU0CiSM4dgzIRoAsKEqmpymWkkk6J0ciFDLNongjNbYAt1tcBP7hP+Qxcjm+zud5jHKZ4u3Eidbfb7UW0NvL783n6mjUgTAaiIXq8ACEvQYiYR+IhFCpxjEzE0I4THF0zz2rR+dWEzLj48C/+BfA888z0hqs2S0WKfz6+xmVnZ/n+2PeXfjSzQ/hzM0uJAaAEOq4mOvF9FISM0WaVQEe5v006qEI+kPTqCOMSKiOSE8Mx/oWUW/M4MxEHJl4Gf2pEir1MHLlBBb9bqQxhwOJMhZjScyHo+8K0Hqd441GXZp0fz8XIfJ5ju38eSf0zVStUuF5JRJAujeG+lIK1SUPUa+CZLSB2rJj+cxSCh6AbHge8FiLHspmkFoWt5ZSbzXEdn80Grz2kQhFeyLhnM3rdYrzUGjram23u1x/PQwNSQQLIcRWsSWi2PO8SwDW0cTiXT7v+/6ntuLYQXzff6TV+8sR5NNbfTwhhNi17GBj0/XWOr7//cAHPsDPN1Jj2yqdOB5nJHJuju+XyxRD9ToFSbHI1OfpaeCxx4D3vrf12JvXAp59FvjR95YQqnpIeEB3eAkIheF5QMSrIdyoAY0Qil4NpWoSCwsRXL68/szzVkJmcdFdrqEhCk6r2U2lnHPy9evAF79IgfXsGwM4Vx1BKZTHhYk+zFR7UKpFUG2ElwWxj5DnwQdQrEZQCUdxLHYD8+E+zFfTuDIfRiZeggcfpXoYuVICU0tpzCylkI5VkY2WgVoYjWIFvh+F51HUhsMcq6VJx2J83WhQ7FtU2Wp8fZ/3gNX9RqNAJBVDI5qFn6/Dq9XhlcuI+iGE6g2UaiGE/DrK8TCQZS06kkmESy5ybgsnAK93NMoxlEoU5rkc34tGeW2jUQr3J57Yulrb7S7XF0IIsbNsVaT4AoA2npMtub5FxxVCCNGKHW5supFax8OH+Z21amyPHHFu1JZObEIxl6NIrFYpJC0CvbDAfVerFEwzM8D3vsdxtIoYB9cCJieBV789h5vXQ6jXI0hFakgkQoC1lkIE8MNArYZEfQllhFFc9NDVFcbVq5tv8/Pss0ydfvhh4MCBWxcALFI+NsY5+73fYzT21alDmCtUsFiKIhTyEQr58OGG6/k+fN9HGRHM+j1I+4uohYCC7yFXzCAe6UKpGkGhGsNrN4fQ8EMo1SIY6FkASh7g+wh5DXjeSkHa3c15feMNXoOFBaZVWwskqx/2ffc9z+P1sXTnrq4UvHQNjWIVCPnwKgDgIRmuouzHkQ9nMXQghFCaIXOrL89keI/MzfH+yuXcPeF5nCurMbbxJJNckPnsZ7dGmO5Qub4QQogdZEtEse/7H9uK/QghhNgiOtDYdL21juupsb12jZHgapXCNWjsNDHhIsR9fRQeRqBNL3p6KNjm54HXXrtVFDevBVy8CFx6bR5erRuRUBihSAjwGiu/5HlANAoPVcRqFVTrYZRKYczNba7NT7PAikTap4sfOwZ861vAf/7P/N61yTgq5ShCXgMRv4JajUI2jDp8AIAPf1kiF/0ExuvDHLPnoQoPEQ9oIIRKLYyrcz3wvRDS0Sr7Sy+HexNxIFpyCQc9PfyoWKS4nZ93LZB8HvRdMRx8DTijrqWl5UhuIoJSNQI/HYNfaCAUaiCeagCNKELRCOYrQDa9sr780CFG1mdnGakul7nfvj4uKFgUuVRytdk9PTzeVrFD5fpCCCF2ENUUCyHEnUqHGpuup9ZxNQH94ovA3//7jEJ6nmvDU69T7CSTrrbUMsStBjcWo4AuLrdI7u7m6U1O3hqpa14LePuFHCrzJYT8JELhxLKwbEMkAq/aABp11Mo1AJFNtfnZiMCamqJ4zuUo9qtVAF4IkaiPSjWGuu8BaMBbFsNh+MuvPNQRQtFPIOZVkQkXUGzUEKr7qIXC6IrV+HkliobvoVgJI1mtohJNoYTEuyZboRDHmMvxepkreLm8MiIcfARduysVft+EazS6fP0qYVQRRiINhFNA93LLpcVFfq/RWFlffuQIo+a5nHN5DpqxRSK8V0Ih1noPDm5tCvMOlusLIYTYISSKhRDiTmUPNDZtJaBnZhjdu+suCipLnY7FGC0sFBgp9LxlU6x5J4oBpthaJBNwkePxcR6r3VpAfPoaYvUqwuEsQvBRrYfgR5yoW4HnwfdC8Bs+ahUf/f0U9Bt1BF6vwLL2RtYTOBRiBDYWA2KxMKohoF7y4fsefNQBePC9MEIeUGt4YFK1h0hoWSZ7PsqNCLrCS0ilgKVqFMUqUKpFMLUQQ8wbwFIpg8pUFMWiE8XWh7dWc4sU1ivYxpVI8O9q1c2d9ZsulbhoUa1ywaJadSnQ1m6pt5dR30aDxysWXRT47bfdbWstvOxWtoWTpSWOYXiYba4GB7c2hXkHy/WFEELsELtCFHue97/CtU16aPn5lzzP+/Dy39/xff/f7vjAhBBir7PHGptaOnG1CjzzDEVjc43tj37E1FkzUjJhZMLSXIkBfmai7caNlaKqeS1gZCCPE6k8fugdARpAONRAqRZBMlq7ZZy+D1T8CKqNEAbSVRw/HsXv/z7HblNsqbP33sugfaspXq/AstrqWIzbFwp8P9g7ORQC6o3lumKPMWOGu7lRKOS/K+TLPvsWD4Qncf9gAWP5ARSrfZgvxTFR7UE04qFejwLsioRUys11rcZjBQWv4XnO3CoYLTbqdV4rO297BtgCC6BwXljgsUIhXqujR7nYEYnwto1EuHAyNcVjNS+cDAzQpM0iyFuZwrzD5fpCCCF2gF0higF8HMBTTe99cPlhSBQLIcRm2EONTS9eZPscz2NdcbPZFOAEl0VKq1UKqWC0tbubYmV+nqe7XAq86lrA0MEQHhq6hudvjqJajaHaCKPaCAHVCBKR2oqIsTk9R7wGDg1WMT0NvPWW61dbrzOqe+YM8NJLwA9/CPyZP3Nrv9r1CKxCwUVMrV2TuS2b+3IoBHjvJnxzoGGvgWojjGVljAZCKIcSKPlRVBsR9HmzeNB7HaP1EobSfcjP3Ye8dxhVP7Y8V+F309EzGec4bdhYfd85TnsexwS41+Ewr5FFlysVnsvUFAXswYOM/FcqLmIcibBO2PMY8T10CPjQh+giPjLCxY3xcVdL3M6czNjKFOYOlOsLIYTYZnaFKPZ9/+lOj0EIIe54dnlj07Ex4Ld/m6ZYJprMWbi/n0ZZ2SxrSpNJFzk1YyczWDKXaqtDvXGD3/nzfx64775V1gJGRvDUqWfxgwtv4KuFD6NSDiPsNVD3PSyU44iG6R5VqoVRrEURQQ39PUvoPZDGxYtM0x0aolgzx2zrkXvpEkXUX//rwNNPu0OuR2BZmrDvuxZN1SrFcqXCvyMRIBzy0fB8+L5zoA55/nKtMf+OhIEawkiGquj35tHwIri8NIhwVwKDfT6uTgGVhofu3hAGB3k8W2ywxQVrrdTVxWMHjbVCIf5t0eFolNfKxmvCuF53BljWm/nYMdYA9/evbL115Qqv4cWLwEc/yjm7eNFF2NPp9uZkAI97/Trvh3fe4T2wmX8GwTWlTIYu6mfP8rMdKtcXQgixTewKUSyEEGJ/c+YM8KUvAd//PkWStWWyNk2zs3ycOsXI4eAgU2zNZCuX4+cm0iwyXCxSDH3gA8BP/RRFzdtv8/kWcTw0hNHHBvHZd76L0qUMnp97AJNLKVTrYXjwsVhhdNj3PURQR0+siGQqjHOXk+jrY9Tztdc4fqudDfb1ffVV4B//YwqqYMR4LT+0SoUR70qFacQnT1J03rzJczWhaUK4AQ8N30PUqyMerqFUi8DzfCTCVdQaHiqNMMKhMMb9I5ioHEJ8KYJUJIzFehyNcBhdaQrhhQXuOxx2aeyWomy9gQHOsYlhE8b1untt6dcWJQ6HeQ0feohO4uUyhfD737/SMMto1e93PRH2XI6LEVNTjHD399O9+/z51VPamxkbc32Jg6nxNjdTUxTdu6xcXwghxAaQKBZCCNFRxsYoiM+coXA5fpyRwUzGia35eQoogCL3fe+jGLlxw4lC33ep1bXayrZN+TzwP//Pziiqt5cC8xZx9NRTOH3+PH6l+h/wxZ6fxLMLD+FaPoPpYgoL5Tg81BFBDUfikzh+oIyL3ggmJynGr17lLvr6KJBCIXeOvb3AhQvs7fsf/gPPzY65lh/ahQucg95etygwOcltZmcpwAHAA3OX/ToP7HlAw7ekag+lWhQNACEPaNR91PwYvFAIpXoU83Ohd3s7x2JMVw6anPm+MzMLhSiIGw2KQrtG4bCrNwZctNgiuha9P3oU+NSngPvvB/7Lf+G+n3xy9drcVv1+V4uwT0zQmGxmhuI4EmHqfK3GhZfz5/n45CdvTWkPYos11jbLrkuxSOFrqd4HDzqhvEvL9YUQQqyCRLEQQoiOYlG4wUEKiHKZgnZ+ntE2M1sCXF3rQw9RHFp0eHHRuR5bKnUkQtFSKABf/aoTZckkBdx3v0tx9eyzwKc/DXzsY3hXoY7iS/gb576Ez9z8In6v9FH81viHcNXL4kBoCu/rv47McArjA+/DjctxHIxRdM/OUix2dbnxWOpxJELBXy4Dr79+a3ug1fzQnniCwnhujnMEMJXcBLGJ0Wo1hGgEqDcaCMEHfA8NhBD26ErdwHLNr+8hggYiXgPRmAcvFnq3rZJFeUMhphn7Pl9PTTHqOj/PY1qUtKeHAtGMwsJhlz5tdd/5PM87leLcP/oo8D/+j4zymgAvl7nA0a4uuFW/33YRdnPqvn7dpZwfOsQ5zmZdarN9L7hAESS4WDM46PpIG8EU6UyGAnhgYNeW6wshhFgFiWIhhNhu9oDBVacwt+lcjqIDcILPIsMWMc5kWK87OcmIa6lEEWLmTlZPbIZankchubTE/Vh0M593PY7n5ij2zp0DXn55OdU1oFCHzp6F93wS3bEyHkmPY/TAEjBwFDh+HPWFLBoXKcCtvrdepxhLpTgOM6kyIZ5M8pit2gOt5of2+78PfOUrLiqazTJqDFBMzsxQAJbrETTgA2gg7lXghUKo++xVXK2H4ftAGA2EPB8VxFBrhBGpcD5qNY6vv5/7m5ri4gPAsV+/zs89z7XESqcZGZ+cdAZbgEtht2hxfz8fhw5RzA4NMY09l+N+x8ddVLpVHTlwq1lWuwj7lSuM2tdq/G5/P+fK9hOJtE7JbqZ5saaZ4H6uXWO6+S/8QttbXQghxC5GolgIIbaLdsWIa/Xp2UdcvMipGRhwUbig4JuZoWCy+txajZHiUIjCN5UCfvzHKdLGxxk1tlZNL754awSzUuFnFgG198+eBb7wBUZCmVJLhTr5xhTOXa8gt5jCyQcLwIALYYYLFOLT03w2cc6oLd+zKKo5UsdiPL/V2gO18kNrFRUdHmY0+oc/5DHKZcBHCIlEDdnIIlKNAq4Xe1H140iGy4Dno9KIoA4PCIURioTQ8ENYWuLcW9pzdzfHNz1NsZ9Oc8ypFAV9NksBCHDhIhrlw1LYQyFXR3zoEEVpJsN5DppOXbzIc5qZcQsIvs9zuXGDQvPmTabKDw+37vfbHGG/etUtetjaU7A1U5BWKdlGq8Wadqy2HyGEEHsDiWIhhNgOVitGNDWwnqLGO5xymSIy2E4JcILv8mWKM4sixuN8/667XMQwElkpJHM54Hd/l+IIYDqzRXE9zx3LUnytdVCxCLzwAj+zlNqLi4OYjgED9wCR4yuVledRNFqrpEjE9eaNRikmSyWOw9oWHT/OyOpG2wO1i4pWKhRihQIF4+AgcNddEdwz6OGlZyO4cSmESL2BciOKWiP87gDrCKFe9951kraxh0Kcv1SKc57LOXfn/n5neBYUprbwEGzRlE7Tnfmuu5hKnkpxHchMp8bGgFdecWZeQ0Pcrlh0faXn553J2mOPte/3G4yw/+7v8jsHDzLK3exKXSisbN/U1dV6gaLVYk07WqV2CyGE2FtIFAshxFaz3mLEtYoa9wHxuDNiaiab5SMoZK5epeB54gn2/w2m7BpnzzpDrVjMpfFaT99olJ+Z+LJ6V8+j4A6m1LYT7YBLGbYoabCPsaUPmznV/DwFmhlwRSI8r5deWn9Wfau647fe4twdPgzcfbeLihYKvcjFgUq4gVCogXptub44BERj3oq6X7s1rd+xtZKy+mLjyBGmrVtkt7ubotKi44WCc/+22z6bpaHWyZOM/lcqHP/Xv8466YMHGRW+etU5aZtZWiTCsdy4AXz7224/7eZoaIgtnQYHOaagIDYnamuVZWna5hR98SLw+ONu+9Wueyu2sg+yELsKlf+IfYJEsRBCbDUbKUZcraixw+zEb6H1tNaxSGWtRvF0lCW9ePnlW8V0ocCU3mqVkUATxFbbGg67bSMR13vXapIHBljjaqmw7UR7oeBaR2Uy/Nv6BVu0GHAR4kqFwrtWA370I37HsHRra1X02GPAhz/MuW51DT7zGb7/8svA5z7Hzz784ZX7zOUYefX9EKqNEMIRoN4A4LlUaROhtRrHW626hYiZGT6uXnWtlOxvi9ZbhDked+LZhPbJk4wKj4zw9RtvsAf19DQj52+/zYjuoUOc28VF7qe7e6VrdzzO78zMcPsTJ1a/n1pdr6ATdbBVVqXCuulCAfja1zhmS9pYbbGmFa1Su4XY06j8R+wzJIqFEGIruQOKEXfyt1C71jrNaa7ZLOtLs1lO6yOPcC2hWUznchQy4TBFH+B65oZCK0Wx57ma4mrVpVYHU2HbifZcjhHHTIZCyNKkTbxamyjbr4mw73+f2968yZrZTIafFYtMJY5G6ZR9zz1OZJlwbb4GfX0UeHfdtVIQ2zlXKm4OLJptEXNLGY9GOcZajZ9lMoxIv/gi/z54kOPr7maUulLh8ZPJlWntsRg/t0h4OMzzjEZvrSJYWHA9pi9d4rOJ0HzeRYp939WI23W7dGn1+6n5euXzFMQTEysj9QDHbTXTly8DX/yiS9pYz2KNUau1T+0WYk+i8h+xD5EoFkKIrWSPFyPuxG+h5ujnAw84E6nFRQovc422CK9FM598kg8T02+8we8dOEDhtLjI7cNhij+LYFq9bDAKaVh0M5mk6DYzrnK5vWg3gWmC8ehRLiZYfbEdKxRywnhx0aVOx+M8zrVr3F88TkFWKtEw7OJFjieZ5PEPHLj1GoyMtE/xtXOwubBFAd93c2pYxDwc5r4mJnjep0/TxCydpnj8gz/gdo8+6tK/mxcuLKL/4otMDX/1Va75BKsILl9mND4eZ/S2XKagTiZd1NwMuxIJV6NshmirrR81X6/5eR7Dsg0WF91clMs85t13s7VUMGljrT7IQa5ccYs1u+CfsBC3h8p/xD5FolgIIbaSPVyMuN2/hVaLQFt/3x/9iCImWI9bLFIY9fdTNM7Pc1+Tk9zPlSsu9db3KaaDAjAoAk0QGbZNIsFU3nT61lTYVs7P4bCrSW00uJ9MxqX/2rmVSu6WCIW4z8FBRnmvX3eXPZnkd7u7Kdws0mw1vpbWHLwG16/zs2Ats2HvmZFWtepeW/sli75alDgUoiC2iPz16xSJ997LczMXbbsnTGg2Y9f0zTf59+HDK+8TmzsT4hYNj8UYmbbWWiaKFxb4WV/f+taP7Hq98ALvkYUFzm8u5+rIg7XPvb2sl25O2mjXB9kI9ikOumoLsae5Q8p/hNgoEsVCCLGV7OFixO38LbRWBDoWoxirVilIolEXLUylKNIiEW77d/4OxVQ+TwHV0+NqiWs1J0QBFwUGXOTUorUmaj3PpSW3SoVt5fxsjtZWk5pMst71yBGe0/Q0a3At/ddSilMp1g3fvOnqWwEn9k2kh0LcZyLBRYLLlzlHuZyrlb5+3UV5m1N8o1HeUrGYE78WxQ6HOS5Lr7YU60aDInt4mAIQYLr3+fMcx/w8BeR6qNc51miUpmhBrL3TxIRLva5Weey+Pl5Pw8bU28vHetaP7Hpdu0aROzdHYWyRfVtssMWLCxc4V81JG+0cv2MxZ9CVzVIQm6u2EHuaO6D8R4jNIlEshBBbyR4tRtzO30LriUB/85sUMYODwAc+sLKPsKU0X7rEx+QkxV1vLyOLZtZkUcFqdaVrskVHzfDKUprNIbq7m+ZW2SzH2ioV9vRpjvN3f5fbWJuhVIrR0qDzs81nPs/jpFJOfHd3cz/FIp9NAC4sUHSaqDex29dHUfzGGxTBJgorFe6/q4sitjnFNxzmvoMp6EGRbOnVwYh0Os1U9kcecedh0dB33uGYG431ib+5OR5jaOjWfwLW3unaNZ5zJOKi2aXSyiSL+XkK8oEBjttSz9fi9Gmm9/+3/+acrG1xwnoid3dzjBMT/M7g4K2iu1Uf5NlZfnb4MOfqZ35GgljcIezx8h8hbgeJYiGE2Er2aDHiVv8WCtYN/+EfAq+/3j4CXS4746dajdHXhx5yn09MUFBfu0bRXi5zDAsLFIYmeExMJRIra36txhdw4tgiyN3dwIc+RLOqsbHWqbDNad8muIeHecx6nQK0u9t9x8S3jcminGZAZRFkc32u1SgkbVxm0nXjhhPAuZzb3oy08nkKx4kJ/v3AA5yPbJbHzOW4XaXC93t7XYR8cdFFTsNh4L77GNUNpkRbdkCpBLz2GufioYfWXuuZneX59fW13ubECUbLrXY8leJ1KZd5Xet1vl+tsl778GGK0o2sH01NubkYHFyZkm3Xxc51ZoZz0t9/q+i2e3Z+ngsTRr3OeX/22ZXbCbFn2cPlP0LcLhLFQgix1ezBYsSt+i3ULCDzefbSnZ8H3vMeVxsbxJycs1mKr+lp5wqcywHf+x4jxPW6i+5aXWq9zmM0Goya9vbyb+txG0wPtlZJFjmNRhlpTqcZ+bb1iZMnKeK/9S2O+7XXKJqsptbmaHqaAqtYpDi6ft19PjbGqKK1WbKUaYsY23mUyxxnpbLSFdrqfufmXA/kSMTVSJvIr9WcedRrr3EMIyMuxbda5d+WslytOpfsSMRFihMJJ55b1Qnfey/rvc3s6sSJ1iZbAG/tTMadTyuyWeB976N4vnGD8xwOu/vJ2lt1dfH969c3tn5kWQO+7/bTbiyZDK+VifNm0d0u9d/cxGXEK+4Y9nD5jxC3i0SxEEJsNbugGHGjPYa34rfQN74BfP7zPG6hwOheuUwRVixSKM7PA6dOUSQaFtW19NalJYqPdJppw1evUrxZWyHAGTRVq05IlUoUWaEQI7cWeU4knOhPJFira22QrNfuPfe4GuFf/3XX59fcsHt6WC/caNAJ2lyWr1xhva9FnScnKaCthhXgGGdmXA10f//KCLEJ5WiU25sotiiuOW/X6y4qbvu1yGfQuMr3+Twy4toc3XMPz/uNN1x9c/B62+LCmTO3Xh/ARYwvXOA2b73Vvu67VAIefJDjeeed9lUEw8PABz/IFGerL7a2WKmUO8+LF3kPPP30+tePLl7kuQ0N8RrOz9+6GGOYKZvn8ToH/53IiLcFO9HAXHSGPVr+I8RWIFEshBDbQXMxotktd3fzB8TJk/yFv8W/oDfbY/h2fguNjQFf+ALw5S+vdIKenub2iQRFpLkb23smUoJOztY+qF6nsL58meKmq4uipVJx47BoqgmpcpnvdXevrCO1lPDJSQqbD32I43n1VY51dJQi9p13KPqs1rZY5BgACvXZWZ7rwYOsHz5xgudw/jxTu32fgrBUciLX0rWnp/l+peL6Ec/Pc98W8bY5D4pbE9YmdM2R2/ddOrb1881mee733stWSvE4he63vgW88gqFm7UhstRq2+eRIy4duPn6GHbMWs3Vddt47Pz7+yl0/8yf4fyaO3i729z6PMdinJNkkoLYhH6h4Oaglct2O2wR5PBhjsHOK5NZGTFuNHgdKhXeJw88sHI/MuINsJMNzEVn2KPlP0JsBRLFQgjRgi0JhoyO8rFDkZXb6TG82d9C4+M85te/TgGbSlHA1mpMefV9Hj+dZm0o4NyUTXRZau/cHMVQIuFSZhcWuI2l9wIUbxahtvRdM6ayyCrgopixGCOAJiLNAGp4mGL34kWek0WZ+/ooli5f5n4s3blWc9HexUV+p1zmXJv5konxcNgJ9mqVonNykinUuRzHZGZiFiE3F2bDBLVhhmHmmmyC1qLeFimv1VgfbLfY6Cjwq79KTRONugWKoSHOeTy+0vG5+foAHLNFX+++m+Lb0t4rFRfFtxZVmcz6qgi+/33O5dGj/LxYdOZgoRDF+8AA/56fX7/otMyHeJyRbzuv8XHeaxaFX1rivdXby7ryYMBLRrwBdqKBudgd7MHyHyG2AoliIYQIsC3BkKGhbf+VvBVpnhv9LXTiBI/5wgsrhW/Q1GpmhsKrVKLYzGQoTIJ1w+ZGPD3N39t33UVBduOGS5s2sWki0VoqGWamZaLYoqcmsoGVUWjApUtbi6J6nYI+kaAobI742nEjEY59ctIJQjtfS8+2GuFqlUI4HOYtYK2K7HiWOm412pEI92GfW1ov4CLHwe+Y+Fta4njj8VsN0Lq63C14111uLmIxV4dsIrTV9bH7a3qa+3j0Ub5vLY9yOdeDuVzm/fCrvwr8yq+sXkVw/TpFfCIBfOQjXDgoFFrXKtdqGxOdwcyHu+/m/Xr5Ms/BRHcsRjGczXIc9923UhTLiHcZ5ZDvL3ZB+Y8QnUCiWAghltnLwZCtSPPc6G+hV1/ldpb+CqwUqqEQx2Pthm7coChLpVbWDQMU2GNjzhgrHl8ZJbV2SoATyc3ptEEjrWKR55xKubHV6y4ae/ky62It6hyPU1QODFAUNtcEBwWpmUCVSq4W2tKYUymK4mSSn+fz1AzmAp1IuHHaXNl5WPqw53GugwZhAI9lLtLNdbe2IGAp5UEDNBN3hw4x7TtIfz8FodXcWn1w8PoUCtwHQNGYTjMd+e23uehh/ZbDYY7nxg3gu98Ffu3XmEb92c+2ryKwWuwjR7h/WyRpZqOis1XmQzbbWnTfvMnr0pwFKiPeZZRDvv/oUPmPEJ1EolgIIbC3gyFbmea53t9CXV3Ab/0Wj3noEEVSONz6mAcPUhwuLjIya2nAFrE10djdzTTenh6O0VJxzQwqGuW8mzis1Vwtsjkz2xgWF7k/S5eORFzPW5urxUVuawI8Huc209P8TtC5OtjKydKzgZXR51BopdC1eltLAR8cpKDu6uJ3eno4rkyG79v4LZX62jVnwmWRXBPO8bgTxJaGHY9zm+ZevquJuxMnKIqDNbfBc6rV6Do9P09ROjrKuXvzTX4nnXbpzUGqVeCll/j5Zz8LfOYzt1YR3LgB/M7vrOwpvRobFZ2tMh+ConutLFAZ8UI55PuZHS7/EaLTSBQLIQT2djBkq9M81/Nb6KWX3DFjMSdOW2Hp0YUCI5BLS3zv5k0KDotAP/MM8IEPMPp49iwdh8fGGImMRrmPTMb1Mi4UXJpysyGTiWlzfS6XnZA2MWzR3GDkMOjiHExVDhKMYAMukmxO1kESCXe8I0d4nlevurrbuTmes9Um2ziKReA733F9ka21UiZzq7gtlZwLdbnMaxJMA15N3GWzt9bc1mr8ztWrzvk7m6XmyWZp2jUzw2vYytHZekb39Kz8t9JcRfDSS9srOm83C1RGvFAOudiR8h8hdgMSxUKIfc9eD4ZsV5rnar+FgscMGmUFe+gG6eritn19jIBaRLhdNp4J8q4u4KtfdfWyJojs93ko5KKsgHOijkQoJhcWXO2ujevAAR63XudYgpFnS222dGgTwMEIcFAk298WoW2OlltNss33kSMuin3wIFOQLb03mDZcKHCBZn7eRcStDtgwt+tKxYnigwdvTQNeS9wND7s66slJPtu+jh7l9u+848ZlKdMDAy1vjXfT1A8doqhu929lJ0Tn7WSB7iYj3o4F65RDLoTYJ0gUCyH2PXs9GLIVaZ4b7mtcmEVktoZiHkjHKujvGsRsIt62H2y9zshsJkNh/NBDrm1Qq2OZILeU429/m6J7aoqvTcQCTsAasRjFdLXqoskm1ru6XAp2oeAcq80t2nrlNtfzBgVykGbRHDTGarXt/DzbPt17L887n6dYA1Yam6XTFKvXrrlIdKXCOTB9YrXN9ojH2R+4OQ3YxN0bbzCV+MCBlSZWAP/OZrlNIgE8/jjw8z/vBOg/+Sd0ik4mGelPpVovfjQa/Nxcoy0ToNW/lZ0SnbeTBdppI96Od0FSDrkQYp8gUSyE2Pfs9WDI7fYY3tCP7uUvjLxyDQOXTuPi1HHUZi/iRCSL2dpdmCj0A4iu6AdrAhRghPGJJ4Bf+qX1/ZgfHQX+4l+kUPujP2IU0/oZW02ttTey3+GlEo/X1UXxZtFiE8O5HJ/TaYruuTkKuaAYNnFs79n7zcLY+gdbn91SydUS2+cmXmdngT/8Q44tHqdLs7VWmpqiG7Ol9y4s8FxN4KdS3M/iojMRMzfuep3f+8hHWqcBj41REFrPYOvfbL2IT56kUL5yhft/4gnWAQf3Y+LVnKrb1Y9b3fbAAOd3rX8rOyk6N5MF2kkj3l1h/KccciHEPkGiWAix79nrwZDb7THc/KM7l6Oz9AsvMO30U58CPvYxrPiVPpTL4d54P85H+3FlrgejoQs45ReAxj2YyR/EeD75riPx/DxF58AABddGxYOlwJZKrh9vPM59p9Oud/DICEXdtWtu22TSpUWHw6590IEDnAerwzVRHIzythPCzZjAtFRuwLlMF4uuNvnqVb4+cIDXbGqKY7U+y0ePctuxMZ5TKMQxWqQb4Bw2Gm4hJ5ViRPknfxL49KdvnddvfAP43OeAS5cojKtVXg8zEguHaaTV28t7op24M/H6zW9S1NuChNFocL+FAsdjLtdr/VvZC91fOmHEu2uM/3ZTDrkQQmwjEsVCiH3PTgVDtrMucLM9hoM/uvN5iqeZGYqnq1e5z7NngR98fRp/Mv9NjF50X3gqX8H5M2WcmRgGkt3or93AcO4yfHjIdw2jjjgWFykI776b6bibFTbWa3d4eGWv3WKRxk9LS5xbM9yy/sEWSa3VeF7FoqvzBSiaBwe5vfUGDhIUxKGQa6Vk4hdw/YQzGSfG5+f5mS20lMusob7vPl6bpSU3z7Oz/Hx2luMxo6qBAR4vl6NTs6VIp9PcpquLJln//X8PPPbYynGPjQFf/CLdna9e5fjM5CxYO12tunT0Awdo+tUq6mjitVBgjfeNG3w/GuX5Ly1xIWB4mGPKZtf/b2UvdH/ZaSPeXWX81+kcciGE2AEkioUQ+57tDobsRF3gZnsM24/uiQm22Qn2ne3qouA5fx744oSPhcQIPnnX+/HwKHNnR7M5fOLUW8iVEvj+tcOYWjqBUK0Cz2+gtlRBJRZHJsP64V/+5eVo8yZp1Wv30iXge99jtNXqgYNtjcw52lJ9TRw3O2V3d3O/lYprn9SqTZBFa5s/q1aZgp1KUbDW684V2wS4icVkkhH65nkulZguHYnQ4OrAAS5SLC3xuImEq6nu7eU1GxigMHvjDdcuCXAB/a9/nfsMhVw03VLBg8ZdZkR24QLw5S8DDzzQ+n408ZrPsw+xOWLHYq6G+PhxV1O+kX8re6X7y04Y8e4647+9EM4XQojbRKJYCCGwfcGQnawL3EyP4ZMnV+87m8kAVy/VUMzX8MLcCNDXj0zuhxjN5t497gpfqUgEKJcQrlcQj9TQ3R3BwYM017odmuu+X3uNxk8WZQVcVNcMuCwCan9bDW6wxtno6eF5mwi1vsSrEaxBrtc5lkbD9QtOJPhZLAb8xE/wszNnWs9zsUjRW6+zVdXMjDMmK5dd3bMdJ5OhAPr+91feQ5kM77cXXnC1x0tLFMRmNmYp4nae8TjnbGmJ6dGJBPDf/XetRenoKPArvwL82q+xpVJPDxcUrIbY5n+zgUN1f9mlxn97IZwvhBC3gUSxEEJge4IhnagL3GiP4UjEpUy36jsbCgHpSAUxv4J4wsO53CCeu3wco9kcxnJZ/McfPogzE8PoSy7hrr5ZhL0GYos5hGNhdD98F2Zih95N5b2d8wvWfV+6RDE4M+PqeUsllxJsgtZaFll9b7B1U7HI6xo0V7PIronHVtHiIJaeHWyZZHP9wAMUjNbKKJNp39+3UnFRXHvt+1xISKedUVg6zfcXF7mf7m6mpQfvIesNnEhw23KZCwC+v7JlVHCOLBW8XqeR1pe/zPuju7t1NsPoKPCLv8jxnDvnaqUVONwadq3x314J5wshxCaQKBZCiGW2OhjSybrA9fYYXk/f2bDXQMMHBpMFXC9lcHa6H9+7dgj/+gfvx/NXj6Le8FCsRTC1lEYqWkW/X8OJ5CwyySoyx7fm/IJ131NTrNmNRjmHFgVtRaNB0RePrzRSW1riPgYHnUlUPs/tzEV6LVFcrbr+xLEY0N9Ps6wnngD+8l9mD+Lxce5ntXkulVzbpUbDuVeXSq4OOhp175sL9dmzwOHDbk5ff53HKpcZvf3Rj1aK7WALpWC/ZRPGtqiQz3OOgfbZDAocbh+73vhP4XwhxB2IRLEQQgTYqmDIrqsLDBD80Z3LUSDGYhRaFiVNJFykqu6HEPOAGCoYSC3h7el+/F/PP4FXbxzE5FIaB7sW4fseKo0w5kpJzNZDmK1249RcAsPHt+b8rO77zBnWENt1KRbXFq9B9+lQiK9LJQo/z+P5R6NOEGcyvPZBM60gzW2aQiH+nU5z/ix9u9U8t+rva+7UFr2Nx/l3qeQWMHp6Vl6/QoH7LBR43GPHgLfeokAaGXHi2M4hmDZt5xAUxlZ7HYvxOZGgKdhq2QwKHG4P6oIkhBA7j0SxEEK04HaDIc11gSZi6nWKjmzW1WDuWF3gMsEf3eUyj1sqMVrq+84cKpmkGFuqx9CbbCBbn8ZM9QAuzPWh3gih7ns42LWIofTSu/tuNHzMzzYwUe4DJnqQOMZz3Yrze+oppmEHHaZDobVTnS3FOZHgI5930VvfZ1Q1FGJU1s7fnoP7aG7ZZEK7XnfCJRZz5xmc51isfX9fG3+97vodmxu2XYvmsdg2uRzvo0iE0cLxcV7TdPrW75gAtvPwPJcybu8Hzw1YXzaDAodbi7ogCSHEziNRLIQQ24BF+CoVV0tqJk6hECOG/f1sjZTN7mBdINyP7u9/n4ZVCwsUYCakLEppEc6urggG+kJIl4FrkwnkazEc6CqgVIvA91fYbCFULiGbbACJLGYWYrh8eevOr6uL+zKBZ+J1rUgx4ISn1f/a927epHBNJJwhVU8PRaelR68mkoGVUddw2J2nzfMbb7C22NohpdMr60UTCXcO4TAfq4nzatWljgfP3Yy9ymXu375n2zSP2d4zN2o7h0iEEeEgO53NsN9RFyQhhNhZJIqFEGIbiMfpGHz2LF9b+51wmEJ5bo4uwrOzbNWzk3WBk5MUvDduMKppJkzJ5Epn4nzepcTGD/Xh7bF7cSXfC8/zcHBoHlfyfag0lkOf5mpVrQJdXcgcSGJ8hvufnKSBUyJBcXjffRsTVcGWVufPrzSJsh7BQUykBlOcAQoJE8UmAItF1v729PC93l7WGS8t8VRqNScmg2nPwXZPkYhLy7aocTzOcU9Ocg4uX3aiuFrlvdDb61KhPY/fs3FbuyObWqNU4naW7h2MPMdi3G8+72p8gwT3E1xUsHOz1+YoHWSnsxn2O+qCJIQQO4tEsRBCbAOexyjkzZsUGEeOrBRVZu40MeHSWp98cnvrAoPi8vnnGb0OhSjAqlVGhZNJJ8pMpOXzwHd/2I3K0gMoNBpIhYqYuBFGvuGh5IfQ5xcRqlX4ha4uYHAQoXQSkXk6E8/PU/z39wPf+haF7Xr7Mze3tALcPFpLIWBle6R2rZSCUVGr9zVTrWiUEdxkktH72VnWWFsbpGbxbYLY9lOpuJTmgQHO2X/9rxx3rUYBXC67WuZ4nPMfjzMqe/w474WFBc6XpUNXKtxXo+FqhLu6OJZUyrlY12oc7+HDPMb5864e1fNca6pgtNjOJ7iAkE7z/C21P8hOZjMImZkJIcROIlEshBDbwBtvOAFjda9BQiEnaMbHGXnbzrrAoLi8edO5C/f3UwCaMZMJo2SSQsraBS0uAqFQFJ7XQC0CXMcw6g0flUYYN8pZHOpddpHKZIBkEvk8o+Em6tJp/piv1W7trduuP3OrllbXrjmhGXScbhbCza8tuhwKOVHZ3c3FinyeYrRQ4OdXrrioa6NBYQy4+ttgdDWZ5LxZtPjAAV7Xb33LjfsnfoLHePNNmmHNz7tIcyJBIXvqFNPsf/hD10YqmOady/E9yyawyK2JV6stffRRiqhczrVgsvRpc7huNVehEEX98eMcSyt23OVYyMxMCCF2CIliIYTYYsx5Ohaj6Lp5k+9nMrdGixsNF+FrJ0Zul2ZxedddPGY4TGF16BCF+dQUx1epuNRiSx+2qGijEUI9HAe6I4g1KiguRjDlJxGK92NoKIpQiN+bmnIi06KPp09TuK23P3OrllbhMNN78/mV4q5dyrQRNBADXLrw0pJLQU6lOLabN11tcKtWT0GjKjPt6unhed57L7dpHnc2C3zoQ8DwMOu45+ZcBHhpices112U2fYXiVDMmhiy+uP+fgrY5trSp5+m8E4mnXlYsOdtczq4vY5GeV889titvarte3I57hwyMxNCiO1FolgIIbYYc54+etQJ4ZkZCk+rK67XKYYSCUYXDxxon/Z7uzSLy8uXVzohh0I08onFGGE0EdZo8D3rxXvggDPfWlwKo7s7iUw/BfZCAagsn9/8PB+W6nn0KAW/ia31OBq3a2mVzTo35mAUtJ0YDmJp4ebyHArxPD3PRVFjMR4jl3OC1+bJjtUsKEMhprl+9KN8fOMb7VtxjY5y/5cv8xwvX+ZxIhGmwsbjFLhXrrDmO5vlY2rKRd4HBnhf3bzJjIRgbWllOYv9gQf4fOkS9xOsRW6eL8/joswzz7QWxIBcjoUQQtzZSBQLIcQWY87TsRgjg4kExc/0tHOgjsUopAYGnMHTdtRqthKX1q/X6kyNoSGK96AYjsdXmkd5HgVWrUaBnM0yKplI8O9gb92uLortxx9vLbbaORpPTgK/+7vA66+7+Wzu1RqN8lEsOkG7GhYdtdpgqwEOhVy9rtX+dnXxnMyQLBp1jtfBFGp7L51mCvhnP0vxGmzF1QoTuoUCFxESCQrSP/7HOQdjY7fWkR45wsUHgAsNyST331xb+txz3L6vj6/vuYeC9to1F5m2xYF4nOddr3P7XI77lsuxEEKI/YZEsRBCbDFW81ks8nVQBLXqVfz22050bjXN/ZJtPKkUI4/WIgpwkc9SybUFsrriWIy1x/E4RaKJ4kSC55BKMXXYXLWTSeDuu4EPfKB99LHZ0Xhx0UW1X3+d82Ii3NpXFQocQyrFeezudq2Ugr2EW6U9A67lUbD9kIneep1jGB+nmLT05IUFikeLGJsrdSrF49fr3MfZs5yrYLryav2p02mmrofDPJ4tCqxWR2rXtF1tafO9l04D99/PR6uxXL3KffX28tzlciyEEGI/IlEshBBbzMgIhcXFi84BGKBAaXb13e5azWDU2kinncHW/LwTrdZRyUygAFd7a/W3lYqrL67XKYKtzdD16845+dAh4KGHbhXEzcKs0eD3X3+d82VRbTtmucz9WvuqbJb7t6j04qJrPRQUxEE3asNqiuNx57htUWhL9fZ9ntOVK4zAJhI0v5qaotAM1iZbCnepRPOwxUWKy0uX+P78/Or9qWMxOk7H461bVbWrI10tfbndvWfXPXj/2b336KPAn/gTNAKTy7EQQoj9iESxEEJsMUNDjJqeP09xtZqY2O5azebIoWFth8bHKdqsFrg54up53EdXF/dTKlEYW4TY0onDYVc/fOkS/x4edsfL5fh+s0gsFrltPk/BbC7T5TI/u36dAjufp4DM510PX6vNNXFtQthqoH3fRb+biURci6OlJb5OJJxYLpU4VksHD4dZx2uRa2vXtLDgoudXr/J6Tk/z/WzWmZTZ2GZmWONrZljT00xd3mirqnZs9t577DE+5HIshBBiPyJRLIQQ28BTT1GYmMPysWOdqdUcGaH4evVVCkkTk4BzWLbIbaVCQQi4XrbRKAWzGTQlk3w2YdrfT0F6+jTwp/80z/Nzn2Pk1CKVExOMQprINLOxUolmUXNzrubZRFwk4qLZ+bwbc7HoanvjcVfbm0jwYQZhiQS3X1x0ke/gw9pkVSr8fm+va7GUTLpev+Ewxf/x4/zcWjfZfqpV7iMe53n4PoVuucyHjdsWGhoNnmutxv11d9NpeiOtqtbidu49uRwLIYTYj0gUCyHENjA6CnziE/z73Ln112puZaRubIw1uhcu8Hjf/S6jndYGyFKk02keLxglNjOuWGxlrbNFhotFPlIp1qv+2I8BP/VT3CYYqcxmKYgnJnicgQFXw5zLUfguLVH85nJ8mJC0aPbEBF9bRNnaRc3OrmwbVa+78Zk4thpi68Fcq7nzM2FqgrpWY3S7u5ttkxYXGfnOZnmc+XleH5s7M9oykR4O8zM7VrlM4Rl0HLdxBaPr73//xlpVrcVm7z0hhBBivyJRLIQQ28Tp04xANjsJt6rVNAF77pzbzoyoNpNSe+YMexOfO8cIZjLJ53LZ1eGm02zF09XFNGpzWjasR26xSAFnkWQTdxYVbTQoYA2LVL7wAvDKK4yuRqM8nrk9z88z4trVRbFmtcaXLztRnM263s0zM0ylXlpyQtgEpu3TnKUBF0GORil4zTQMWFmDbDXTFpk+dYrRa0sdByjELSXaosTNLaDMeKy5nrle5/eDZl6AMzILh12991qtqjayYLKRe08IIYTY70gUCyHuGHZjPeRqTsI2tqCAzeVcVK9Y5Hc2mlI7Nsb9nTnDGt1nnmHE8s03GTWuVCgGl5ZYB5tIUJxZKyLfZxTWWjNVKs5kKtiKyGp3SyXgD/+QkU0bXzRKMXj1Kr+bTDpxbGnDw8MUvleu8HWhQPFWKDhDqGBLq/FxCvtqlWONx13kOBKhGK1U3NjicY6/0eBxbTtrN1Uq8bjHj/M4x4/z9Zkzbi4WFriIUCqtTMMGVoriYNTYou3Bz+19wAlxuwa53EoDrOZWVUFX7o0smKzn3hNCCCGERLEQ4g5gq6Os20G7Ws1mAXvyZOv6z9VSaptFz4svci4GB922w8MUZjduUIhZ/W21yoji8DCjsWasZaZQFl0NtjgKhznG3l7gQx9ierCN7+pV4KWXePxy2UVIzb06EqHgHBoC3vc+CuDxcdfiqJVItJZWpRL3n0oxEjo1RdfqSsXNmTlJW5S4p4eivFDg51YfbHW91kfZjjc2xr/jcc71669TeFtadlDcBvE87q/V50EHb0tLN9ftxUU+ml25u7p4L//BH3Aub2fBRHXCQgghxOpIFAsh9jRbHWXdaUzMBwVskNVSalstBlSrjAbPzzNCHMT3GQkNhyksazUK374+4D3vYR3t9et8HYm41F/fZ9Q0EuF3rf52dJRRRxOUr7zCfdRqPJ+HHqIArFZdC6eFBYrb2VkK9P5+1zM5nXZp0M0UCvxutQrcdRfHePkyx2SmWYkEv1sq8fpbz+BEgudhYtTE/9GjvCfS6ZXmUyMjrs7ZjMdsocCMuSy1OpiuHYwimwgObgu4Om1LQy8W2Y/ZXMAtyl2p8L2pKS4ubHbBRAghhBBrI1EshLhtOpWeuRVR1k4yOenE/MmTq2/bnFI7Pr5yMaCri0Lq5k2ecyxGgXrqlGuNZOm/8TgjqMBKB+Xm3sW9vbymANsiWduiQoHfGRhwgvjYMeAHP+D+3vtezvP4uIuSRqMUfVaPfOUKj3P0KPcXClG49vVReDeTy1EgxuMUkq+8wv2biLa06e5uJ+jrdR7D6ndNQFtkOZXifm/eXGk+9dGPAt/4BvC97zkzse5ujtuEeZBWkePg+0GBbKI52CZrcpL7NUOuSoXn2mhwXO95z8YXTIQQQgixfiSKhRCbZqNpy1stnm8nyrobuHiR8zYwsFLMt8LmdXoa+M53gJdfpthPJilUp6dd39x6nULz7FlGTT/4QQo+S921lGjA9fit1291e15aopDLZChWgwZZVoNrmPFWPk+BDvCYqRRF58KCM8iKRDiGQoHp0LEYx2nf7e5eee61Grebm6O4tHRjSzUOh7nvcpn7TSYpwqtVJ0wTCe734Yd5v0Sj3G8786kf/cgJ+J4eF10vl2/tfRyMBBvNvZ5DIbco4ftOWJtD9pEj7trYvFerrl1V0JW7meYFE6VKCyGEEBtDolgIsSk2kracyWx9ze/tRFl3i2gwgWXuw2sRi3H7732PKdLhMCOKwf6/FpE0QXjxIqO5Tz9NURWNMm052KrIIpRBt+fpaT5MzJnoTiQoiE+dWinSrEY3eC7ptKtdtuP09Kysr81mOc65OWfC9frrt7YQsmhyvc79pNMU2/Y6meQ2VicdCvH9AwcYAa9Wed3/wl9g66jmBZquLoptS1nu6eH71t4pkeDfqRTnOriwYNHwYN11EBPFJpTtugP8d9DTw/fm5vjvZ3HR7T8c5jhTKdZvtyK4YHLx4tbd3zLoEkIIsV+QKBZCbJiNpC3fuEFBMTm5tTW/m42ybqVouF3i8ZVptGthab8TE6z9BSgMg/1/KxWX5huNUmBduEBxaLW8S0u8PvE43xscdNFOc3v+wQ+4nTlVx2JMpx4YYIS4OWpZr7vFjmD6c6soqr0fbGsUjVLY3ncfa4abWwhdvux6BGcy/Cwadb2VYzHX2skWBA4fppDs6+OiyKlTwCOP8HhmPtUu26FY5P5M1M/P87WJ+aC7dPBcmuuI7X3riWwp1LaN1UFPTPDcSiU3Hzan8/PAW2/x2rRbPLIFE0t3vx32gnGdEEIIsZVIFAshNsx605bzeeD55/n64Ye3tuZ3s1HWrRANW8XICIXGxYtOeLSjVqNAOXyYYqlapeBNp1cK1FiMUcVi0bUlmptjz+CuLoouE5MmHgsFmj2FQrymuRyjlz/5kzzm5cvAgw+urCFuRaVCkWfjKRQ4jnicgrdUcmK9UqEonJqi2B4Z4TnedRfwqU/x3IJR3M99Dnj1VX7Xap6TSe6/VOLfAM99dpbzcOiQE77ZLO+/4ILIN74BfP7znP9CgXNrbtUXLji3bBPBVpts/ZZLpZXRYdsGcGLYUtYBnksi4Vo8GdPT7nUiwXNIpXieZp62sMAacXPibjX33d08xkZojgbn88C3vrV3jeuEEEKIzSBRLITYEBtJWzZ346EhRiqbRd/t1PxuJsq6GdGwnQwNMfJ2/jwXB1Y79ytXKIYOHaI4sajiwMCt22YynBfr4WsRYou65vPAtWvcRzRKMXfhAq+VHeP0aQqfV18FvvIV5wg9Pu5qebNZJ5ILBe7fWjoBvEeWltx28/Mu+mxpz0ePuvpkM7xaXGSbJOOll/j+6Cj3YTXPJmAXF/k6Hqe4M6G6tMRU81IJeOIJ1gsDFMlf+ALw5S+7iHl3N4/h+6ytHh5m72UzMQMovM2Fu16noJ+ddY7U8bhbkDAXaSOR4H5CIc55Lse5shZSsRg/T6V4/cJhd43jcR5jbo4LFM2i2BZMRkb4WA+tosHFIucjnwfuvhv4wAf2lnGdEEIIsVkkioUQG2K9acvWd9V++Df3ng2ymZrfzURZNyIajO2uq3zqKYpiExrHjrUWIlNTFKqPPAK8+SYFUyq1UngZyaQTy5OTKx2aLX06k2GE1vYxP09RNDIC/LE/5gynMhmmUj/3nHNwBlzNbm+viyTefTePYwLfjKXCYScozVk5kbi1R7DVJTdH8y0roK+P0VyAAj6fp8C0xZH5eVfbWyzSLKunhwI3GuX3rBb+61+nwEylKEZrNaakz87yceoUo9b5vFtQiUQowK0Gu6uLx7GU6GiU74XDLvIbi/H9TMbVWFvf41SKn8/NcdHIXgevoxmIJRIr66uD/5ZswaQ5Et6Odn4AY2PApUs87vQ0r5M5lwO737hOCCGE2CwSxUKIDbHetGWLElpaa6ves8Zman43E2Vdr2gAdq6ucnQU+MQn+Pe5c1wcaDaZSqWAgwcpWM1Z2Yyn5uZcj97gNenudtFMS6O22ttgbXAsxmtVqbBu9e67gZ/+aTdPc3MUeBb19zx3Ta9d4z77+1m7+3M/x/GbwG92u240OG7fX9kj2GgXzQ9mBYyO8lwvX3bmX/E4z8H33X0WDlOIWr30G28A//gf81wuXuS+0mmOwxYWzF3bItF33UVX6Lff5usjR3g86yecTrsFgWzWCfZSiVFvS68eHKRYbjT47+fECZ7n/DyvZX8/r0kzvb081uIij9PTw9e2wNS8YGKR8NVo5wdQKPCzdJpjtTkIpsMbu9W4TgghhNgsEsVCiA2x3rRlixICFB2tes8G2UzN70ajrOsRDcDGnLW3oq7y9GkKoOeeo9AwEQ5wvut1iqHvfpfPr77KGtPFRZeybEZVvb1OtBYKLlLZ00MRNDhIcRcUMiZMrR2QLUyYgLp+nQZYtZpb7Gg0KJaqVR4/FgMeeMAJw3PnKAyLRQprS+Nu5169WjS/OSvA6motG2FujtcjGnX9kIeGKNSHhtx98Nxz/HtoyC0gBCPtoZAb08wMxep73sNjFIt8PnzYuWnn85zLBx/kvXD4sMsqmJ5mqvnExK2LKidPUkx+5StsNWXp2c1Yu610mt/N5znfV6/y2gd7K3/yk+tbpGnnB2DXNZ3meedynINW6dq71bhOCCGE2CwSxUKIDbHetGUzJyoWGels12PV2EzN73qirBsVDRtx1ga2rq5ydJQPS9d+/XX2Izazqu5u99nMDMdhdauJBAVnschHfz8/W1jgc7XqRFy5zPTg/n5GLJtNumxhYnIS+Hf/jkI8mWQEOZ12QjRYV3zzJhcennsO+MxnVgr855/nmKpV1iq3c69eLZrfLisgneZjaorX2/bZnOYeiTA92fdd3bSldbcik6GgnZ4G7rmHCwKTkxx3KnWrwLVUcxtrkHbp92NjjMyfP8+5zGRWCnSLWvs+v9PbyzH5PoV/q97Ka7GaH0Aw1b15DprTtYHdaVwnhBBCbBaJYiHEhlhv2rJFEX1/pSFTK26n5rddlHWzoiEoBLfaHGw9DA0xCnjxIsXm4CDwvvc5c6xKhdHJmzcZIQ22TKrVKHgXFnj+AN+zWuBw2Bk2BWtnrW7UDKP+8A+5MPDsszzOwYM8vgnpI0dWjrk5nTYo8B99FPjt3+b9cugQ753NRPPbZQUUChS6xSLPr1h0xl1Bcjlu73kuhbtdX2Grl7ZU5VgMuP9+4Bd+gXXNG6kvt9ZPzYyOAn/6T3POzp9n9Ded5jlYZkAwqj44yOOOjHAclk6/kSjtan4AzanuzXPQ/O93NxrXCSGEEJtFolgIsWHWk7Z88yYFSH+/Mzlqx2ZqfoM0R1k3aopl9cOvvtpeCO5kXWWrFNdLlyj+rAVTKkXHaHOYDodddL7RcA7P5nZ86JATNs21s4kEBc7YmEuNn5iguI7HubjRbELVbMDUKp12aIgC7sQJl46+2Wh+u6yAhQWOzerXW6VmA67WOJl0EXZLA29lVhYOu3m0BZtHHtna6/xjPwa8/DLwxS+6vsiNRuue0GNjXKR55hnWbm+G1fwA7J6yVHcreTCTtiC3s4glhBBC7EYkioUQG2a9acsf+QhfX7vGH/VbVfPbjlZRubWEcrB++NKl2xeCt0urFFeLhgZbMCWTnM+xMSfqYjEKmVyO2/b18VGr8TqYKG6unb18mWI6n+d53X03Rdlrr7lIfysh3S71upmtiua32s/8PMc8OMhxt0rNBlb2Czbn6GrV9Txupl7nOdm9vNkFm7X4k3+S99wLL/C+GxzkcS27olbjNR4f57klEmxRtRkX9NX8AKyWeHbWzYnNQXOa+e0uYgkhhBC7DYliIcSmWK/QmZu7/SjhZliPezSwsn74/vtvTwhuRfumVimuZoLU3IKpp4f7NyfqcpnzWq3y81CI51WpcB/AytrVTIZpu1bXCrCGdnSUIqw5nbZZSAfnYq102tuN5rfbzyuvAH/wBxT1Dz3U/nsWCb12zfVi9jx3bYPzYi7ZABcXHn749hdsVjuf4ALT9eu89pUKH1ev8jka5b+lr31t8y7oa/kBnDhBUTwx4eagt9dd561exBJCCCF2CxLFQohNs16hs1U1v+tlPe7RP/wha3fPn3f1w7nc5oTg9DTwG7+xNe2bWqW4NpsgBfF9t73VDZfLfL9UogiMxXiO1SrFrvXZLZcp+peWGDnNZBgRB1qn0wKtDZg2kk7brsZ2o9h+RkZ4Xb7//dWN39Jp3oe+z3kIRpRnZlbOi83JwADwxBNbv2DTTLsFJruOAAW8OZFv1gV9LT+AbNZd/ytXnEHazZvbv4glhBBCdJKOi2LP8+4B8AsAfhLAPQAOAMgBeBHAP/V9/1sdHJ4QYh2sJXS2Kkq4HtZyj56aYnTxe9+jaPR9ttLJ5ykMW9WariYEk0mKmWvXtqZ9U6sU12YTJMPaHZVKPGZ/P1Nxfd8ZSc3PU0hZLXJfn2svZKLLWjHFYnS9thpqS6edmeG4bE5isZUGTD/8If++cgX43d8FPvABtmfaCTbSr9rmyPMo9I4do8CznseFAuevXmcq9s///M6Jv+Z/IxcvAl/9Kq/f3Xe3Lz3YqAv6Wn4A1rZrbo7/Lo4e5f23nYtYQgghRKfpuCgG8H8C+FMA3gTwFQCzAE4C+FkAP+t53l/1ff/XOjg+IcQWsVVRwtVo14cVYFrom2/yB//iIsWkRVCvX2d6tPUHDtaatnLivXKFKa3T08CNG1vXvqlVims2y+cbN5yhViJBAbWw4Fylr12jsKtUKPx8n0KwXOZ2nsdtazVnpJRKOXOuuTngnXdcDXU2y22nplwv5FDIuSO//Tbw7W9zDsJhPr/8Mr93//3AL/4i8PTTrc9zKxdI1tuvulgEPvhBHm9qyqXz9/Rwu3KZIvDECeDTnwY+9rG1j73VCz32b+TNN3ktjxxpfc9s1gV9vX4AP/uzwEc/yoWi7VzEEkIIIXYDu0EUfxXA3/d9/5Xgm57nPQXgDwH8Q8/zvuD7/kRHRieE2DOs1oc1l6PQmJigqD10iGImFKIo6uujEC4UnEAEXK1p0I14bIyiytrntBLgwOaES3PkM5ulAZjVFV+5QkFcr3OM5jBdq1HkWxssz3OfZTI8t3KZNaqex3TxI0e4GNDd7VyGo1HO0eIix28tnep1nnsw7Xpigvv3PKb/hsMc4+Qkj3P2LPCX/hLwP/wP7vzWU+u90SjkRvtVZzK3pipbTfl6I6HbcR5G833cqje0maZtxgV9K9uYCSGEEHcCHRfFvu//+zbvP+t53rcB/DiADwL40g4OSwixB1mtD2tzS6OFBQrAapVisqfHRYbNhTlYg7u4SAH41luMJJ48yX1cuUJhshrthEu7KKNFPr/1LY7FBG8kwm0XFxn1NNHb1UVRW6tRNMVi/KxUomC1lOdy2QkrO89EggsE+bwzeTLxHArRcbu/n58vLTkDqFqN+0omKZ7MFRvgZ9ev83z/7/+b+3j66fXVem8k1TzIRoXe7aTzb+d5AO4+TiSYzj4zszKlP5Va2SpsMy7oO1nSIIQQQux2Oi6K12DZQxW1jo5CCLEnaNeHtVVLo0SCotjEpZHJUAD29DB6mM9ThFYqfP3EExRgPT10PW4lwJtpbt+0uLh2lPHxx5mabKnL2SzHPDdHMd5o8H2A+6vXGdFNJiluKhWem4lpiybbd2ZnuUBw5AiPeemSa8fTaPC76TQfsRifCwWmcAPcTzLp6qubz/fYMS4YXL4MfO5zfL1arfdma2SDbFTobSadf62a9a04j3KZNc+XL7vFDTMBq1R4DwRbha3WDmstdqKkQQghhNjt7FpR7HnecQAfA7AE4LkOD0cIsQdo14e1VUujWIyi2EymmuuHGw0aDWWzwBtvMAr5kY8Af/kvU0Q891xrAd4OEy6vv07BtlaUMRqloLrrLgpQM8IycWvnWK/zYe7E3d38rgm1pSXXsqlW42cmjg8dcrXDAEXW+Di3931+p1Ti/k0wFwr8vrlhFwrcZ1/frXNx6BBT1t94A/jN32xf623pwRbBfu219dfIBmkWw/fdt/WCb7WadWDztb5BpqcprKenOf6BgZWtuJpbhWUyjMa3a4clhBBCiNXZlaLY87w4gM8DiAP4G77v59b5vZfbfHTfVo1NCLF7adeHtVVLI0tF7e7mtrlc6/rhmzcpED/0IeCXfsmJrHYCvB3mHP2d73Cfq0UZX3jBpT4/8wxFntWUmhP00pJLaa5WOW6Lftv4QiFXD2yp1rYYkEjQ1Xh4mNtbO558nsdqNDiGqSmeo52nRZpDIVe/vLBA0Xzw4MpzjkSY2j01BTz/POcgWOudy7m0dksP9jx3/FOngMceW3tut6q+d60I82o1681sptbXuHqVcw+s7J9sBFuFTU9z/t773rXbYQkhhBCiNVsiij3PuwTg+Aa+8nnf9z/VZl9hAP8JwIcA/GcA/+i2ByiE2Be0a8/TqqXR/DwF8dCQE5vt6odb9WVtJ8BbYe2b4nFGRdeKMgbrQyMRPsxYCeC5pdN8v9Fwwrc5jTkaZYpzqUQRbPuJxXievb0rtx8eplCenXVmXRYZtlrsUokiz/d5PuUy59UWFZLJW8+pVOLnx4+7eTIncEtrt/Rgi4K/+Sbwr/4Vz2G1utxvfAP4/Oc5X4UCo/s9PbdG3ldzUl6vqF6tZr3VtdxMre/kJFPUgwZpwd7YQTIZuoVbpFhp0EIIIcTm2KpI8QUApQ1sf73Vm8uC+HMA/iSA3wLwKd/3/fXu1Pf9R9rs92UApzcwPiHEHqVVe55slqJrbo6CJ5+ngBoeBt73Pm5nvWpb1Q+3cuLdSH/cK1d4/HqdYs2O2Q4zuyoUXF9kIyjwMxkXxfX9lc7TAP8ulXjOfX0uwuz7PEYrsdXbSxOnYpFCGuDz4CDF9MSEa+FkLZ48zzlSN4tia/9kUWrgVifw5vRgSxd/803gi19sXZc7NgZ84QvAl7/M+bXU8elpnt+JExT4b74J/Nf/StOyo0d5HYKCt78feOml9Zlmlcu8d+bneb80O0E3s5laXxPeo6O3pki3SqG263PkyPqPIYQQQoiVbIko9n1/Hd0cV8fzvAiA3wQF8W8C+EXf9+urf0sIIVbSrj1Po0HReOEChczw8Mp62myWArRV/XA71tsfd2qKqcVLSxRua0UZYzEKnXye6bf9/U6ABQV+Xx/PzeqG63UKpXjcuWpXq64WuVjk55EIBWMrMZfNOnEdj3PehoedIOvpcc7c1sYpFuP25k5t4rdW4yLD4cPch0Xqm53Am/F9isD+/tZ1ueb+/PWvU5ymUowCm+u1mVANDXHuFxaYsl6vM+3ZBO+rr/IzgLXbq5lmzc1RrL/1Fq+LtaNqdoIOUqnwem+k1tfM4vr6OG/AyiwGawO2tMR7ZGCA913Q/VsIIYQQG2NX1BR7nhcDI8M/B+A/Avgl3/cbnR2VEGKv0qo9z6FDFBILCxQvDz7I6KdRq7WvH27HRvrjjowA3/3uSqfrdljkdW6OIiydXinAEgk+5ucpHhMJblOprGzXFGzZlEoxElqp8P0rV5jOHIww2hx4nhOZXV0rI5TmSF0uO2drE90mxE0UX7/O4z74IIXb97/PMTc7gQdpNHidenspUl9/fWVdrrk/v/CCc8g+etSN0SKoV65QfFsf6lCIqdgHDjjH7G9+k/sbHOR1al6ssHT22Vlua3Nux63VbnWCthptS5kfGdlYrW+wVn10lMe0LAaru47FOD8DAzzOgQMy2RJCCCFuh46L4mVTrf8C4KcB/DqAPy9BLIS4XVq157l4EXjlFeDaNQqtmZnWAra5fng11tsfd2qKabprGXNNTABvv83tGg2K3FRqZSuedJoiKJ/nI52m03JPD4XntWvcPhzmODIZRpJ7eiiqCwWKu298A3jPexiVDM7BRz5CIfbqqyv74xqDg1xcKJWc2LTaZuuXfP06tzl5Evhzf86lIr/99q1O4EHm510ENJO5tS7Xan/jcSe+g/sxEypzy7aIs0Wyczkn6kMhLgBUqzzfVlHrXI6PyUkK3nvu4fzacYJO0HaNUinWBSeTPP+N1Po216pbdoA5dFuf6WyWc2ALMTLZEkIIITZPx0UxgH8NCuJpANcA/B3PCuIc3/Z9/9s7PC4hxB1AsA/rk09S8K0lYIOCeD09b9fTH7era21jLqu1vX6dwqe/37lJ9/XxMT/vhF04TNFsQhRw2yeTFGeZDLdNpXj848uWiD/4ARcF8nmK3OY5+KM/ovhrl7qbybjXllocDlMcVqvc/uRJ4C/9JeDppxkpPn+eQnx+np8HMXFptd42zmBdbtD9+dAhHivoKG5Ymna16l6bo7hF6q1Nl5mHTU/fWr8NMNqcy3F+YjFeg1JpZa1vIkERfv4837dWX0ePcsxjY+tfZGlXq24R+iBjYxz/RoW3EEIIIVayG0SxrW8PAPg7q2z37e0fihDiTmc9AhbYXJufoABvZmiIdcWNBqO5R4/eatJktba+T6HayhnbHJonJpg2++ij3DYcpsANhSjc7r3X1R+3MoR65hkuDpw4Afz8z3NszSL+xRc5B729FILNqbvhMOfw5k0Kx0iE4nFwEHjgAeBTn6Igtnn/xCcotJ991jlYN9fINtd6B+tyg+7PlrIddBQ3zFzMBLX1Wo7FnIi2Nl3RKPcTjCIbhYJL9e7u5vapFMcH8LMLFziGSoXR/VKJY+/p4TEsZfyTn1zdRTvIRmrVzQhOCCGEEJun46LY9/2nOz0GIcT+YzUBa0ZO63EkXo/QMYH99tuMKE5NuVrWwUEK01iM7+dyrnbYXKrPnWP02FKvu7r4fOwY8Lf/Nr9vqeHFIl8/9NDqY4pEGG2NxSiIH3/81vl57DGKUM9zIq9ZYL/3vcDLL3N8993H1kcf+ABFcTOnTwO//Ms8zzfecEIvKLSPH3eCuLku9+23ndgNGo41p3dbKrf1aa7VXJ2y7Tvo4t0cRTYsmpxKuf2FwxTuiQSj+vk8F1bCYW6XSHAB4OGHKaTNqAto7aLdio3Uqm8k1V8IIYQQrem4KBZCiN2EGTmdOUPBupojMbC20GkW2AcOuJTjt98Grl7lMVMpRoNNrFo08tIlCq9gczoTpt3dfN8EfrnMuuX1mHkBa7cMCkYsE4n2EctaDfj4x4HPfnZtgfbYYxRyFvE+cKB9a6MrV1amB1+86Eyo0mkuHFjtcLAe2GqFrW2UtZcaGHDHCIpqMy5rTsW2aLK18bJWVYWC+74J4XSa78fjdLK28dh8tHLRXo311qpLEAshhBC3j0SxEEIEsJTpwcHWgsMciYG1hU47gZ3L0dhpcpJR09lZii2rOz59mmm4Z8649N1UinXC9ToFWr3OSOXrr7sob9C5eD2s1TJouyKWQbFdr7P10HrSg5tNqE6c4Nw19/JNJLi/ctkJ/4MHXZ0y4ET1zAyvR1DIGpZSHayZfustXruuLp5/tUoH71DIRbGbxfWxY5y7oIv2elhvqr8QQgghbg+JYiGEWCZo5HTy5OrbrkfotBPYzY7CV69SnEWjrDUGKHgnJijeBgZuTQ++coXf/c53mLI8OnqraFytH/J6WwZtR8Rys2K7lQlVsL43WHddLDo37CNHVtYpGydOcOHC911fZmNigvM4N+eMxYIu4L7vItah0MpWUs3HsVr0oIv2Rlgt1V8IIYQQt49EsRBCLBM0clpNUAJrC531CGxzFD54kKKzWmVt7uIiRV463bpNEOD6D8/MuGh1O+fiVjSnJq/GdkQsNyu2W5lQnT7tevkWCmwFFY1yMcIWFYI9qQEey1yle3ooek2cVypMbb95k9e5p4fmZQcP8ruNBg3DCgX+bQZbzSnaQdZKVRdCCCFE55AoFkKIZcpllwK7HlYTOiawu7rYs7aVSZVhdcQTExRZly5RZA0MtD6u9fIdGaEgC0ar1+tcPD7OzxIJ1iGvR+BudcRyM2K7XZS5p4fvlcuMtp84wbTy8fHVo9HPPENjsJkZJ87feovzOjzMx9yc61dsKdqZDF+XSlzIiMdXtpJqZq1UdSGEEEJ0DoliIYRYZitrci9epLiam6MINYdkc5Y+cWJlFDgWYzSzUHCGUs009/IdHWU0MxitXis1+epVPkejjKh+7Wu3tprq6trZGtaNiu12UebBQeD++1dGmcfG1h+Nnpykk/bnPsdz//CHKX4nJpjOHkzR9n1n4hWNsi66VYo2sP5UdSGEEEJ0BoliIYRYZqtqcs+codi8do11ptZH2OpRZ2f5OHWK4hbgZ9kshem1axS/wRrZdr18c7lbo9XtRGO57FysPY9CuV53raZ++EMagw0O8tzX05u5U6w3yryRaPTQENOkUykab2UyfN9aMFmK9tISFyi6unjdIhFGiO1aNrORVHUhhBBC7DwSxUIIscxW1OSa4/Tlyy5Nuq/PGWVZtNcckxMJRi5NYH/kI8CFC0yhjkadAGvXy7ddtLpZDF68SKE+Pw/cffetadXj40yjnpqiy/UDD3Dcm+3NvFOsN8q83u3apdA3m6PV6/z79dcZcZ+bu3UhpZ2LthBCCCF2FxLFQggRYL01ue2EjjlOHzlCsfrOOyv76IZC7u+ZGYrnnh4nsB95hBHemRngve917Zda1SOvJy3XxOCbb9LA68iRW8V+LseIcrHIKKmlkdt2G+3NvJdZK4XezNGMuTkuPNRqW9eySgghhBA7i0SxEEIEuJ3evM2O0/l86z669vfVqxTgQ0PAE09QYAej1TMz7YVUoQD86Edrp3m3Glczly7xWLEYHxZdPnSI49lIb+a9zkZT6BsNXrv77+d13oqWVUIIIYTYWSSKhRCiic22C2pu6ZTNtu+jazXCAKPRQYG9WrQ6l2OK9sWLLgL9zjvAP/kn7et+V2s1VSiwhnlqiqnctRqjpOPjwHe/S0MwMwVbT2/mvc5mUugffxz4zGe2tmWVEEIIIXYOiWIhxB3L7YiUzbQLalWP2s6kydyme3uBj398ZZ1uu2h1Pu8ELsD3jh3j39//fvu639VaTb3zDgWwbRON0oSrXue5V6srTcFW6818p7DZFPqtblklhBBCiJ1BolgIcccxNuZqey3Ku1kX5Y0InXb1qK1MmsJhjm1wsHU9cHO0emyM6dYLCxzPyAjPweqTV6v7bTcuizoXCvy8p4eCeGmJ4ztwgG7VQVOw1Xoz3yncTgq9EEIIIfYeEsVCiDuKM2fo/mw1tCZmWrkoHz68temua9WjBk2aajXW8t5/f3uTrGC0+p//c/YkPnKEztBBsydg9brfduO6dInR52iU73keRXC1SgGcSrnospmCmVt2q97MdxKbTaEXQgghxN5DolgIccdg7ZDOnGEE9uTJ1mmv3/kOe/IePcr3tqof71a0dGqHjfH06dXNn1rV/bYaV6FAodtoUGAvLlIQl0rcf1AQZzJMsZ6c5Gcf+lB7IX8nsZkUeiGEEELsPSSKhRB3DJYyPTjYWpBGIuzBOzvLXsBjY8CDD7aPJG+mH6/Vo77wgjO3isVcO6XN9K5dzSir1Tm2qvttrpMNh5km3d3NyHCxyNRsz+N7mYzbZyhEkTw1xYWE9Qr5OwXVCgshhBB3NhLFQog7grXaDgH87M03KQbrdabHHj26MqV5K/rxRqOMuFp00VKRUyl+dujQxupRVzPKakWrut/mOtmxMc6H51FIW8Q8nQb6+7l4YDQanLNymSnn6xHyezW6ulfHLYQQQojNI1EshLgjWE801frxdnVR9JVKFIYmim+3H2+wntnzKKYKBQrKmRn+PTwMvOc9wKc/vf59B42yms26LAIdpFJpXfcbrJP91reAl16i+OvqomA3Z+y5Oe4j2DqqWmUE/sd/fPVxb6XJ2U6yV8cthBBCiNtHolgIcUewVjTVamhLJQqd+XkKwHr91m0304+3uZ75mWcoqkzEVipMPy6X+fdGGBnhvl57jZHsUoljt7Tm/n7XS7hWo6gbGWld92t1so8+CvyDfwD86EdMIR8Y4LhatY7q6aFQfuIJto9qx0ZMzjaTmr5d7NVxCyGEEGJrkCgWQtwRtGs7ZORyFHqpFMVkvU7hEw7fum27utzVaFfPHHScHh2leN5oFHp83LVjyuUogsNhiti5OdZIWy/hYnF9Bl4PPAA8/bRLJbdxtmodtbDAtOnHH2+/z/WanN1uavpWs1XjVtq1EEIIsXeRKBZC3BGs1Q6pXmfkMxx2NbK9va7PbzMb6ce7nnpmY7UodCthtbhI0ZbPc6zWQziTobhvNBj1vn6dArmvD/jwh9dX99tsvnXsGOfNBLIJwnx+bVOw9Zic3U5q+nZxu+NW2rUQQgix95EoFkLcEazVDikcpoisVCgiEwkKl+Z6XKNdXW4rbtcdejVhdfMmMDEBHD8O3HcfjcJmZhg9TqVW1v2Wy0yjXq+BV1cX5+zKFeDaNdZcHzrEBYFKhWPJZtc2BduqRYGdZjPjfuUV4MAB3jcXL/L1tWtKuxZCCCH2MhLFQogtYTekj7aLfAIUd4kEBWYqRfF3/Hjr/axVl9vM7bhDr1bPasLRXJ+Hh3kOrep+R0YYKT5yhNuuRrMILxY5nmqV8zM4yPkaGaFYfPLJ1UX2VrSM6gQbGXc+zzTyZ5/l4kE0ynttYQE4eJCid3DQbb9b08WFEEIIcSsSxUKI22I3pY82tx168UUnMq3+NhymKD51qn3q9JUr66vLNdaqZ27GotDT08DXvta+njWZpEgtlSiQrea3Vd1vNsu641ptdbHZSoSnUhTc169zX8kk8JGP0FRrPee/FS2jOsF6xz0xwQj9zZu8dn19vCYzM/z+3BxN0E6d4jwCuzddXAghhBC3IlEshNg0u9G1N9h26OxZJ9S7uynQx8cZ3bPoaCtTpampW2toV4uEr1XPHCQYhb56dfV6VoBCuF6nALt82Qn5oIGXsZbYXMtU6u673fmfPcva5O1cFFhPavp2sp5xW2/riQm22Tp4kML38mVGi48fZxR5YoLbJxIrF1t2U7q4EEIIIVojUSyE2BS7zW24WbT+9E/z0Sxkx8edkG+OJLeqoV1vJHy1euYgFoUeHqaQWq2e1eqgEwlGJqenGSHebB30dplhbXZRYD2p6dvJesZtva2TSTf3nueczCMRJ4KbFy6A3ZUuLoQQQojWSBQLITbFbnEb3mj69tBQ+0hycw3tRiLhq9UzA7dGoY8cAV5/ffV61myWwmtujsJ4aYnjaCWK1xKb22mGtZbJWZCNpqZvJ2uNO9jbOp125mzRqHMyNzIZLri0WrjYLeniQgghhGiNRLEQYsPsFrfhzaZvj47ysVpK9EYj4Z/9rKtnfu014K23XNQ2HmdrpWAUOp9fu541nWZP4tlZCrNYjKnUrVhLbG63GdZGFwXW0zJqJ1ht3Lkcr1ujwXtqeJjp0oWCczI3QiEuYLRauNgt6eJCCCGEaI1EsRBiw+wGt+GtSN8eGmo/ns1Ewp98ksdpNOjkPD7Oz6NRRqfvuQd45BG6Q1+8uL463BMnKIrPn18ZmWw+z7XE5nabYa1lcrbe9k47zWrjHh/nwkk0SkFs5myxmIvgNxoUxIDrgR1cuNhN6eJCCCGEaI1EsRBiw+wGt+HtTN/eTCT82WeBV19lz1rrFzw3R8fi2VlGhvN54MYN4Pvfp2FTJLIy5Rto7Sp98iRNucJh4MIFCumNis2dMMNazeRsve2dOsFq4x4cZNr06dMrTc4sgj8/796v13ldgosXuyldXAghhBCtkSgWQmyYTrsNb3f69kYj4YkE8MorNGO65x6OaWqK9aiex89934mtyUn2SS4W+bkJJzN1sv7DlpLbaFBk3303RdpmxOZOmWGtJzV9N9Jq3IUC8Ad/QPfp7u6V21sE31ynu7t53Xp7eS13a7q4EEIIIW5FolgIsWE67Ta83enbFglvNJhCG4zatjK5mp1lVPjAAQqrYBufdJrHD4X4frXKPrfJJAVYrQb86Ed8v1rlAkIqxeOVStyH7wN33QX83M8Bjz++ObG502ZYq6Wm72aax33jBq9B85xls0ynBriQceEC77VKhQskuRwF8nvfu7vSxYUQQghxKxLFQogN02m34e1O356eZs3y5CTFazBq29/PKKGlzFq6c7XK6C/gIr7p9Mr2POZQnMsB993H986fd6nVnsftw2EK8VKJwsqE/4svAg88QGG8GfaqGVYnWW3Ohof596uvuus3P88+2MF77tVXt78lmRBCCCE2j0SxEGJTdFJgbWf69pkzrC29eZOi+OBBGi1VKowGz87yceoURdH0NEVQTw8jwsE2PgMDK/fd7FB87Bjwgx9QAB87RiFlqdOxGAXxwAAdj3O5229ttVfNsDrJeuYsmeR94nm8ln19vHbhMPDOO9ymlQu6EEIIIXYHEsVCiE3RSYG1Xenb5mh99iyFjedREFu0t9FgJNDqSBMJ4Pp1btPXx8jw+DiFbSrlXIkrFYrkRsNFq+t1/u37fH7gAZ5Ts8mWpWt3d29Na6u9aobVSVabs2yW17xa5eJFu8Wh1VzQhRBCCNFZJIqFEJumUwJru9K3g47W995LIWMCOJOhyDWBPDXFKG+j4cyVAAraRoOitlhkdLlYpGgyARyLsQa1UFiZBp5Ot65ZBra2tdVeNcPqJO3m7MUX3QLQVrugCyGEEGJnkCgWQtwWnRJYG03fPnUKeOml9uNrdrSORFYaKY2POwOsapXbAxT9dqxajZ+HQowo53IUxLUao8kAo8a+TwOnuTkK43S6dQ/iZra6tdVeNcPqJME5m5wEfud3ts8FXQghhBA7g0SxEGJL2GmBtd707dFRCtLf/u2VPYEHBhgNfuopbtPK0Xp4mCnSly/zM6v3TSToND00BHz84xTAX/kKhfGBAxTF1o4pFmO9sedRIKdSTLVOJLjPfJ41qUFDrnZstrWVIsLbw3a7oAshhBBiZ5AoFmKXI0HTnrXSt+Nxzt8bbzCaZ6K5WOScnj/vDJDaOVpns3yYy7TV+87PA11d3OdDD62MWlerLoU6mWRk2FKou7s55mSSkWKAn60ldDfT2mpszKWEr7YgIDbHdrugCyGEEGJnkCgWYpeyGwTNXhDk7dK3PQ/48pf53uCgS4k2mg2QHnlkdUfr5nrfxUVuH4+vjFq//jqjxFZbbMI3GqUgHhjgd3I59/1kkqL+gQfan+dGW1udOUPTMEsJX21BQI7Im2M7XdCFEEIIsXNIFAuxC+m0oNkNgnyjNKdv/8ZvONOs9RggHThwe47WFrX+jd9gujXAyLBFBWMxit9ymdc0kWBf40OHmEI9Ps7Pt6K1lblonzmzvgUBOSJvju1yQRdCCCHEziJRLMQuo9OCptOCfCtoNs1aDTNAmphgr9lsdvOO1qOjwI//OHvTzs8zsjw5yXZMtRojx6HQrf2H5+Z4HYvFrWltFXTRliPy9rFdLuhCCCGE2FkkioXYZXRS0HRakG8VmzVAevRR14oJ2FzUNh5niiwA3Hcfn5vrkYP9h2/eZJT6p34KWFi4/dZWm1kQkCPy5tmoC/p6Iv1CCCGE2FkkioXYRXRa0NwpEcbNGiANDKzP0Xq1qG2rlNp2/YeDKbUf/jCv4e3WccsReWdZrwv6RiL9QgghhNhZJIqF2EV0UtB0WpBvJbdjgLSWo/VaUdvbTam93dZWckTeeW73nhFCCCFEZ5EoFmIX0UlBcydFGG/XAKmdo/V6o7adTKmVI3JnuN17RgghhBCdQ6JYiF1EJwXNnRRh3CoDpM1GbTeaUtvVBbz00tYIKTkid5bbjfQLIYQQYueRKBZiF9FJQXOnRRg7bYC0npTaEyeAV18Ffuu3tq71lRyRhRBCCCE2hkSxELuITgqavRxhbJWyuhsMkFZLqR0f377WV51eEBBCCCGE2EtIFAuxy+iUoNmLEcaxMeeY3S7S+tnPdt4AqTmldrtbX+2GBQEhhBBCiL2CRLEQu4xOCpq9FGE8c2b9kdbPfGZ3GSDtROsrOSILIYQQQqwPiWIhdiGdEjR7JcK42Ujrbqib3cnWV3JEFkIIIYRYG4liIXYpnRI0uzHC2DwHL764/ZHW7aITra/kiCyEEEII0R6JYiF2OZ0QNLslwtiqZrhaBS5cAObngWeeWf37txtp3Q7upNZXQgghhBB3AhLFQoi2dDLC2K5m+OZNpkaHQsBrrwGnTgHDw633sVWR1q3kTmt9JYQQQgix15EoFkLsOlarGQ6HGfXN54GJCb6XSLDWuRXbGWndTCR9L7e+EkIIIYS4E5EoFkLsOlZzZw6H+Uil+DwzA1y+3F4Ub0ekdT2toNrVMO/F1le7gU6n8gshhBDizkWiWAixq1jLnTmbpSCemwMOHQKuX6cwLRSAdHrlttsRad1IK6iHH269j73U+qrT3M4ChBBCCCHEepAoFkLsKtZyZ06ngf5+YHaWKdSpFLC0RIHaLIq3OtK62VZQzeyV1ledZisWIIQQQggh1kKiWAixq1iPO/OJExTFExNAo0HTrXrdfb5dkdbV0rqBjbWC2o2tr3YTW7UAIYQQQgixFhLFQohdxXrcmbNZuk4DwKVLrCu+epXCeLsirWuldQdZbyuo3dL6ajeylQsQQgghhBCrIVEshNhVrNedeXiYn83MMEp48CCNt7Yr0rpWWneQjbaC6mTrq93IdixACCGEEEK0Q6JYCLGr2Ig7cz4PPPAA8JGPAI8/vr2R1vWkdQfZzlZQdzrbuQAhhBBCCNGMRLEQYtexUXfmn/mZ7U+dXU9ad5DtaAW1X9AChBBCCCF2EoliIcSuYze6M683rRvYnlZQ+wktQAghhBBiJ+m4KPY87yiAvwngEQDHAWQBzAC4AODfAfic7/vVzo1QCNEJdps780bSure6FdR+QwsQQgghhNhJOi6KAdwF4E8DeAnA7wCYBdAP4KdAUfyLnuf9uO/7tY6NUAjREXabO/NG07q3qhXUfkMLEEIIIYTYSXaDKH4eQNb3/UbwTc/zogC+DuBpAL8A4Ld2fmhCiN3AbnFn3o1p3XcqWoAQQgghxE7RcVHs+36lzftVz/N+BxTF9+zkmIQQoh27La37TkULEEIIIYTYKTouitvheV4YwE8vv3ytk2MRQogguy2t+05FCxBCCCGE2Al2jSj2PG8AwF8C4AEYBPDjAO4G8JsAfm+d+3i5zUf3bcUYhVgPEkqOO30udkta952MFiCEEEIIsd3sGlEMYADA3w289gH8IwB/y/d9vzNDEmL9jI0Bzz7LVE+LaEUiTPm8917WSO6XiJbmQmw1WoAQQgghxHaxJaLY87xLYDul9fJ53/c/FXzD9/23uSsvDOAwgD8B4P8A8GHP8/6Y7/uza+3U9/1H2ozvZQCnNzA+ITbEmTPAl75EEZjLudrHYpHRrfPn+fjkJ4GHH+70aLcXzYUQQgghhNhLbFWk+AKA0ga2v97uA9/36wCuAPhnnufdBPD/BcXxX7qtEQqxTYyNUQSeOQMMDrLOsZVLrrnoZjJ3bpRUcyGEEEIIIfYaWyKKfd//2FbspwV/sPz89DbtX4jbxtKEBwdbC7xIxL1/7hxNg+5UIai5EEIIIYQQe41QpwewBoeXn2sdHYUQbZicdGnCx46tvu2xY9zu7Fl+707D5uLmTSAcBi5fBsbHgULh1m3v9LkQQgghhBB7h44bbXme9ziA133fX2p6vwvAP1t++fs7PjAh1sHFizSSGhhYmSbcCjOamp7m9+4006DvfAd4/nlgagpYXAQaDSAUAlIpoL8fOHGCfWWBO38uhBBCCCHE3qHjohjA3wTwtOd5z4K1xEsAjgL4KQC9AJ4H8P/q2OiEWIVymXWysdj6to/FuH25vL3j2mnOnAF++7cZHS6XGSkOh4FKBZibA2Zn+Th1Chge5nfu1LkQQgghhBB7i90giv8NgAKAR8Ha4RSAHICXAfwWgH/n+77Sp8WuJB5n1LNYXN/2lQrQ3c3v3SmYudb580A0ysjwwID7vNEA5ueBiQm+TiQYMb4T50IIIYQQQuw9Oi6Kfd//fSg9WuxRRkYoAC9edL1421GrMV14ZISPOwUz1zpyhNHh69dd6jTAZ0ubnplhNLm7+86cCyGEEEIIsffY7UZbQuxqhoaAe++l6LtyZfVtr1zhdidP3jk1tEGjsZMnWTucSDAy3EwmA5RKFMPnzt15cyGEEEIIIfYmHY8UC7HXeeABthZ6800KvpMnKQAN6807NQWcPg08+WTnxrrVNBuNnTjB2mFLlc5kVkaMEwm6U9frwEc/emfNxWpMTnKuymWmi4+MaDFACCGEEGK3IFEsxCYZG3Opw3NzrCt+6y2K46EhphPHYhSN2SwF8Sc/eWf15W02GstmaaYFMFV6fJw1xuEwhXAuR1F499133ly0IniPTE+7FPuBAWYYPPXUnT8HQgghhBC7HYliITbBmTM0l7LU4YEB4K67WE978yajwqUSxd+jjzJ6/OSTd54AamU0NjzMiPDlyxSCS0usMY7FgN5eLhj8iT8BPPxwx4a9I7S6R2IxztXFizQmO3+eiwN3+lwIIYQQQuxmJIqF2CDmtnzmDDA4SMFrBlvvex/rad9+m2nEPT0UgI891tkxbxftjMayWT4KBQrCep3vX7gAfPCDwIc/3Lkx7wSr3SOAS6k/c4avM5k7b8FECCGEEGKvIFEsxAaxdNjBwdZCJpMBHn+cwqhQYDr1TorinaxfNaOx8+cp8prnI53mA+B8HDiwP8y11rpHIhH3/rlzrEmXKBZCCCGE6AwSxUJsgGa35dU4dgx48UXg7Fl+b7uFYKfqV596iqLYop7HjrWOit6JRmOt2M33iBBCCCGEuBWJYiE2QLPb8mqYIJ2e5ve2U/B0sn51dBT4xCf497lzFHl2/ErlzjYaa8VuvUeEEEIIIURrJIqF2ADNbstrEYtx+3J5+8a0G+pXT5+midZzzzHqaZHq7m6mb9+pRmOt2I33iBBCCCGEaI9EsRAboJXb8mpUKhSG8fj2jWm31K+OjvKx33vy7sZ7RAghhBBCtEeiWIgN0M5tuRW1GiOmIyN8bAe7sX51aGh/ieBmdts9IoQQQgghVifU6QEIsZcwt+VslinJq3HlCrfbTrfl26lfFdvDbrtHhBBCCCHE6kgUC7FBnnqKomdqivW8tdrKz2s1vj81xe22021Z9au7k910jwghhBBCiNVR+rQQG2Q3uS2rfnV3spvuESGEEEIIsToSxUJsgt3itqz61d3LbrlHhBBCCCHE6kgUC7FJdoPbstWvnj/P+tTVBJbqV3ee3XCPCCGEEEKI1ZEoFuI26bTb8lNPURRbH+Jjx1r3KZ6aYvRS9as7T6fvESGEEEII0R6JYiH2OKpfFUIIIYQQYvNIFAtxB6D6VSGEEEIIITaHRLEQdwiqXxVCCCGEEGLjSBQLcYeh+lUhhBBCCCHWT6jTAxBCCCGEEEIIITqFRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH1LpNMDEEJsHZOTwMWLQLkMxOPAyAgwNNTpUQkhhBBCCLF7kSgW4g5gbAx49lng3Dlgehqo1YBIBBgYAO69F3jqKWB0tNOjFEIIIYQQYvchUSzEHufMGeBLX6IgzuUohGMxoFhk1Pj8eT4++Ung4Yc7PVohhBBCCCF2FxLFQuxhxsYoiM+cAQYHgZMnGSE2ajXgyhV+DgCZjCLGQgghhBBCBJHRlhB7GEuZHhyk2I00LXNFInx/cJDbPfdcZ8YphBBCCCHEbkWiWIg9yuSkS5k+dmz1bY8d43Znz/J7QgghhBBCCCJRLMQe5eJFmmoNDNwaIW7GTLemp/k9IYQQQgghBJEoFmKPUi6zZjgWW9/2sRi3L5e3d1xCCCGEEELsJSSKhdijxOOMAFcq69u+UuH28fj2jksIIYQQQoi9hESxEHuUkRGXEl2rrb5treZSrUdGdmZ8QgghhBBC7AUkioXYowwNAffeC2SzbLu0GleucLuTJ/k9IYQQQgghBJEoFmIP89RTFMZTU+xZ3BwxrtX4/tQUt3vyyc6MUwghhBBCiN3KGp61QojdzOgo8IlP8O9z54AXX2SKdCzGGuLpaUaIT58GPvlJbi+EEEIIIYRwSBQLscc5fRro7QWee459iK3GuLub9cMnTzJCLEEshBBCCCHErXi+73d6DNuO53kzyWSy7/777+/0UITYVqzlku8DnuccqoUQQgghhLiTeeutt1AsFmd93+/f6Hf3iyi+CKAHwKUODeG+5ee3O3R8sbfQ/SLWi+4VsRF0v4j1ontFbATdL2K9bPe9cgLAgu/7G+61si9EcafxPO9lAPB9/5FOj0XsfnS/iPWie0VsBN0vYr3oXhEbQfeLWC+7+V6R+7QQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2LRLEQQgghhBBCiH2L3KeFEEIIIYQQQuxbFCkWQgghhBBCCLFvkSgWQgghhBBCCLFvkSgWQgghhBBCCLFvkSgWQgghhBBCCLFvkSgWQgghhBBCCLFvkSgWQgghhBBCCLFvkSgWQgghhBBCCLFvkSjuAJ7n3eN53v/ied43Pc+76nlexfO8m57nfdnzvGc6PT6xe/A8L+p53l/1PO83PM97dfle8T3P+7OdHpvoHJ7nHfE87995nnfd87yy53mXPM/7p57nZTs9NrG78Dzvk57n/XPP8/7I87yF5f9+fK7T4xK7C8/z+j3P+7Oe5/2253nnPc8rep4373nedzzP+6znefq9KFbged7f9zzvvy3/ji16njfred4rnuf9Xc/z+js9PrG78Tzv08v/P9o1v2k93/c7PYZ9h+d5/z8AfwrAmwC+A2AWwEkAPwsgDOCv+r7/a50bodgteJ7XCyC3/PImgAqAowD+nO/7/7ZT4xKdw/O8uwA8D2AIwJcBvA3gMQDPADgL4EO+7890boRiN+F53qsA3gdgEcA4gPsAfN73/U91clxid+F53l8A8K8ATAD4FoArAA4A+AUAGQBfAvAnff1oFMt4nlcBcAb8LTsJIA3gAwDeD+A6gA/4vn+1cyMUuxXP844CeB3UPF3YJb9pI50ewD7lqwD+vu/7rwTf9DzvKQB/COAfep73Bd/3JzoyOrGbWALw0wBe9X1/wvO8/w3A3+3skESH+ZegIP4rvu//c3vT87z/C8D/BOBXAfyFDo1N7D7+J1AMnwfwFCh4hGjmHLgw//u+7zfsTc/z/haA7wH4BCiQv9SZ4YldSI/v+6XmNz3P+1UAfwvA3wTwyzs+KrGr8TzPA/AbAGYA/BcAf72zI3IoHaYD+L7/75sF8fL7zwL4NoAYgA/u9LjE7sP3/Yrv+3+gBRIBAJ7njQL4CQCXAPyLpo//LoACgE97npfe4aGJXYrv+9/yff8dRfjEavi+/03f9383KIiX378B4F8vv3x6xwcmdi2tBPEyv7X8fM9OjUXsKf4KgI8C+CXwN8uuQaJ491Fdfq51dBRCiN3IR5efv97ix2sewHcBpMAUNiGE2Ar0u0RshD++/PxaR0chdh2e590P4O8B+Ge+7z/X6fE0o/TpXYTneccBfAxMmd11N4sQouOcXH4+1+bzd8BI8r0A/tuOjEgIccfieV4EwC8uv/xqJ8cidiee5/11sC40A9YTfxgUxH+vk+MSu4vl/5b8J9Cv4G91eDgtkSjeJXieFwfweQBxAH/D9/3cGl8RQuw/MsvP820+t/d7t38oQoh9wN8D8B4AX/F9/2udHozYlfx10JTN+CqAz/i+P9Wh8Yjdyd8B8DCAD/u+X+z0YFqh9OlNstwCxd/Ao20LDM/zwuDqyYcA/GcA/2inzkNsP1t5rwixBt7ys+pHhRC3hed5fwXA/wN0uP90h4cjdim+7x/0fd8DcBA0YxsF8Irneac7OzKxW/A87zEwOvyPfd9/odPjaYcixZvnAoB2JgOtuN7qzWVB/DkAfxI0J/iUDFHuOLbkXhECLhKcafN5T9N2QgixYTzP+4sA/hnYbudjvu/PdnhIYpfj+/5NAL/ted4ZsMTnP4JZBmIfE0ibPgfgb3d4OKsiUbxJfN//2O3uY/lG+U1QEP8mgF/0fb9+u/sVu4utuFeEWObs8vO9bT43t892NcdCCLEqnuf9NQD/BMCPQEE82dkRib2E7/uXPc97E8BDnucN+L4/3ekxiY7SBfebpcSOTLfwbzzP+zegAddf26mBNSNR3CE8z4uBkeGfA1fTfqnZTVYIIZqwHrM/4XleqKmfaDdYglEE8GInBieE2Nt4nve/gHXErwL4cQkasUkOLT8r0CPKAH69zWenwTrj74CL/h1NrZYo7gDLplr/BcBPgzfKn5cgFkKshe/7FzzP+zroMP0XAfzzwMf/O4A0gP+37/u7qvefEGL343ne3wbwfwB4GcBPKGVatMPzvPsAzC33sQ6+HwLwfwIYAvC8TGPFsqnWn231med5/xsoiv+D7/v/difH1QqJ4s7wr0FBPA3gGoC/0yKd4Nu+7397h8cldiGe5/2vAO5bfvnQ8vMveZ734eW/v7Mb/mMidoxfBvA8gF/zPO9jAN4C8DiAZ8C06V/p4NjELsPzvJ8H8PPLLw8uPz/hed6/X/572vf9v77DwxK7DM/z/gwoiOsA/gjAX2nxu+SS7/v/foeHJnYnHwfwDz3Pew70TZkBHaifAo22bgD4c50bnhAbR6K4M4wsPw+AFuXt+Pb2D0XsAT4O/o8myAeXH4ZE8T5hOVr8fvAH7MfBBbYJAL8G4H9XdEc08RCAP9P03ujyAwAugy1VxP7GfpeEAfy1Nts8C+Df78RgxK7nGwD+P2DJzvvANoAFcGH2PwH4Nf2/SOw1PBkdCyGEEEIIIYTYr6hPsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfYtEsRBCCCGEEEKIfcv/H+oBL03gDSZcAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"image/png": {
"height": 357,
"width": 482
},
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Simulation de données appartenant à 2 classes\n",
"\n",
"# Importation de librairies et fonctions\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.datasets import make_classification\n",
"\n",
"# Génération et visualisation de données\n",
"X, y = make_classification(n_samples=1000, n_features=2, n_redundant=0, \n",
" n_informative=2, n_clusters_per_class=1, random_state = 600)\n",
"\n",
"def plot_data(X, y, figsize=None):\n",
" if not figsize:\n",
" figsize = (8, 6)\n",
" plt.figure(figsize=figsize)\n",
" plt.plot(X[y==0, 0], X[y==0, 1], 'or', alpha=0.5, label=0)\n",
" plt.plot(X[y==1, 0], X[y==1, 1], 'ob', alpha=0.5, label=1)\n",
" plt.xlim((min(X[:, 0])-0.1, max(X[:, 0])+0.1))\n",
" plt.ylim((min(X[:, 1])-0.1, max(X[:, 1])+0.1))\n",
" plt.legend()\n",
" \n",
"plot_data(X, y)\n",
"print(X.shape)\n",
"print(y.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"La classe qui implémente la régression logistique est ``sklearn.linear_model.LogisticRegression``. \n",
"\n",
"Consultons la page d'instruction: \n",
"https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html\n",
"\n",
"et comprenons les fonctionnalités de paramètres: **penalty**, **intercept_scaling**, et **slover**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On peut constater qu'il y a plusieurs méthodes d'optimisation possibles pour déterminer numériquement le vecteur $\\hat{\\theta}$, et que la méthode par défaut ``lbfgs`` convient au cas sans pénalisation. "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LR coefficients: [[ 1.32865076 -2.86107543]]\n",
"LR intercept: [-1.57121087]\n"
]
}
],
"source": [
"import numpy as np\n",
"from sklearn.linear_model import LogisticRegression\n",
"\n",
"lr = LogisticRegression(penalty = 'none', random_state = 5)\n",
"lr.fit(X, y)\n",
"print('LR coefficients:', lr.coef_)\n",
"print('LR intercept:', lr.intercept_)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"Pour les données simulées, le code ci-dessus permet de déterminer un estimateur du vecteur $\\theta$ dans le modèle de régression logistique. Remarquons que la valeur de $\\hat{\\theta}_{(0)}$ est donnée par ``lr.intercept_`` et celle de $(\\hat{\\theta}_{(1)},\\hat{\\theta}_{(2)})$ par ``lr.coef_``.\n",
"\n",
"On trace ensuite la règle de classification ainsi obtenue."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA8UAAALKCAYAAAAbE/MNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAABYlAAAWJQFJUiTwAAEAAElEQVR4nOz9e3Bj533nDX4PAAIgQBAEGwT73k22uqlu3VuR1LLlbkuyndhxNrGtt2qrJhe/4+zM+04qqbyZ1GztZN+J591J7cy7M5tJdpKdmo1fzeRSMzW24jiOL7Fl2S1LllqyqGu31OwW2WSzm2zeABAEcSEu+8e3nz4H4MH9ADggf58qFm8HB8855zkHz/d31YrFIgRBEARBEARBEARhN+Lo9gAEQRAEQRAEQRAEoVuIKBYEQRAEQRAEQRB2LSKKBUEQBEEQBEEQhF2LiGJBEARBEARBEARh1yKiWBAEQRAEQRAEQdi1iCgWBEEQBEEQBEEQdi0iigVBEARBEARBEIRdi4hiQRAEQRAEQRAEYdciolgQBEEQBEEQBEHYtYgoFgRBEARBEARBEHYtIooFQRAEQRAEQRCEXYuIYkEQBEEQBEEQBGHX4ur2ADqBpmkzAAYBXOvyUARBEARBEARBEATrOQpgvVgsjjX6wl0higEM9vf3D588eXK42wMRBEEQBEEQBEEQrOX9999HKpVq6rW7RRRfO3ny5PAbb7zR7XEIgiDsTJaWgJkZIJMBPB5gbAyIRLo9KkEQBEEQdgkPP/wwJicnrzXz2t0iigVBEIR2MD0NnD8PTE0BKytALge4XEA4DJw4AZw7B4yPd3uUgiAIgiAIFRFRLAiCIDTH5CTw3HMUxNEohbDbDaRS9BpfvcqvZ54BHnqo26MVBEEQBEEwRUSxIAiC0DjT0xTEk5PAyAgwMUEPsSKXA+bm+H8ACAbFYywIgiAIgi2RlkyCIAhC46iQ6ZERil1XmY3V5eLfR0a43YsvdmecgiAIgiAINRBRLAiCIDTG0pIeMn34cPVtDx/mdpcv83WCIAiCIAg2Q0SxIAiC0BgzMyyqFQ5v9xCXo4purazwdYIgCIIgCDZDRLEgCILQGJkMc4bd7vq2d7u5fSbT3nEJgiAIgiA0gRTaEgRBEBrD46EHOJWqb/tsFggE+DpBEARB2OEUCgWsra0hkUggk8mgWCx2e0g9h6Zp8Hg8CAQCGB4ehsPRXl+uiGJBEAShMcbGGBI9M6P3Ja5ELsfQ6bExfgmCIAjCDqZQKOD69evY3Nzs9lB6mmKxiHQ6jXQ6jWQyiUOHDrVVGIsoFgRBEBojEgFOnGAP4rm56q2W5uaAUIgtmyKRzo1REARBELrA2toaNjc34XK5sHfvXvj9/rZ7OXcihUIByWQSi4uL2NzcxNraGsLhcNveT66QIAiC0DjnzlEYLy+zZ3EuV/r/XI5/X17mdmfPdmecgiAIgtBBEokEAGDv3r0IBAIiiJvE4XAgEAhg7969APTz2i7EUywIgiA0zvg48IUv8OepKeDVVxlS7XYzh3hlhR7i06eBZ56p7k0WBEEQhB1C5nZRSb/f3+WR7AzUecy0uViniGJBEAShOU6fBoaGgBdfZB/ilRV6iAMB5g9PTNBDLIJYEARB2CWoolriIbYGTdMAoO3FykQUC4IgCM0zPs6vpSUW3spkWGV6bExyiAVBEARBaAklituNiGJBEAShdSIREcGCIAiCIPQk4tcXBEEQBEEQBEEQdi22FcWapv2KpmnF21+/3u3xCIIgCIIgCIIgCDsPW4piTdMOAfj/ANjo9lgEQRAEQRAEQRBsx9IScOECC15euMDfbcb8/Dz+4T/8h9i/fz88Hg+OHj2K3/7t30Y0Gu320EqwXU6xxmzqZwGsAvhrAL/b3REJgiAIgiAIgiDYhOlp4Px5tkRUnR9cLrZGPHECOHfOFp0fPvzwQ3zkIx/B0tISfvEXfxF33303XnvtNfzRH/0Rvvvd7+Lll1/Gnj17uj1MADYUxQB+C8BTAD5++7sgCIIgCIIgCIIwOQk89xwFcTRKIex2A6kUu0BcvcqvZ54BHnqoq0P9J//kn2BpaQl//Md/jN/8zd+88/ff+Z3fwR/+4R/i937v9/Af/+N/7OIIdWwVPq1p2kkA/xrAHxWLxRe7PR5BEARBEARBEARbMD1NQTw5CfT3A2fOAHffTa/w3Xfz9/5+/v9rX+P2XRvqNL73ve/h6NGj+I3f+I2S//3Lf/kv4ff78Rd/8RdIJpNdGmEpthHFmqa5APwFgDkA/7zJfbxh9gXgbivHKgiCIAiCIAiC0FFUyPTICIWwqyzo1+Xi30dGuN2L3fMxvvDCCwCAT33qU3A4SiVnIBDARz/6UWxubuLVV1/txvC2YRtRDOBfAHgIwBeLxWKq24MRBEEQBEEQBEGwBUtLesj04cPVtz18mNtdvty14luXL18GAJw4ccL0/8ePHwcATE1NdWxM1bBFTrGmaY+C3uF/VywWX2l2P8Vi8eEK+38DwOlm9ysIgiAIgiAIgtA1ZmZYVCsc3u4hLkcV3VpZ4esikc6M0UA8HgcABINB0/+rv8disU4NqSpd9xQbwqanAPyvXR6OIAiCIAiCIAiCvchkWGXa7a5ve7eb22cy7R1XkxSLRQAAGw91n66LYgADAE4AOAkgrWlaUX0B+P3b2/z/bv/t33drkIIgCIIgCIIgCF3B46EHOJutb/tsltt7PO0dVwWUJ1h5jMtZX18v2a7b2CF8OgPgKxX+dxrMM34JwGUATYdWC4IgCIIgCIIg9CRjYwyJnpnR+xJXIpdj6PTYGL+6wMTEBIDKOcNXrlwBUDnnuNN0XRTfLqr162b/0zTty6Ao/i/FYvHPOjkuQRAEQRAEQRAEWxCJACdOsAfx3ByrTFdibg4IhYCJia7kEwPAk08+CQD43ve+h0KhUFKBOpFI4OWXX0Z/fz/OnDnTlfGVY4fwaUEQBEEQBEEQBKEa585RGC8vswdxLlf6/1yOf19e5nZnz3ZnnACOHTuGT33qU7h27Rr+5E/+pOR/v//7v49kMolf/dVfhd/v79IIS+m6p1gQBEEQBEEQBEGowfg48IUv8OepKeDVVxlS7XYzh3hlhR7i06eBZ56p7k3uAH/6p3+Kj3zkI/it3/ot/OAHP8DJkydx4cIF/PCHP8SJEyfwB3/wB10dnxFbi+JisfhlAF/u8jAEQRAEQRAEQRC6z+nTwNAQ8OKL7EO8skIPcSDA/OGJCXqIuyyIAXqLf/rTn+Jf/It/ge9+97v49re/jX379uG3fuu38Pu///sYHh7u9hDvYGtRLAiCIAiCIAiCIBgYH+fX0hILb2UyrDI9Nta1HOJKHDp0CM8++2y3h1ETEcWCIAiCIAiCIAi9RiRiOxHcq0ihLUEQBEEQBEEQBGHXIqJYEARBEARBEARB2LWIKBYEQRAEQRAEQRB2LSKKBUEQBEEQBEEQhF2LiGJBEARBEARBEARh1yKiWBAEQRAEQRAEQdi1SEsmQRAEQbALPdBzUhAEQRB2GiKKBUEQBKHbTE8D588DU1PAygqQywEuFxAOAydOAOfOAePj3R6lIAiCIOxIRBQLgiAIQjeZnASee46COBqlEHa7gVSKXuOrV/n1zDPAQw91e7SCIAiCsOMQUSwIgiAI3WJ6moJ4chIYGQEmJughVuRywNwc/w8AwaB4jAVBEATBYqTQliAIgiB0CxUyPTJCsesqs1W7XPz7yAi3e/HF7oxTEARBEHYwIooFQRAEoRssLekh04cPV9/28GFud/kyXycIgiAIgmWIKBYEQRCEbjAzw6Ja4fB2D3E5qujWygpfJwiCIAiCZYgoFgRBEIRukMkwZ9jtrm97t5vbZzLtHZcgCILQEywtARcuMLPmwgX7BRJ97Wtfw2/+5m/iYx/7GAYHB6FpGn75l3+528MyRQptCYIgCEI38HjoAU6l6ts+mwUCAb5OEARB2LX0She/f/Wv/hXefvttDAwM4ODBg/jggw+6PaSKiCgWBEEQhG4wNsYVzMyMvqKpRC7Hlc/YGL8EQRCEXUkvdfH7wz/8Qxw8eBB33XUXzp8/jyeffLK7A6qCiGJBEARB6AaRCE36V6+y7VI1s/7cHBAKsWVTJNK5MQqCIAi2ode6+NlZBJcjOcWCIAiC0C3OnaMwXl7maieXK/1/Lse/Ly9zu7NnuzNOQRAEoetIF7/2IZ5iQRAEQegW4+PAF77An6emgFdf1WPhslmGTIdCwOnTjIWzQ5KYIAiC0HGMXfwmJqpve/gwP05UFz8JMKqNiGJBEARB6CanTwNDQzTpX76sV00JBJg/PDFBD7EIYkEQhF1LK138RBTXRkSxIAiCIHSb8XF+LS1xBZPJsMr02JisZgRBEATp4tdmRBQLgiAIgl2IREQEC4IgCNuQLn7tRQptCYIgCIIgCIIg2BjVxU9l2FRDdfELh6WLX72IKBYEQRAEQRAEQbAxqotfKMS2S9WQLn6NI6JYEARBEARBEATB5kgXv/YhOcWCIAiCIAiCIAg2p9e6+P3N3/wN/uZv/gYAsLi4CAB45ZVX8MUvfhEAEA6H8W//7b/t0uhKEVEsCIIgCIIgCILQA/RSF7+33noL/+W//JeSv01PT2N6ehoAcOTIERHFgiAIgiAIgiAIQmP0She/L3/5y/jyl7/c7WHUhYhiQRAEQegV7L4CEgRBEDqGdPGzDhHFgiAIgmB3pqeB8+eZRKZi5VwuJpOdOMHqK3aIlTNDhLwgCIJgc0QUC4IgCIKdmZwEnnuOgjga1auqpFIUm1ev8uuZZ4CHHur2aHV6WcgLgiAIuwoRxYIgCIJgV6anKYgnJ4GREVZQcRk+unM5NqScnOTvwaA9hGavCnlBEARhVyKiWBAEQRDsivK0joyYi12XS//71BTLkXZbFPeqkBcEQRB2LY5uD0AQBEEQBBOWlnRP6+HD1bc9fJjbXb7M13WTciHvKrO/KyE/MqILeUEQBEHoIiKKBUEQBMGOzMwwFzcc3i4sy1G5uisrfF236FUhLwiCINiSYrHYkfcRUSwIgiAIdiSTYaix213f9m43t89k2juuavSikBcEQbAQTdMAAIVCocsj2RkoUazOa7sQUSwIgiAIdsTjoXDMZuvbPpvl9h5Pe8dVjV4U8oIgCBbiuf0MTiaTXR7JzkCdR0+bP9tEFAuCIAiCHRkb0z2puVz1bXM53UM7NtaZ8ZnRi0JeEATBQgKBAABgcXERiUQChUKhYyHAO4VisYhCoYBEIoHFxUUA+nltF1J9WhAEQRDsSCTCfr5Xr7Jac7UKzXNzQCjESs+RSOfGWI4S8jMzel/iSighPzbWXSEvCIJgIcPDw0gmk9jc3MT8/Hy3h7Mj8Pl8GB4ebut7iKdYEARBEOzKuXMUxsvLbHVU7jHO5fj35WVud/Zsd8apUEI+FKJQr4ZdhLwgCIKFOBwOHDp0CCMjI/B6vW3Phd2paJoGr9eLkZERHDp0CA5He2WreIoFQRAEwa6MjwNf+AJ/npoCXn2Vnli3m6HHKysUlqdPA888Y49+v+fO0but+hAfPmzep3h5mePutpAXBEGwGIfDgXA4jHA43O2hCHUiolgQBEEQ7Mzp08DQEPv5Xr6s5xgHAgw7npigsLSDIAZ6U8gLgiAIuxoRxYIgCIJgd8bH+bW0xHzdTIbFqcbG7Bl63GtCXhAEQdjViCgWBEEQhF4hErGnCDaj14S8IAiCsGsRUSwIgiAIQvvoJSEvCIIg7Eqk+rQgCIIgCIIgCIKwaxFRLAiCIAiCIAiCIOxaRBQLgiAIgiAIgiAIuxYRxYIgCIIgCIIgCMKuRUSxIAiCIAiCIAiCsGsRUSwIgiAIgiAIgiDsWqQlkyAIgtAY0ndWEARBEIQdhIhiQRAEoT6mp4Hz54GpKWBlBcjlAJcLCIeBEyeAc+eA8fFuj1IQdhdipBIEQWgZEcWCIAhCbSYngeeeoyCORimE3W4gleKC/OpVfj3zDPDQQ90erSDsfMRIJQiCYBkiigVBEITqTE9TEE9OAiMjwMQEF9+KXA6Ym+P/ASAYlMW4ILQTMVIJgiBYiohiQRAEoTrKGzUyYi52XS7971NTwIsviigWhHYhRipBEATLkerTgiAIQmWWlnRv1OHD1bc9fJjbXb7M1wmCYD3lRipXmX9DGalGRnQjlSAIglAVEcWCIAhWsbQEXLjAReiFCztDGM7MMF8xHN6++C5H5TOurPB1giBYixipBEEQ2oKETwuCILTKTi54k8nweNzu+rZ3u7l9JtPecQnCbqQVI5VUpBYEQaiIiGJBEIRW2OkFbzweLq5Tqfq2z2aBQICvEwTBWsRIJQiC0BZEFAuCIDTLbih4MzZGoT8zo3vAK5HL0Ss1NsYvQRCsRYxUgiAIbUFyigVBEJplNxS8iUQYAh4KUeBXY26O201MSKimILQDZaRSaRrVUEaqcFiMVIIgCDWwjSjWNO3faJr2A03TrmualtI0bU3TtDc1Tft9TdP2dHt8giAIJeymgjfnzlEYLy/TO16+GM/l+PflZW539mx3xikIOx0xUgmCILQFO4VP/y8AJgF8H8ASAD+AMwC+DOAfaZp2plgsXu/e8ARBEAzspoI34+PAF77An6emgFdf1XOns1keVygEnD7N3OleCxEXhF7i3DnWKVBpGYcPm6dtLC/znhQjlSAIQk3sJIoHi8ViuvyPmqb9AYB/DuD/BuCfdHxUgiAIZuy2gjenTwNDQwwBv3xZD98MBBiaOTHBxbcIYkFoL2KkEgRBsBzbiGIzQXyb/w6K4uMdHI4gCEJ1dmPBm/Fxfi0t0eOdyfB4xsZ6z/stCL2MGKkEQRAsxTaiuAq/cPv7O10dhSAIgpHdXJU5EumcCBYBLgjmiJFKEATBMmwnijVN+10AAwCCAH4GwBOgIP7X3RyXIAhCCargzdWrzN+r5pGRgjeNMz2tV/dWXjCVm33iBPMqxQsmCJ01UgmCIOxQbCeKAfwugFHD798F8MVisbhc64Wapr1R4V93WzEwQRCEEqTgTXuYnGT/Z1XdW+VLplL0iF29yq9nngEeeqjboxUEQRAEocexnSguFot7AUDTtFEAHwE9xG9qmvbZYrE42dXBCYIgGJGCN9YzPU1BPDnJ/s4TE+aGBmWICAblvAqCIAiC0BK2E8WKYrF4C8DXNU2bBDAF4M8B3FvjNQ+b/f22B/m05YMUBEGQgjfWokKmR0bMz5nLpf99aornXc5tbyE5sIIgCILNsK0oVhSLxVlN0y4BeFDTtHCxWFzp9pgEQRBKkII31rC0pIdMT0xU3/bwYXrmL1/m6+Q82x/JExcEQRBsiu1F8W323/6e7+ooBEEQqiEFb1pjZoZiKRyuXs0b0MXUygpfJ+fd3kieuCAIgmBjbCGKNU27G0CsWCwulv3dAeD/ASAC4CfFYjHajfEJgiAIHSCToffQ7a5ve7eb22cy7R2X0BqSJy4IgiDYHFuIYgA/B+D/pWnaiwA+BLAKVqA+B2AcwCKA/0v3hicIgiC0HY+HYimVqm/7bJa52x5Pe8cltIbkiQuCIAg2xy6i+HkA/wnARwE8AGAIQBIssPUXAP64WCyudW10giAIQvsZG2NY7cyMnm9aiVyOodNjY/yqhOR5dxfJExcEQRB6AFuI4mKx+B6A3+j2OARBEIQuEomw4NLVqwynreYtnJtju6uJCXPx9NprwDe/SUGcSAD9/fQq93pRp14T+ZInLgiCIPQAthDFgiAIwi7ETOCdO0dRrPJLDx82zz9dXmY7rLNnS/c5PQ38+Z8D3/sesLDAfXu9gM/Hr76+3izq1KuVmyVPXBAEQegBRBQLgiAInaWWwHvsMW43NcVwWlWpOJvl9qEQBfEzz5QKwclJ4M/+DPjhDym4AwFgzx6gWAQ2N4FCga9NpXqrqFMvV26WPHFBEAShBxBRLAiCIHSOegTeiRPAmTPA8ePML1XCORCgN3ligh5io5hVFY5//GMK4P37KYgVhQIQjwO3bgEOB4s+9UJRp16v3NyOPHFBEARBsBgRxYIgCEJnUALvlVfoCdy/n4I4FAL8/u0C70tfAj7zmfpyaM+fB955h15hp5P7NOJw6H9bXQWGhoD1dfsXder1ys1W5okLgiAIQpsQUSwIgiB0hq9+lbm+qRTF8MICxarPR6/u0aPbBd4Xv1hbIKkKx4uLzBn2+bhfM4JBYH5e91LbuajTTqnc3GqeuCAIgiC0GRHFgiAIQvt5/nngG98AZmfpFQbo0c1mgVgMWFvj16lTjQs8VeE4EOA+nM7K2yoRvrnJ97ZzUaedUrl5fBz4whf4c6N54oIgCILQAUQUC4IgCO1lehr4q7+iN9DnAw4dKvXkqnzfhQX+fvp0YwJPVTj2eLjfbLb69k4n3zOdppi0a1GnXqncXE+bqNOnGbL+4ov154kLu4deazUmCMKOQ0SxIAiC0F7On+eC1+MBBga2hzaX5/vOzgKDg/ULPFXh2OOh6I7FKHorhVDn89w+kaD4tmtRJ7tXbm60TdT4OL9EAAmKXm01JgjCjkNEsSAIgtA+VF5sMknBlstV3lbl+66s8PeRkfoEnrHCcSjEEOp4fHuxLYBieXOT4vnwYXsXdbJz5eZW2kRFIvY950Ln6OVWY4Ig7DhEFAuCIAjtQ+XFHjjA7zdvVvbiqnzfZJJexJMn6xN4xgrHuRyLdqlQ7GCw9L2iUXqKNQ247z57F3Wya+XmXm8TJXQfmUOCINiMCrFlgiAIgmABKi92cJBi1eulF7cSTidbJfn9jQm8c+coINNpvtfoKLC1pXueV1eBa9coyn0+iuFeKOqkjmt5mUKi3NOey/Hvy8vcrhMiv7xNVLkHW7WJMvaCFgQjMocEQbAZ4ikWBEEQ2ocxL/boUYY2V/LiqoJb+Ty3bUTglVc4jsUYru1wMFw6laIgn5gAfvZngV/5FfsLYsB+lZt3SpsooXvIHBIEwYaIKBYEQRDahzEv9q672HIJoOd2fp5eW6eTQjiZpIC9667mRKtZheNEgoJ4YID7+4VfAB591PLDBNC+AlJ2qty8U9pECd2jm3NIirwJglABEcWCIAhC+zDLi/V6WWF6ZYUiuFDQ2w6Fw8Av/RLw9NPNvV83Khy3q4Ju+TF85jP86uaivlfaRAn2pRtzSKpcC4JQAxHFgiAIQns5dw54+23gwgXg1i1g/37g+HF+RaN6GHA6DTz+OMOAW6VTFY7bUUHXzgt4u7eJEuxPp+eQVLkWBKEORBQLgiAI7UMJvHici9CFBeC991gMKxQChocphkMhLkh7ofiVoh0VdO2+gLdzmyihN+jkHJIq14Ig1ImIYkEQBKE9lAu8gwdZVXptjRWmUymGT58+zZzYTuXFWkV5Bd1yVAVdQK+gW+34emEBb9c2UULv0Mk5ZPU9KgjCjkVEsSAIgmA91QReMqn3LF5fp9e41wRxOyro2nEBb5abfe4cBY0S54cPm4v35WXd4CEIRjoxh6TKtSAIDSCiWBAEQbCeagLP7+fXkSMUzzdutEfgtbPYltUVdM0W8Mkkf8/nWaE7FOJ568QCvlZe82OPcTs7tIkSeo9OtBqTSumCIDSAiGJBEATBWrrtoelEoSqrK+gaF/CJBHDtGttWqercDgfbV+3Zwx7O7VzA15PXfOIEcOYMi6V1u02U0Ju0u9WYVEoXBKEBRBQLgiAI1tJND02nClVZXUFXLeA3Nug5X11lATLVxzmbBWIx5mOvrTGfuL/f+gV8o3nNX/pS99tECb1LO1uoSaV0QRAaQESxIAjV6WS/V2Fn0C0PTScLVVldQdfj4eJ9epqLc7+f+3c49G0KBVbxXligaB4YsH4B30xe8xe/KM8EoTXa0UJNKqULgtAAIooFQTDHzr1SBXvTLQ9NJwtVWV1Bd2yMYdMrK8DoKLcvx+Hg3wsF9ntOJKxdwHc77F0QrEQqpQuC0ACO2psIgrDrmJwEvvIV4NvfBl5/nYvvfJ7fX3+df//KV4A33+z2SAU7ojw0yphSDeWhCYdbE3hGQXf4cPVtDx/mdkrQNcu5c1x0Ly/TiFR+rLkc/768zO3sXoW5lbB3QbAjO+0eFQShbYinWBCEUnqhV6rQPqwIl6/HQ6MqK1+/Ts/nvn2teWi6kcdsZQXdmRmGQ4fD9LBHo7y3zMKnUyluNzBgbaEtKUwk7DQ6UeVaEIQdgYhiQRBKsWOvVKH9WB0uX6kPaTTKysrLy/za3ORce/994Nlnmw/L75ags6qCbibDolpjY+zdvLoKzM/rhbbyeZ4rr5cGhGCQ/7NSkEphImEn0u4q14Ig7AhEFAuCoCM5hbuTdlRsNvPQOBwsEhWL0VPs9wPDw8yhvXKFi9VmK0N3U9DVqqC7tARcuFDd+67GHwgAd90FzM7yfKiWTG43F/bhMPs737rF7a0UpN0sTCQF/YR20s4q14Ig7AhEFAuCoNPNVjpCd2hnuLzRQ3PhAvDKK2wn5PMBhw5xzhw5wvDFVsPy7VBptryC7vQ08K1v1ed9N47/rruABx/UQ8zzeXqLQyEaEnI54OLF9oy/04WJpKCf0EnaUeVaEIQdgYhiQRB0JKdw99HucHnloYnH+frRUQpiJfCseh+7VZpt1PtuNn6/v/QcdWL8lcLeFcp4sbxMo4cqTNSMB65TPaUFQRAEoQYiigVB0NnNOYVWh9X1Qphep8Lll5aAxUVA04BHHqnuxS1/H6D+89isoLOaZr3vdhh/o4WJAOaCN+rplYJ+giAIgo0QUSwIgo4dQlA7jdXhm70UDtqpcPlm3mdmBvjjP2bocL3n0S6VZpv1vttl/PUWJorF2JqtGU+vFPQTBEEQbISIYkEQdOwWgtpurA7f7LVw0E6Fyzf6PhsbnF+Li7oQrvc8drvSbKve926PX1GrMFErnl4p6CcIgiDYDBHFgiCUYocQzk5gdfhmL4aDdipcvpH3iUZ5LhMJ4MAB4OGHGz+P3ag0q97rzTeBS5fYQ7hZ77udKuVWKkzUiqdXCvoJgiAINkNEsSAIpdglhLPdWB2+2YvhoJ0Kl2/kfT78kO8TiQD33rt920bOYycqzZaHy8/P8xjcbqBYBI4e5f1SiWred7tWym3V0ysF/QRBEASb4ej2AARBsCGnTwNf+hLw8z/PwkiBAFvCBAL8/ed/nv+3QwhwMxgX9YcPV9/28GFuZyz81O79dQoVLh8K0ftajVbC5et9n2QSuHaNP4+NmVdeVtjhPE5OMqf2298GXn+d3m1No4BbXmbv5clJ9mauRDZrfb/hdtOKpxfQIwey2frerxfPkSAIgtBTiKdYEARz7BTCaTVWh2/2cjhop8Ll63mfixdZvCkcru1Fb8d5bGSuVwqXTyaB9XXgxg0akpQg9nq3e4x7tVhdq57e3VjQTxAEQbA1IooFYbfQrLi1awhnK1gdvtnL4aCdCpev531yOWB4mIK5Wsixwqrz2EzF8Erh8n4/sGcPsLYGOBz8fXUVmJ3dfky9Wqyu1Vz03VbQTxAEQbA9IooFYafTSy2COoXVBaZ6vb9zpyoe13ofl4vzVNPq258V57GZiuG1cmqPHqUoXlgA+vu5r5UVepH9/t4vVmeFp3e3FPQTBEEQegIRxYKwk+m1FkGdwurwzZ0QDtqpcPlq7wMAf/iHzM9t5jw2OvZmK4bXCpcPhYBTp/jz6iqwuQncvAm89x730evF6qzw9O7kgn47MeVEEARhhyOiWBB2Kr3YIqhTWB2+Wb6/0VEaIfJ55pWGQnrRKLuHg3YqXL7S+zRzXTY2gG99q/FoiGYrhtcTLr9vH/OIZ2d5PKqoVKf7DbcLKzy9dunJbBUSlSMIgtCziCgWhJ1KL7YI6iRWh2+eO0cP549/zFY8fX387nAAPh8FnMsFpNMSDlqNRq/L8DArQDcaDdFKW6F6w+VDIT2PuFgEPv1pjmEneA6t8vTulIJ+EpXTPL1+7QVB2BGIKBaEnUirfUR3A1aHb8ZiugdxdZV5sf39/N+NGxRFe/YAH/lI74WDdpJ6r8vEBL9/9asUG4cOAWfO1B8N0UrF8EbD5Tc22Mrs85/fWfeXlZ7eXi7o166onJ0uFsWzLgiCjRBRLAg7kV5uEdRJrFrUq0XxzZvAyZPA1hYNEpubQKHA98jlKJS9Xi6KhcpUuy6hEMVxJgN885sMT+7rY5h6JsMiV8o7Wy0aopWK4VI9WWeneHpbweqonN0gFsWzLgiCzRBRLAg7kV5uEdRprFjUmy2Kk8ntecW3bvF9dluoejOYXZeZGeDNNykUbt1iCHUmw/D0mzdZ8XltjUWu9u3T92UWDdFqxXCpnlxKL3t6W8HqqJzdIBbb4VnfzUYZQRAsQUSxIOxEer1FUDdodlFfaVHs9+vFtRS7NVS9FdR1mZ4G/v7vee5GRoBjxxiW7HRSOBQKQDzONkgAPfJGj3F5NESrFcN3cvXkXqUbwsjKqJzdUhzRSs96Na/63r1MqwiHRSgLglATEcWCsBPZCS2COkWrC2kJVe8M5Qvp2VkKYaeT/3c4dBG8usr/u926tz4e5/9UNIQVIdBmYd6JBI1Re/dyLv3CL/SuR69X6Ga4sZVRObuhOKKVnvVKXvXlZeDll/l88Hq5n9HRnRV+LgiC5YgoFoSdiOQ81saqhbSEqrcfs4W000khrFodKYJBGhwuXqTXeGuLi+P1dUZDfP/7wMGDvLZWhECrMO/XXgP+9m+ZR65eu7gIfP3rHIssxNtDt8ONrYrK2S3FEa0yIlbyqi8s0ACmIkficRrFCoWdE34uCEJbEFEsCDsVyXmsjJULaQlVbz9mC+lQiLnEsRgXvA4H/55Msu1VIkGBGgqxwFkyye3efpstnNS1tSIEenIS+MY3ts+nREIW4u3EDuHGVkXl7JaIE6uMiGZe9WgUuHSJwtjvB44fpyje2uI5O3NGcpUFQaiIiGJB2KlIzqM5Vi+kJVS9/ZgtpP1+trhaW+PCNxSiYWJlhaLY5eL/h4e5WN6zh3nIQ0Ol17bVCuR2EGa7FTuEG1sVlbNbIk6sMCJW8qpfu8bUCb9fT6UIBoH5ed7XmYw1ucoSgi0IOxIRxYKwk7Gyj+hOweqFtISqt59KC+mjRymKVXGtVIreYaeTuYQOBxfOySSrUY+P64tl47VtpQJ5+XxKJhk2baw63ut5oHbETuHGVkTldDripFseUCuMiGZe9WSSgjid5t8VDgcjSjY3OVf8/uZzlXdSBXBBELYholgQdjrSR1SnXQtpCVVvL5UW0qEQ2y8BerurrS3+7nLpi+B9+7idEsSVrm2jFciN8ykSYbuo1VW9P7VakO/Zwzzmmzd7Mw/Ujtgp3NiKqJxORZx02wNqhRHRzKuu+sL7fHoqhcLp5P2Yz/P3ZnKVFRL5IQg7FhHFgrBb2K19RI20ayEtoertpdpCet8+eoXffJNh1GqR7/fr7ViOHNEFMWCdSFLzyekE3nlH91T5fPxbNsucZ9U/2efrzTxQO2K3cONWo3I6EXFiFw9oq0ZEM6+6KqalqtEbyed5nMb/NZKrbGQnVAAXBMEUEcWCIOwe2rmQllD19lJtIR0KMZR6bo4L4P37gZMnuU15r2iFFSIpk6G4uHmTC3S/n0LD6Kky9k/u7+d86LU8UDtixwJ3rUbltDPipB0e0GaPs1UjoplXvVI1+kKBHuShoVLDWCO5ymb0cgVwQRBMEVEsCMLuod0LaQlVbx+1FtIffsgq05EI8Pjj9CBXwwqR5PFQoMRiLOhlXHQrjP2T19a4vVQebx07F7hrNiqnnREnVnpArQjBbsWIaOZVr1SNPh5nJEk4rBvIGslVrkQvVwAXBMEUEcWCIOweOrWQllD19lBtIf344xTGsRgX/tWo59rWY9gYGKBYSSYZol2NQAC4fp3bDwzUe8RCJXZqgbt2RJxY6QG1MgS7FSOimVfdWI0+GOR3VWTPeH/OzTFqw+UCPviA7z02Zr+QfEEQOoqIYkEQdg87dSG9m6i2kP7Wt4Bvf7u1a9uIF2xjgwtjv589ic08xYpEgtu53XydQFqJqtipBe6sjjixygPariJUzRgRzbzqXi/DqJeW+DU0VFpkL5cDLl7knAkEgCtX2K5JHbPLxVBrTatvDNJzXhB2FCKKBUHYXezUhfRuw2wh3ey1VeLj3XeBl15iwaxUqrYXLJOhOFhbo0cKoBAwyylOJrlIHxkRzxJgTQjuTi9wZ1XEiVUeULsVoTLzqjscFMbpNMVtMMj794MPOOcSCb5WVaLO5/X7WxXCy+eBu+6yV0i+IAhtR0SxIAi7i52+kO4m3c6lbvTaAsCzz3LbmRng0iWGhAaDHPvoqO79NfOCeTz8/759XFivrtLzpKpP5/P0PHm93Mbn4/a73bNkZQiuFLirjRW1FJoJwX7zTd5Dfn/7ngdmXvWVFd6HCwv6fCgWeQ5cLuD4cXqPzQxmKrXm4kXggQcqv69EEgnCjkNEsSAIu4+dspDutghVdLv3qZF6r20sBnzlK/pCf32dHl2nk0JW5SefOkVBa+YF+8xn9Bz1++8Hbtzg+6k+xW43xxIOAwcOcDzh8O70LKm5OjMDfPe7FBUHDzYegms256XAXXWsqKXQSAh2IsH76fx54No1FqFr9nlQ7zU186obX/v979MocNdd1b3cGxvA++/rIdYSSSQIuwYRxYIg7E56eSFtJxFql96nRmpd2/LcyIMHgddfpyA+eJD7UG2UAHp6lcfYWIjoM5/Rc9QTCeDBBxkmHY3SS+x08nV+P99zN3qWyufq++/TeOD3U3SU52JXCsGtd87vpnNbL1bUUqg3BHthgREXt27R4zw8rIcwN/I8sOIZp4Ty0hLwne/QWHX//dVfc+qUnmes2q1JJJEg7ApEFAuCsLvptUrRdhKh7Sq8YxWVrm15buT8PBfMPp+eD6yE2uoqMDur/15eiMgsj1kJa4DnYHp6d3qWyufqwAC975ub/P+VK8zHVt54I0bjw/PPAz/8oT3mfK/Sai2FekKwo1EK4oUF5vPu3cv7S90P9T4PrH7GNVpoTI3p+HHdc96LkUSCIDSEiGJBEIRewW4i1G6Fd+rBLDcyn2e4s9NZum0wSMG8skIPsOpzaixEZNcc9W5HQJjN1cVFzs+REXoQK3njAd34MD3N1y0u2mPO9yqtztN6QrCvXaMRqb9fv1/qiQIw0o5nXDOFxpxO4JOfBO6+u/ciiQRBaAoRxUJn6PYCTRB2AnYSoVb2Pu0kZl4jp5Me4my2dFuHg97jzU0epxLF5YWI7JSjbpfQerO5ajQ+OByVvfEKt5vH43JxDnV7zvc6rczTWiHYySSvYzrN+8Tr5ZxT94yRas+DdjzjWik01muRRIIgNI2IYqG92GWBJgi9jt1EqFW9TzuNmdcoFKL4jcUo2owtlZxO/k21cKlUiMgOOep2Ca2vNFfNjA+VvPEAizUlEjyGw4erv6edDC92ppV5Wi0EOxplkapCgfNt3z7gyBHz/VR6HrTrGWdFobFGEUeAIPQcIoqF9mGXBZog7ATsJkKt6n3aacy8Rn4/sGcP81vj8VKPZT6vh1MCtVuxdMuzZKfQ+kpz1cz4UMkbn8uxIJemsXK3Heb8TqKZeVotBHt+nkKwr4+C+NSp7Z5/I2bPg3Y946woNFYv4ggQhJ7FFqJY07Q9AD4H4OcB3AfgAIAsgHcBPAvg2WKxWOjeCIWGsdMCTRB2AnYToVb0Pu0GlbxGR49SFKsc12CQ3zc3GXIaCNi7YFarYadWerYqzdVKxodybzzAzwe/n/sZHKzvfe1ieNnJVAvBHhlh2PTp09UFMWD+PGjnM67VQmP1II4AQehpbCGKAfwPAP6/ABYA/BDAHIBRAJ8H8GcAPq1p2v9QLBaL3Rui0BBW5gVJGJL9kWvUftolQpu9dt0ISbSCSl6jUIjeLYC5kfPzFGrFIrC1Bbz7rn1bsbQSdrqxYb1nq9pcNTM+GL3xRnFy9ChzVMtzvSthF8PLTscsBDuZZNujS5d4DapR6XnQTkNbuwviiSNAEHoeu4jiKQD/JwDfMnqENU375wBeA/AFUCA/153hCQ1hVV6QhCHZH7lGnaOaCC3vjRsI1BahrV67ToYkWk0lr9G+ffR0TU/zPMdirJJ89CiPz66tWJoNO/3Od3j9rfZsVZur5caH69fpjR8Z4ZiuXdPFyVNPsR3T66/3luFlt1Aegr24SGNHs8+Ddhva2lkQz05FEAVBaApbiOJisfhChb8vapr2HwH8AYCPQ0Rxb2BFXpCEIdkfuUadxUyERqN6G5TNTT1PM5tlW5RQyFyEWnXtOhGS2CpmnvBaXqNUitvs2QN89KPAfffZO/qhmbDTaJSCc2XFes9WLYOJMj7MznIbgGJlZAQ4ebJUnMzNddfwIlEw9dPq86AThrZ2FMSzWxFEQRCawhaiuAZbt7/nujoKoX5azQuSMCT7I9eoOxgXnWtrXIRFowwx9flYlCgWY8XeSISC+c03S4WtldfOrj16gfo84V/6kj3aKLVKM2Gny8uMKlDX68YN/h4KMZe3Vc9WLYEUCDBXOBJhleKf/Vnd62cUCt0yvEgUTONY8Tzo1PW2siCe3YogCoLQFLYWxZqmuQD86u1fv1vH9m9U+Nfdlg1KqE2reUEShmR/5Bp1B7XojMWAF16gpyEQ4FexyDBqn4/VekMhLrq+9rVSYWv1tbMqJNFKz00jnvAvfrH3vYGNhp3evEnDSTJJg0o6rUcZ+Hz0kB89yjnUrGerXoH0+OPVIxK6YXiRKJjmafV5YGdDWyXsVgRREISmsLUoBvCvAdwL4NvFYvHvuz0YoU5ayQuSMCT7I9eou5w+DXz/+8DAAD17brcuaIaGeO8dOcKF4/R0qbBt17VrJSTRao9cs57wXp6b1cJOy/PN19cp7lZXaUhZXKQQdjopOmIxRiGsrTH3d9++5j1bVhlM2pkLWo5EwbROqyHKnbzeVtCrlfgFQSjBtqJY07TfAvBPAXwA4FfqeU2xWHy4wr7eAHDautEJVWklL+jCBQlDsjsSKtZdlpYoXIJB4Ikn6PFTgkeFvirKhW27r12jIYnt8Mh1MorBTh7m8rDTQIAVtFW+eS7H85rJ0IiSTjN8+eBBGlQUhQLbJanq0F5va54tq3I425ELakaj8+fv/g547DF7zAE7zcdeud5W0KuV+AVBKMGWoljTtN8A8EcALgF4ulgsrnV5SEKjNJsXJGFI9keuUXNYtbgzCttgUO+na0a5sLXTtWuHR65TUQyterfbsdA3hp1euMDnbz7PsfX1sa2U8mbl88w/17RSQQzwd9VjdnWVxbC83tY9W1blcBr3o87jBx9Ycx4bmT+BAPDTn9Lw8NprPMfdyjm2U/6z1WOxMve3XfRyJX5BEO5gO1GsadpvA/hDAO+BgnipuyMSmqLZvCAJQ7I/drxGdvYmWL1IbEXY2unatcOj24kohla82+0WL6dPMzz6nXcobvv69NBon4/X8tYtFtXKZCh6h4dLowsUwSAF39ISx/jRj9rHs9Wu81jv/FlYYD/eRIJedb8f2L+/OznHdsp/ttNYOk0vVOIXBKEqthLFmqb9X8E84rcAfLJYLK50d0RCSzSTFyRhSPbHTtfITh4SM9qxSGxF2Nrl2rXLo9tuT3gr3u1OCYaZGXp2H36Y728MrY9GKYpHRijm4nHmFB87tn0/qujW8jKvgV08W+08j/XMn2iUgnhhgUaHgQHg0CHm8QOdzTm2U/6zncbSDXqxQJggCCXYRhRrmva/AvjfALwB4FMSMr1DaDQvSMKQ7I9drpHdvRLtWiS2Imztcu3a5dFttye8We92pwSD0dhw5sz2c7uywpxhpxPYu5eezo0NCt89e7bnFm9u8pm9f789PFvtPo/1zB/VF9zvp8HB5eL5VHSy8r6dugBUGoux0JvbTSPCTu1I0GsFwgRBKMEWoljTtF8DBXEewI8B/JamaeWbXSsWi/+5w0MTrKKRvCAJQ7I/3b5GViyOrQ65Lt/fq69as2A1G2crwrbb1w5on0e3nZ7wVrzbnRIvtYwNTieFbzZLUbdnD0XL5iaFoAq1zuf5t60tjvmTn7THQr7d57HW/EkmKYjTaYad37xJEaRysI1YXXm//DmgxKUdugCY3RvRqG5A2NzUK+R7vSwUGA4Dn/nMzjNo91KBMEEQSrCFKAagViROAL9dYZvzAP5zJwYjdBkJQ7I/3b5GrSyO29ECqHx/W1vAhx8yPPXJJ6u/vtKCtdo4QyEe+8yMvo96hW09187noydxbIz7GBiwdkHXLo9uOz3hzXq333ijc+KllrEhFOK1jcUoUgYGeE6Hh/l/JV7cblamjsXYR/jnfq6xcbSDdoTcN2pwikZ5jnw+etm9Xl5ns5xsqyrvV3oOZLMUnYFA97sAlN8bKudaGRDKW35tbQGvvAJ897vAr/6qtWNphnYIWDNHgAhlQbA1thDFxWLxywC+3OVhCHZCwpDsT7euUSuL4/l5a0OuK4VwLy5yUe1wsOiR6vdqhtmCtVZoeChE0bJ/PwsrNWqUqHTtAC7WlKfw5ZdZydjqHO12enTb5Qlv1rs9O9u5Fma1jA3KO7y2RoNNPk9hd/fdes6xykGOx4EDB9huyA4LdytD7ps1OOXz+r3hcPCeVrnEZrRavb3ac+DKFYrOQIDXqdLzxaqxVMN4bxhzrv1+jrk8LH9+nvff97/PtnLd+hzvVE0Ku9e+EAQBgE1EsSCYImFI9qcb16jZxfFLL9FrZ1U+YrUQbqeT52Rjo7Tfq1mYJVC6YK03NPzmTY5vYoIL0UaNEuXX7t13eY6SSS66AwEKgHbkaFvl0TWbd+2KYmjWuw10rg1WPcaGo0cpim/epLgbG9P7W/v9+vza2LBXesriIu+lrS2KqvKe3OVUOo+tGJwWFjh/HA6ex1OnKt/TQGvV22s9B/r7eb+urFCEVnu+tDqWWhjvDWPOtdl4VAE3p5NzsFu5xZ2qSWH32heCINxBRLFgf3qhT+Fup5PXqFmP3WuvMaTZqnzEaiHcTif3pxZ/qt9rpUWrccHaSGj40hLwyCPAF7/YvFEiEqEAmpnRKxM/8ED7K8c26tE9dYpe60yGQuD6dQqlSp6XL33J2iiGaoLTWEzI6eT7KO/2kSM0xrS7DZYyEBSL/Jqa4jkrJxTi32MxnstYjOfS7aYIvHGDguboUeCpp7rvwVJeth/9iPMlk+Gc8Pno9T561Py+MjuP1YRmMkmhefMmRffdd/PeMhqcRkd5r8TjwP33cx+VaLV6e63nQDisj2dlpfrzpd1dANS9cfky3yud5u9mqAJue/fSwNGuPOdqdKrw3U6pyC2OCWGXIKJY2DnIg3t30IzHTuW5WZWPWCuE25i7uX8/F9orK1x4l3u3jAvWZovnfOYzDHNtlm5Ujq3Xozs+ztY3X/86/3brFheS6TS9TuPjzIk187x88YvWPRfMvNuVigllsxRYoRBbI734YvvaYJWHZkajHM/MDMXdQw+VirdcjudqeJiC8uBBeo6np5knq2m6sHn+eR5rt8I7jV62W7c4tnSaX7EYx722tj09odJ5NJvnZtcwmWTOq8MB/ON/TCODsYDeSy/xXFUTxa1Ub68nRUSFwq+s8FxUer60OpZ6UPfGhQt8zvp8pSHTRuJxerUjEX5vV55zNTpV+M5O1cGbQcK+hV2GiGKh95EH9+6imXzUAwco7KzK66wVwm3M3UwkuEjc3OQit3zRalywKq9PJ/JPFd2sHFsrL93j4fguXuSYvF49RxegZ0Xlvo6PV/a8WLXgvucePmvef59RB9kshYgqJqRpPD+JBN9zdpae13YV/zILzfT5+Np4XA+zn5igV9FobHjiCRoOVleBv/orzie3m+dycJDbvv56e8M7qxksyr1sZ88yxP/KFRpJwmEeo1l6gtl5NJvnlQpC9fUxCuHllzkXf+3XdKPTyAj31c7q7fWmiKhQ+HicRoOVldLnSyc7NZw7B7zwAu/jfF5/ZigKBY4zmdRzsaPR9uU5V6JdPdKteJ833+R96vd337Df5bBv8XEI3UBEsdDbSL7O7qOZfNT9+7nIreS9KKdWXmc9IdxqwbqwoPeGzef1/5stWOfnO5d/quh25dhKeemaBnzjG/ybCj18912ew0hEF8TloqhZz0stgaYMb/E4vxYXua0ygABc8Pt8FJahEF/3ta+xpdGJE9YKqWqhmePjwPHjwFtv8fzcukVxFwqVho8DHN/iIsdUaVxWh3fWY8g087IZ7yk1HkBPTwgEKp/H8nleqyAUwLl+4QL/r469E5X3600RMYbCJxIs6pdKdadTw/g48IlP8B5dXeWzrLzFl9dLQaxysdW8bEeecyXa1SO9lfdJJJi6cP48jZHDw9017Hcx7Ft8HEI3EVEs9C47JV9HaJxG81Effhj4znesy+usJ4RbLVgBLnRWVrhQzOcrL1iXl9vTqqgadqkcW56X/uyzpaLI2CNWjUt5Bstzthvx8NRahe3ZQ2FkNLz5/Xx/h4Pbx2K68SUcphdMieKpKQpUq4VUrdBM1V/4jTfoLfZ4gDNn+HXPPebnuJx2hHfWY8h8+20aHsq9bMZ7Sgkvr5fbXb5MwTw6an4ey4VmpYJQ2SznWCbD6+vxbD/2dlfebyRFRHldEwkaDZShrBudGj79ac7t8+d5ftJpvcXX0FDpvdHuPOdKtKtHerPvo4yQt25x7g0Pc63STcN+l8K+xcchdBsRxULv0uv5OkLzNOqtOXCAoaBW5XXWG8K9bx//t7rKhc7oqF6IyWzB2s5WRZWwY+XYSiHdqkesUagHgxRHxpzKej085TmrHg/3XShQ7Lz1Fj04AHDsGMeSyfD91CJfjcvrBU6e5FxTlOd9W1X8q/z8lBf6CoX0Prarq/QEZ7P0vl+9SrF/zz2d65+sqNeQeeEC5+PBg9vvgX37SsPo1bkvFnken3zS/Dwa53m5gQXg32Mxft/a4nenk/teWtqeMtDOyvuNPgfSaeAjHwF++ZeZgtGtmNNIBHj0UV4XTWMYvnFOGkO7y0LcWz6N9e6gXT3Sm3kfoxFS01h8bHyc8x7ojmG/U+HlZYiPQ7ADIoqF3qRLD27BRihvzd/9Hb1hq6v8+9AQq8aWiwwr8zobCeFOJChAPvYx5iVWW7RZ1aqoEexYOdYs9FDlKTqdpdsqoV6es13Lw6NWYS+9xGMBKCiM+dNXrlAo7dvHc+1yUWBubur7V++XStGDbhTF5eL8scesEVLq/Hi9eriqMfdbXadCQT9n6TTHvrjI+XX+PAV/J/PX6zVk3rqlRyuYEQrxSxkDrl9nHvDnPw/84i+av8YoNPv7Sw0siQSvXSqli9B8nt/X13kOK6UMtKPyfrPPARUB0E2MUTxeb80onumjT+H8sy2Ey05PA9/8Jt/P+Blw6JD5DjpleKznfZTRqr9fN+gZjZHdMOx3Kry8DPFxCHZARLHQm3TpwS3YCBX2urBQmqvrdFK0lXuLGg25rpXX2ej+PvvZ+j7FrR5nLexYOdYs9NDp1Cs7l+N0UrgY50EtD8/58zzmtTW+rjx/enVVL6KVSOjh2arSbzrN81Escn8qVHRkpFQYm4nzVoVUJkPhODu7fewbGxTdSrCrInOaRqFw4ADnz/vvUwTedVd979lq/nojhsz9+4H33uO1qVRRGdB7K29s8Frv3Vt5n0ahefOmbixQxoyNDQrrwUGeT6+XofORSPtSBqrR6eeAVTQQxTN5z6/gue8fbj5c9m//FvhP/4kbJRJ8scvFr8lJhmqX76BThsda72OMVvD7Od9UakY5nTTsdyq83ID4OAS7IKJY6E268ODehpRH7B5myUfDw1x03bhBL9DSUuliyOoCOc3ur9a86UQhn3LsVjnWLPTQ2OaqfHyqZZTyItfy8Cwt6X2rHQ62mirPn3a5uNAG+J7z8xRMV6/Se7i1xQWsplEYb21RoLz+OvejWgRZkfddzsoKF9orK5w7xrGn0xy7pnFMq6t874EBvX+2yl//4APeL/ffX/s9Wz2ORgyZ4TDP9fr69orK5TTizVNC84UXOJf7+ni+Uin+7PXy960tHmsw2LmUgXK68RywijpyrqePPoXnvn+4+XDZv/1b4N/8G97DmsZz0denF/XyeHjPqvQH4w46ZXCo9j7RqB6Zkkrpz1UzOmnY71R4uQHxcQh2QUSx0Jt04cF9BymP2F1aST6yukBOI/trZN4cPMjiYIUCF+IqL69dxXPsVjnWLPTQ2OYqHtfDDFWo8NBQ9ZY8RmZmmMunqkdrGheoXm+poc3tpuDN5+lFz+X43mqb/n6+FuD3bJYL6UuXuK9AoLJga8Wodv06xRugCzeA759KcbzK45lM8vxEIqWhmXffTW/xrVs8JlXJ2Qwr8tcbMWSqMNJUivO/klgAGvPmKaGZTDIU+uZNzq10mtdyfZ2/BwKcf/39nUkZqDQX2l3Qq53UyLlWIdNNhctOT9ND/OGHfE4dPFjZiAfws+D4cX0HnTI4VHuf+Xmem76+0udqJdph2DejC3Ut7ODjEARARPHuYCd6NLtRkAiQ8oh2oJHko3ffZYXdT35Sn/tWF8ipZ3/1zpszZzhXjcJZCeLRURaxeeKJ9ty/dqocWyn00KwljwrpDod53qena3t43nqLC+p4nMeYSFDU9vVRCA0NcZGtaZxPuRy3cTgYkeB2cxzpdOkKzenk76oa9uDgdsHWqlFtaUlvL6aOXy2mlZezr49j93o5TrebQsrocQ0GOablZQquRx+t/J5W5K83asgcHqYYXV/nObPKm6eEZiIBPP8870cVctvfT5EVDPJnoL0pA/XOhXYV9OoEJqkCLYfLfvObfDZo2nZBDJRWps9meS+WGzM6ZXCo9j4jI5xTp09XF8TqODrRvqoLdS266eMQBCMiincyO9mj2Y2CRFIesfvUu5qKRikG3nuPC6IrV3Tvj3HuW7morJQnWu+8+eEPgR/9iEJqa0sXzrmcXtzJ6WzfYriFyrFtwSz00NiSZ2WF1xXgucrluHqu5eGZnGToZTzO1xQKPN5CQQ+lTaX0cEzlkVUViYNBLmQTCe5DocSox8P/5XJcsD/+uC7YrDCqqVjD8fHSPs3BII+hWNRDutNpfle5suUcOMBtVletFZ5mNFNR+aGHeFw3bljrzRsfB37v9yi4f/QjjmV0lIJY7V/1/s1keB2tThlodC60o6BXl2gpXBZLPHeJBK9/td7zqjK9x8PoinJjRqcMDmbvk0yyTeClS/xsqkan21d1OJ+9Wz4OQShHRPFOZTd4NDtdiETKI3afelZTqu/j6irnu8Ohi5duzP165k0opFfAPXaMbWW6YXBpsHJsW4v7mIUeDgzosXaqQM3AAMc5Osp5Uc3DowwUCwsU+8ozrEKglZDc2ODvLhe3Syb5XRUhU2Ja5RKrHOdiURfbuRxDlJVgs8qopo5/eFgv6KVC3gEKOtUL2+XSPZ8+3/Z9eTycb0NDPOZ25q02Y8g8d47Xsh3evPFxFr+7coXnb32dhidlFFGef6+XP1+7xvO6b1/rLqpdbmBtKVx2ZobXy+3m/VsNlQ+eydDIUcmY0SmDQ/n7LC7yWdQpw369dDifvRs+DkEwQ0TxTmS3fOB28sEt5RHtQa3VlLHvo9/Pc6+qUR850vm5X++8uXaN4krT+JXJlN6znTK42K24jwo9/NrXaFyYmdFj7IJBju3uuxlSrlwH1e43ZaAYHeXCOhrV80kBnnv1cypF8aU8UcrjqqoVZ7Pc1uXSBajXq+eoapoe4mx871aNasZYw/Hx0p696+sU8Ftb9Az7/RTsfv/2VlbK5fLII8DnPsf7pt15q80YMtvpzTOmDLhcfI90muLX4+H17e+noePyZf4vEqEh5sKF5seyyw2sLYXLKmGr2mbVwunkvFJvbCfsXGG8w/nsdj4Vwu5BRPFOZDd94HbqwS3lEe1BrdWU6vuoCvWsrFCYKEHQ6blfz7xRrTmyWY65vN+ukU4YXOxW3CcWoyhR+bp79ugFsTY2WCjq3Xe3uw7KRdTAgG6guO8+rq7icb3Fk9ere4y9Xv5vY0N/X02j6FSeZGXA8HgoQAcG+DqHg9cwn+f2L75Y+t6tGtXKYw3Le/aqitI+H8+VKppWnrNodLk8+ii/OhFG2qzRpV39gB99lEaFmRneo3v2cK6rUGqAhoX5eV73yUngP/wHPRqgnpSk8rDZN9/c1QbWlsJlZzx8Prlcpb25K7G1xbm1Z4/94m3tZoQ0G1+H8tntfiqE3YGI4p3GbvRoduLBLeUR7UG11ZSx72M4bF6VWNGpuV/PvIlGOU5V7bm8366RThlc7FLcpzzq5f77a0e9AOa1FLJZGk1Uq50DB5h3rtqirK/rBapUWDTAxfShQzwHa2t6eLLPp4titU+3m/uKxRidkMtxjo2OWmdUqxRrqHr2qmraCwt6PqWx/2k1l0snwkjtZnQ5d45zLBrlNT1wwLyS8dYW/764yPl1//21U5LM6nqsrXEeqtzzagWWdqiBtbVw2THej5OTPP/GQnPlFAq8rsEgq/nb8fzZ7X4wo0Ph5b1wKoSdjYjincZu9mi288Et5RHtQbXVlFFcOhz8XVUlLve6dmru1zNvVF9g1f7I2G/XjE4aXLpR3McoxL/3PeCdd+qPevnzP6d4MauloHJHAwEKH1XJem6O5x/Qq33n83qvX6+X1csHB4G/+zvuR3mVi0Xe62trFDgqP7m8WvHsrLVGtWqxhkpBxGIUvsUi9zU9bR+XixVGF6sMNgMDnF/9/Xpv2/J2ZEoku93829AQhVm5ocFonInFzOt6qNoBfX3c/tQpvae1GTvUwNp0uKz6DDh6lMWzVNslY2syQPfuF4tsx/TZz3bisJrDLkZIGyCnQugmIop3GuLRbA9SHtE+VFpNKXGpaVyEJpNcbFbqcdqJuV/PvHE6uZhLp/ll5tk20osGl3pWOOVetUSCocCxGMOdo9HK5+XwYVbvvnGDQvTgwe21FPr7gZdeYrj1hQvAXXfRC7y1RS+xKpC1tcW5pKpJOxz8/thjdGEkk5xnfX16H+NCgcI7Huf2R4+WVisGrDWq1RNreOgQx6EMpIkE3390lK//hV/ofpHFZowuVnRVMM7HK1d4re+5h/tZWdHDclU7smSSzxWfj3MjnS5NcSg3znzta5wLZnU9VDuvWEyvHO71Vp7bvXi/m1H2DBgfG8MXvsBr33C4rPoMiMX4eyZTaszY2uL1KRZZSO4f/aPecC/uoArjrSKnQugGIop3GuLRbA9SHtE+VBIE6+t6oaE9eyiIT53q7mKznnkTCnExt7Cg9wM2yycGes/gUq+AMauWr65nKsWewrFYZa+ay8WF8PIyC29V8ioDnB8zMxQm4TBFbKHAr60tfYyFgp4nfPEiF/WJBPdRLNZ3/GqOHTmi561aZVSrN9ZwZYV9XdVnQj7PEOCvf53H1Uut+VrtqmA2H5eXeW8ODLDo2PHj3LdqR+Z2M1ohHtf7QldKcVBpGefPc16ZRTiEQnyv9XUaalRPa7PnVK/d72ZUeQacPnECQ598Gi8eP9xYuKzxM+DNN/VwdOUUyGZ5rY4fpyD+hV9ofNziqhSEXYeI4p2GeDTbh5RHtA9mggBgiGuhQO/A+HhlQdzJuV9r3ng8ensfl6uyZxvoLYNLvQLmzBkKiXKv2uwscPMmDQQOR3WvWjJJ7146zX2Us7BAr7MKtcxkuO3mJv+WSlEQB4N6sTNNowi/916e9x//mNsGAvyuim+pKtODg3rbo0yGYiCV4vx6+GEKUauNarViDScngW98wzyEt5KIrEcMNCoYrBAYrXZVqDQfVZ/maJQi+NQpRhoo5udL0zKqpTi4XBS8164xkuCBB7Zv4/fTaLe2xt/TaT6LksntxrBeut/NqOMZMH7iKsafeQZLn3mosSlS/hlw/bruOd6zh/fcZz/buMHHikgEQRB6EhHFOw3xaLaP3Vwe0Y5WczNB8L3vAW+/rVfkrUQn534982ZoiEIe4OIxEOhtg0sjAubttyk0yr1qKqxcVVgGKnvVVD55f//21BFjm67BQY5DFWTL5fQWWAANE5kMv6s2Xi4X5/zamp6nrmm8dh4Pxc/gYGmhrfl5zknl7opE2mtUM4s1bFRExuO8FpOTPD+AnjurxADQmGCwUmC00lWh2rkYHeXcmZmhEQYoNbwYc/6rFe9TZLPc5uDBykZplc++sMB9qsrh9RRD6xUanH+RLwUReazBz0yrE1BbjUQQBKGnEVG8ExGPZvvYbeURe8FqbhQEBw8CX/mK/eZ+PfNmeJi5rjvB4FKvgEmnGZrqcNCzo8SByul1uej9KRQoOufnzb1q2Sz3NTy8XawY23R5vdyuWOT3+Xluowprrazw52PH9ND7hQXg9ddZpTqX0z36SlTn83pxLWMLn3icHis1xzptVGtERP7oRywilsnQi+x28/8uF++lo0eZjw0w7LcewWClwGi1q0K1c+H38++xmO41NhpelHEmm+U1rVS8T5FO83u1tIxQiPML4PNocVEvhNaL97sZnWwNaUUCaquRCEJ3saPhXug5RBTvRHazR7MT7JbyiL1oNbfz3K9n3tx7b+8bXBoRMH4/RZjXC/z0pxSext6jiQRFxtISPbc+n3kf55UVnkv1t/l5XVgvLHAfXi/Fx+Ymt3G5KHiUZ1jlCbtczEvet0/3Mi8vczz9/dxPMMj9qJBtY5E0JZxDIeCJJ0qvVzNGtWaeM41cA+UhzuV4fKoSs6q87HYzp/udd/j+99/PkPdaXufvf986gdFKVwWg9rlQntubN7nd0pJueAmFeM0XFjj/9u+vnOKQy+lVyGvVKti3j/vNZnltAwHOx167383oxdaQnRTxgnX0guFe6BlEFO9UdptHsxvs5PKIvWw1t/vcrzZvdoLBpREBA1BARqO8VqrCr9Ope3+zWVaMLhT0/GtV5EjNw3Sa4mV1FXj5Zf6uKkKrPEMlXFXVaJUDvLSki/BMRvcIHjjAMSlvssonLRZ1YRyPUzhubOji5tAhivGxMVbNLqfea9zKYq+ea6AE/09/yvPkcOhV0DWN99DwMI9xYaHUeFC+z3LBsLhIj7JVAqOVrgr1nAuj5/baNXqK/X4K12yWc8jp5HypVrxvbo6vyecpsmdn+Xenk68p9y4HAvw6cwb4uZ/j/3vtfjej11pDWiHirXpm9/Kzv9P0ouFesDUiincyO2GBLXSHXrea9/rct8rg0o3jb0TAJJMUYakURcOBA6W9RoeHKchWVvTCRIODFF2plO75HxvjPFTHu2ePLqw3N/XcYa+X++jro8Dx+Xhe8nn+HI9zPNPTFHXvvaeHzCqBDlD0Dg3RI6je49Yt/u2ee+hZrVXErdo1bmWxt7TEirzz8zxmswJOCwsUxFNTFPSALvpV66ZUive/eu3WFq9tpaJQAAXDiy/yvfv6aqcn1OslbKWrQr3zUXluCwVee49H99yeO8djUtXQy4tYGtMyxsb4/cMPeZ5VoTifj/Py6FFdVKvaBg89BHz60/UdWy/Qa60hWxHxGxvWeCrF49kYvWy4F2yLiOLdwE72aArW087Qt06LtN0697u5wGpEwKyvU2wBFB9GQQzw9wMHKE7icW4bCHCBEwiwSFI+T8GyscG/ZbPcPhjk92RSb6MDcPtgUP9/X5+eZ+xycfu5Oc5V1XdYfRUK3DYWo4AKBLigV4t6p5NVcOsp4lbpXmh2sWe85pcuUZTlcjzHRjGmPMTz8zxXmsb99/XphcrSaV0sq+uiafo1Kw9fV6iiZEtL1QtNGbevx0vYSleFmZn652MoRE+/ywU8+SRb+qhrMz+vGyoqpWXs38/flbEnk+F883o5Z9bW+DUxwe1aqW1gZ4Nfr7WGbFbEv/sur0GrnkrxeDZOrxvuBVsiolgQhFLaEfomVvDO0e0FVr0CJpmkwCoU6EVTXlgzIhEK1FAIePpp4NFH6cVdX+fCdHaWos7vpwhJJvWCUVtberh1Pl+aNwvwu/KMqhDhzU3dm6y2yef1SsTr6xSKKi9ZtXdSodqf/vR2oaNEzMwM+wOvr+tebOO9sLzc+GIvFiu95gMDPPZ4HLhxQxdjp07Ry766yv0Yxb7Tyb9pmn5ujKKmr08PSTfr0atQFcPNWhaZUY+XsNWuCo0K6kceYW9b4/MsEqmelhEKcR5OT/PafeIT3E5VOlfRBlevUmDffXdztQ164Vnaa60hmxHxAIvP3brVmqdSPJ6N04s560JPIKJYEIRSrA5967ZIA+ztVbESOyyw6hUw0SgF4OCg7uGNRjkmo8dYVXIGKHoHB4Hvfpe5n7EYBXAmQwG7vq5XCx4Y4Pe+Pt3T6XTy+hs9UkNDnIvRKM8PoAvsRIJ/S6X0CtgqJHllpVR4p9M816EQX68wipgPPqAHN5Gg+I5E6FF1uzk/33uPIiqfBz75yernWS32LlwA3nqLiz7jNS8WdbGr+jxns9x3Os3zo86vpnHMRiHr9fJ8KkOBcdtqgrdQ4PtXE85G6vUSNttVwco2hdXSMr71LVYpNxoz/H4K5ZUVvWiZ08mvAweAL32psfvPDs/SejCe86kp3rP5vHlutR1aQzYj4j0ePgda9VSKx7Nxei1nXegZRBQLglCKlaFvlUSaar3jdvPD6pVXuL3VIq0XvCpWYuUCa2kJeOMNvVjQkSNsm1TPoqIeAXP9OoVCOMyq2/PzFITz83qxLVUB2evlwjqbBb72NYpkJTDW17nvQID7isc5v7xejnloiNWVVZEtFQKtjD4eD7d1OjkuVT16a4tfKn9W7d/lord1cZH72drShffAAPd18SJbg91zD3+emtIrG8difG9NY4jy8jI9uHfdxfN9/TrfK5Go3mtbzeNLlzj2gwdLr6WxF67fT++vKiqmQqJV4TCHY7sRTAll9bMKS+/vrzwuZRwLhbi9lV7CVirLW92msDwto5LnSvVLN7YaA2gYGRnRDRP1YAeDVyOMjfEzRM3P/n6OV+VWHzzIOW6H1pCNGk58Pl7LVAp44IHq+67mqRSPZ3P0Ws660DOIKBaEdtKLHkorQ9+++U0KXlXx99YtnpPV1dLWO9ks8L3vcSH3z/6ZNcfRK14Vq7BqgTU9DXz1q3rBJGUc8fno3Tp3rnbIZz0CplDg4n50VPcSGb1qhQK3HxriHJyfp8jL5ThPBgYoiJNJLroXFrg/JdiUl/Phh/m6a9e4z40NXaAYRbdqwZRI8F71+bh9scgF/d69eqg1oIdORyIUjZpGcXvvvVw4v/QS+/+6XBTnw8Pcvxqj8oAvLHB/p0/zPaameEzGXrmVKBR4bG438JGPlP7PWFF5dVWvxK08yCr8W92bZp5ddVwul+4B3r+/co/euTlez8FBnv9WPbPlNFtZvt2t2mp5rvz+0nOmisQ14rnqJY/i5CRbchl7gm9scK5tbXFuv/02c7YffdQerSEbMZzs3cvnRiDQmqdSPJ7N0Ws560LPIKJYENpBL3sorQh9m56mIP5v/43bhMNcCG1s6CGdqtCRKkyztAT8zd9QxDz9dGvH0GteFSuwYoE1OQn8yZ8AP/kJhZQxvzQep7dzeprz4jd+o7oxoZaA2bcPeP994MoV/t3Mq+Z0cgyXLnE8qhrw4cMUdU4nF0bGwlAuF6/n/Dzf8/hxilK1X5dL99Qq0a3O2Ztv6uLi2DEufK9d0/NCPR69DZMqsKVCi/fu5fuo1yuv05EjFIrT09xHOMztHQ5d9K6u8v4Ih3m/3bxZvcqzYm2NImPvXvNrrioqK2NDJsN9Fgr6OVlb0z3eALdXRbVUC6bNzdKw6WrVl0+fZui36lMMNOeZrWRQbLayfDtbtbXbc9VLHkXjs3f/fo73xg3d2KUMUaoA2Sc/aQ+jZCOGk7Extn6rN0Wg0vUWj2dz9FrOutAziCgWBKuxs4ey3oVkK6Fv6vhffZULX6eztJWL203R4vFwQQrQizY3x9DRv/gLvn8rIrWXvCpW0eoCa3oa+LM/o3czlaKQC4X0/N5CgfN5dRX44Q95/f7pP63tMa4mYJ59lvPC6FEs96qp9kIqF9hYpdrr5XFkMrrnIB6nSPT5uPiORhlKrNo6DQ0BDz7IOa0MPR4P520mQ1H60EO6YB0a0kX57Kyew6xp3L/Px/vB2L82meT3zU2KyoUFfdvyCttGAW/0wiqPdiVRnMvpKQhDQ5WvgdHY4HZT5LvdLCZVKPC4r13jtvk8Pbx9ffzZaMTy+TjWmRmeh/Fx3rdmntaHHuJ5BBr3zNZrUGymsny7WrU147lyuWgQUq+vNoZe8iiaPXtHRrYbu1SdADX37EC9hpPlZebyt+qpFI9nc1hZJ0AQDIgoFgQrsauHshHPdSuhb8bjd7kooDWN+9A0fqCrXEoVltnfT6EQDPLv1661JlJ7yatSTiuL9VYXWOfPs1BQLlcahqxwOHg9HQ6G4b72Wul1qjb2SgKmVshiPM78y40NCsbyqsZuN8VaKsX5tLVF8anyXwsFLsJDIS52IxGGXSuB4XbTELOywv0cPsztlbEGKPW2qr6kKt85GGQV4RMnSs9XNKoXs0qn+bsSl+WoHrZq3Hv2cEyJRHVP1Nwcj6neSs9+P48/n+c5Xl3ltVMh1gsLPN/KiKW8eS4Xxe/dd3Oc09M8lvl5jn101NzT2oxntlMGRatbtTXiuVpeBt55h3MHYJh9rSiiXvEoVnv2lhu79u6117NXUY/hZGDAGk+leDybx+o6AYIAEcWCYC129FA2stAMBlsLfTMev9vND6TNTb5XLkfvkQrN3NzkIlyF5+bz/H8y2dpCqZe8Kgorwu1bWWAtLdEju7ysGygqEQzSm7i8zNecOqUXk2p07LVCFj/8kPNhdJThzHNz21s3BYOcX6qiczZLIZrP6yJCCbknn6TXOBo1F2kffsiwyNdfZ79alS6gvK1eL+dtMsmF8t13A489tv24VOsmlYuraXruvBnFIsX2jRu6oWJzkzn4Bw5UXuzddx8X7SoEvZ5rfuoU93/5Mv9++DAXjSrEemmJAlnTeD/eey9TGpTof/BBXqvr13nuP/1p4IknGq/WXL69XQ2K9VCv52phgakJ6+v8PZfjvKgl+nvFo9ilZ29bSndUM5xY5akUj2fztLtOgLArEVEsCFZhRw9lowvNwcHmQ9/Kj1+1yVlcpDDo69MFsWr3orxjLhd/3r+/9YVSr3hVFFZ5x1pZYF24QFGkvJblIb5GHA4Kxc1NtgJS1Z6bHXs1j+LEBFe5IyOszryyovfYVWPxevU8XdWiaW2N13NoiEJ3dLQ0tLe8srbKFVYh1svLer/ZkREK6VBIN+AUiwyZPnHC/JhUGyQleoJBji0W04tcAXrxq9VV/bU+HwW+389jqLXYe+ut7SHo1a75Y48B99+vzzm1fxXufOMGz2kkAnz0o9v36XJRWHu9HP/6eu37tB7PbLcNiq0qq1qeq+VlCuKFBUYfnD3LY1VUE/294lHs8LO3q6U7rPJUisezedpZJ0DYlYgoFgSrsKOHspGF5rvvUvRmMs2FvpUfvwqfnp/XW+goVLsX1d9VeZ7V4rwVkdorXhXAeu9YswusTIbnoVYPWoUKH56f5/WbmGht7JU8imtrwF//NUWiKsiWTOr9gdU86u/XQ4lzOY7N4+G8/MhHShdH5SvpW7c4znRaDxHP5ylWP/iAHtHpaRpsUim91/HEROXq0MqrvLFB8bx/P39eW+O9EArpOfnK8+z38/zFYnx/n49fIyN6uyizxV4w2Pg1Hx83X0wODPDejsfpVTeKtnKsNOx106BolbKq5bl65x0aEPbt45wsP7fVRH+veBQ7+OzteukOqzyV4vFsjXbVCRB2JSKKBcEq7OahbHSh+f77/BAeG2tO1Jsd/9Gj9MYpz52xsq2m6W1pNI2LxSNHKFJaEan1elWSSY7/yhWGiDbSM9QqrPaONbvA8nj0Ssr1VFRVYfR9fcw3tcqzZ9b/9cUXmcN+/TqFpbGXsMtFMZtKcW4BesjzqVPA5z5XGtpbvpI2VmYG9LDxe+/lPpeWKCbX1ihMH3+cufQLC5VDoQHdgOTzcW77/aV9g1UV6GSSx+H38zz29fGYjh/nmNNpGonOnuV1NFvsNXvNzRaTqvCTyiuvhpWGvW4ZFK1QVuWL8V/8RRZmMxobVEV0YLuHuJxKor8Rg9fEBOfNiy92ViB0yKNtm0h7qzyV4vFsHavrBAi7EhHFgmAVdvNQNrrQDATo+atXpJeLerPjD4UYqrm6qnvJlIcvnaYoVtV7x8boSWlVpNbyqkSjepudW7forb52DfjLv+xsu6x2eceaWWCNjdEg8fbbFGrDw5VDqAsFXqdslqLy7rutG3s5kYjuVY3HdePByoqep+5y6Qtsh4Nj/7mf2y5kzFbSKjoiEuHKubxv8PHjvD7Xr/M9Tp4EPvtZ4CtfqS1O+vr0Fk3T09xOFbX68EN6hFWusWot5XLROHTqFL9PTzOceX0d+PznK5+nVhbV5YvJl16qHj5vxCrDXjcMiq0qq1oe5s99jgYPq4wN9Rg/+vo4l9bXge98p/OtADvk0Ta1JRpSfFxOJ8ZHQwD87S/dYZWnUjyegtB1RBQLglXYLe+r0YWm8rTVu9AsF/WVjn98nH1XL13SK+UWCvwKBikW+vq4yLRKpFbyqiwscBzLy3pedDjM43j99c62y2qnd6zRBVYkwuN95RW+RoX4mhGP89q73QwLrlaUq5mxl6P6ACsGBjhfVL/gbJbzStM4h0+eBL70pe1zpnwlnUzq/YfDYfO+wQ8+SC+uShdYWOD71+OZfeIJ4J579CJkartAgMdUKHC8Hg+3D4f5deSIPo5GDAqtLKrVay5dovFKRXPUwirDXjcMiq1EaZh5mFXI/eQkc/Tvvx/4tV/TC7FZYWyoZvzo7+fv+bzeG74brQDb7NHeZks0Gjk3N/WcfZ8Ph4fCeDV6Apcv+9pf4NoqT6V4PAWha4goroRY64RGsVveV6MLTdXeJpFoTtRXO/577uG9ND+vi2Kfj6JKtXexUqSaeVXKQ2WHhvheyivX6eq2nfCONbLAOneO5/zv/54L1kKhcp9ih4Pnb//+9o0d4HM4FuN8GB7m+8/Pc+4oQaRaIw0Ocs4eO7Y9ysDMKx+NmvcONvYNNub6GoX9Y4/V75mdni7dbmOD7zEwwHkXiXBfKuzbSDMGhUauebm3M5HgPaLymsfHKxtHrDTsddqg2EqUxsZGqYc5EuF8UaIsn2dkwbVrfHb97u/qfd6tEP1mxo+VFc6xxUWOqZIQ7cSzrR6PttutF2xs0KNdYktcXtB7iKfTvJedTr5PLAbX2hrC0LBy+QBmZsKyhBO6jkgLeyOiuJyuljMUeh47VZJsdKG5scH2Lw5H86K+0vGHQhSfSgBvbPBvKyt6exKrRWq5V+UnP+Gif2CA1YjLvXKdbpfVDe9YtU/k8XHg13+d//vJT+i1X1rSKy6nUvRw7tnDsGJVcKqdY1cr4PFxXjNl1FAeIZ+v1MN665a5gDTzyqu2SeWFxYx9g6NRXaiWC/t6PbPl2732Gv/e309jUS2srD1gHOvMDFtq3bhRmk/rdvPY33mH4ljdj+VYadjrtEGxlSiNS5d0D3N/P89TuSjzePi3t94C/t2/A377t60X/Ubjx7PP8jrW6/X+u7+jYaddK/N6PNq5HI0HtTzaZfdXZvEEcrkQ3NkEr8XCAu9RFe2huF2vwr28jNzVHDIzWeCxOo14gmAxIi3qJ5/fRDz+MqLR5xGNPo+jR/8lwuHPduS9RRQb6Xo5Q6HnsVMlyWYWmo88Qut9s6K+1vGrcR04wEXO6mp7RaoSJBcvMoR7Y4NhjeHwdq+colPtsjrpHav3E/n0aeD3fg/42te4/fy8LtqHhnjdzp0DPv5x4Otfp2e5nWM3etNVr+Dy9mBqbq2v6waWcgFp5pVXbZPMCmapaAZj0bFKwr6SZ9ZMLKtQ2nfeoYGmHqwwhkxPA9/8Ju9r5dG8dYvXdu9efp6pXNdQiOHpMzPMfVZh3uq+bJdhr5MGxWajNBYX9fVBJMLrWEmUqXZgFy/y3O/fz3NotehvxOsdCAA//Snv69de0wu7tWNl3qpHOxbj/2OxkmeWJ/sQXNeeRipWALZW9T7i5dxOh8jGvQgkovBcXACgi2Lx2AmdQqRFdQqFHDY23kA0+gNEo88jHn8ZxaL+uRyNfl9EccexTTlDoeexUyXJRheazzzDRQjQvKivdvxnz/L49+4F/ut/Bd57rzMidWODx3D8OIV3NTrVLqtT3rFGP5HHx4F/9s+AL36xtJfvkSPAww/r73/xYvvHbuZNV+3BzHIJ19cZRv2977F4m7G6tlkROJ9ve+9ggGJYhXgCjQn7WgaIe+7pbKjw3/4t8J/+E6+VamW1uckvh4Nf77yje4RDIRa6UxEjV65wHBMT7TXsddKg2GyUxsqK7mFWIdOVRJlqSZfJsKDb/v28/laL/nq93qqegipa5/frbcbauTJvxqO9tga88AINpsFgyTNr7OYLCN8cwczyUeT8Cbjuqnxf5AoaVrQwxorTGItPA0uPYnojIh47oWOItNhOsVjE5uZlxGI/uO0N/iHy+XjF7aPRH3RsbCKKFVa3RhF2N3apJNnsQrNVUV/r+C9c6KxItVu7LEW7vWOvvQb86Z+y3dbwMHDffaWFsap9IkciwKc/3b2xA5W96WqBbwxb1TR6kQsFVtH+ylf0Bb7Zfvx+ihZj72CAr9/c1PN8gfqFfb0GCFVcq92hwn/7t8C/+Tf0WGoa96Vpet0Av58/q3muPML79vHnoSEKunRaF4aVngFWPOs6ZVBsNkojHNb7YBuLtFXC6WS4cCzG+fD00/x7pWdxfz+jZsbGeN8MDNQ+h/U826JRPdS4r4/7PXRIf/Z2YmVer0c7GuXX0hLP3xNPlDyzInflcOIb13E12485hDGeyegpHmXMxYMI9WcwEYgjkprF5Hdu4bmpSEc9dt1eAgjdRaQFyWQW7niCo9Hnkc3eqPu1m5uXkM0uw+2uUbnfAkQUA+1rjSIIdqgk2cxC0ypRX+n4Oy1S7dYuS9Eu75jyVn7ta1wMOxys6p1IUAgePcr9tvKJ3AnPnpk33bjAN4atRqM8tmPH+L7lC3wzr7yxd7DaNh6nIFR9gaen6xP2jbgE1H00Pc3/tcOgMD1ND/GHH+ptzxwOetOVMHI4eE9tbXF7TWOIt/J+PvwwhUmxyJB5ZWAw3tNWJ8t1wqDYRJTG0r4HMLNyDJnlk/AsXcdYag2R8iJt5aiIA1U/IRBgZfTyZ3GxyGMsFCi0X36ZhsN6zmE9zzYVUeH3c0wuV2kufSdW5vV6tK9d470cCPDcJRKlhjyXC+cmFnF13oPJ9CngJnB4TIPLoVepzxU0zMWDWE76cXrfAs6Gr2I6GsJzzw9icqUzHjvJIRV2s7TI5eKIxc7fEcKbm5caer3XexSh0CcRCj2NoaGnOiKIARHFpJ2tUQTBDjS70GyXqO+0SLVbuywjVnvHlLfy3XcZ4pxK8RrersiKtTV+GQsoNfuJ3AnPXrlHem2tNGxVVcVOJnk8xorJxgW+mWdbFYADOHbVT1Z5BF99tX7vXSMugeVlhlEPDTVnUKjnPv7mN3m8mqYLYoDnq1jkVz5PQZzP8/wpw9PevbrhZHCQAurUKT0nWtHOZLl2GxTrjHSYnnXifOD/jKn3n8JKwovc7FNw3biGcPEenOibxrni+xgPrm438BkjDoaH9XNb/ix+912K4FSK2wcCvB71nsNazzZj67HhYdZWMEZBGGnnyrweQ6hxrIHA9rz+24wPreELkevAfBZTqQfw6uw+hANZuJ05ZPMurGz6EPKmcHrfAp45dQnj8Rt4duFnMeUawMiB9nvsJIdUAHaXtCgUMlhff/WOCF5ffw3A9nu3Ei7XHoRCT9/++gT6+7tjMRJRDNg3tFIQrMYOnmug8yLVbu2yyhkf1wuOVcrhNVJJFBm9lZrGxe/AAD2owJ2KrHc8oypctpVP5HZ79owe6XffZR66EvqqErXXS0F86lTlHr/VPNvBIBfjwSD3dfgwxbDqJ1zLe9eMSyCTAT73OXq96zUoVHI/+XwUr/fcw9cODHAOJBKlbbUA/pzL8bwBFB3FIudLOs1c2URCN5xUMkjV8ozH4zyu55+nEPuf/2fg0Ucbu/btpI5Ih0mcxnO5T2Mq8yCiV0IIezfgTmWQSrsxk53AVW0UVzf345mBv8dDQzOcPyqU1xhx4HDw3BjPYSTCWgczM3rhqfvvb9x9WevZZmw9lkjoYzKr4dDOlXk9hlDjWItFnrfy6vAAEArh9MgHGFr9EC/6org89BhWnHuRKzgQcGcwNhTFRHgVZ4/MYjywjKX3c5jaOopocQATh6sPs1W7gOSQCoqdLC2KxQI2Nt65kxcci72IQmGz7tc7HP0IBs/eEcEDAw9A06pE3XQIEcWAfUMrBWGn0g2Raqd2WUYqCZ3ZWS6WjeKrVkze8rLurXQ6KUaMi8rbFVkBUATOzuq/N/KJXEkAt8uIoDzSzz7LMavFsuqXXF65HDBf4FfybO/bx3zrffvoVV1ba8x716xLoFhkQbN6DApm7qdsliJ2aYmiNhBg+PjgINsBORwMlS4nm+WXx0ORlMtR/KviUJpGw0mhwO3Pnt1ukKrkGY9GeW4XFni+kkn+vLTE82WnuNEqkQ7TodN4bv5nMbl1HCP7fJhwL8B1+RKgLQJ9S8hlM5grHMRk5l4gl0Mw+98wnlrk+VOe9337WLH98mVzo55VCYfVnm35PL9UYbV9+6rXcWjXyrweQ6hqk6bqA1TyaN+uBzDufwvjrr/C0skYZgbuQybvgseZw1gohog/yW2n5zDjOo4VbT/C+zxt99hJDqmg2GnSIpWaueMJjsV+gK2tlQZe7cDg4KMIhT6BoaGnEQw+DofDfgcqohiwd2ilIOxUOi1S7dQuS9FInF2xWH3b996j0M3ngU9+koK6UsuhYJBiamWFi0+/v75P5G4myo2P87iuXKEXbu9eCuNQqHLlcrMFfi3P9vQ0i3Q14r1r1SVQblBYWqJXWo1N04BvfKPU/bS8TC/zxgb/Xyzq18Th0MNQVU6rIpnktspYomn66wEe6+Agf56f57jKDVKVPOOXL7Ni+eoq55PTyX1nMjyeVMp+caMV5sP5V09iamUQIyFgPBQFJg157MeOwTU7i/GN60DeganicbyYfhTj2T/n3AyH9cgF5a2v9xyaUct9We3ZtrDAeeFwMCTeGE1RTjJJQ5rXy/vs7rs7m8etDF2xmN6DvNK9ffQox7i+jsj6VUTuGqz4+ZE58DHkUvvb7rHbzTmkwnZ6XVpksyuIxV64I4TT6emGXu/znUQo9InbecEfh8sVrP2iLiOiGLB/aKUg7ES6IVLt1C6rkTi7WIyiZWam8rZvvAFcv85jUQtxY8uhXI4iSbUfUq15olEKr1qfyHZIlPN4eHxA7arlgLnQLxfD5Qv/Zlw9J09a4xKoZHS4eZPjVm2mbtxgj+jlZT3n2evlddna4hxPJllUa3WVuaTK8JFKUah6PNx2a0sPE3e5uJ9CgV8bG/R0qrxrhZln/PJl4KWXOAZN434cDu47m+WxzM7qSsNucaMGw8TSEjD1NwZx8+617e2XDh0Crl/H4Y0beLXwCC47J7Dk2o+Ia41Ghfvv531YyahXKbqgvA+3MvrUcl9WeraNjvI6xuMck+pHbUS1N1te5jXaswf44Q95P1tp7KplCA0EOFcSCc67avd4IMA0gaEh7qPK54dn4ixcPw4g1ebW4FZfUqG36TVpkc9vIh7/8R0RvLHxZkOvd7v33xHBodDT8HgOtGmk7UNEscKuoZWCsJPphki1S7usRsTXa6/x+8mTlbfdu5f7Sya5sH3wQS5ub93icWqaLoA0TQ+pjMW4Cqz2iWyXRLlWTO/1eLkHBppz9TzySOsugUpGh2iUBdNUL+ZolKJ4eZnXsVDg9evvpxhLJPh7JMIw8HyeXu9jx2gU2dqiYHU6uU8VSu108mt9Xc/THh3lvFJeZEW5ZzwapVEmGmW49uAgx2Zka4vvv77OYz1+nOfbhv1qSsRNJmnefmloCHA64bp5E+FYHCv5EGZcxxHRXqPh4d13ef4qGfXMzmF5322Hg4atPXt4bWq5Lys92159lQaLRGK7KDa2N1u5HQ5ZKPC5MTdXn7Gr3mdpPYbQ/n6+NhSq7NEGOLYjR3jvRSJVPz/GBsYRfr/9Hrt2XFKht7GztCgUckgkfnonLzge/wmKRZPIsgo4nYMYGnryjhD2+e6GVv7c7zFEFCvsGFopCLuBbonUbhYdayTObs8efmIC7NlZCaeTYuTmTT0s2ufjYj4a5Tb9/VyVFQr8fyYDvPkmhc/HP175E9kuiXKVTO9mrphbt3ShPz9fn5d7YmK7q6d83+ozQVXFvX6dnrhWXALVjA7z8xRg2Sy3U+218nm9xU46zWNJpShKczkKznCY52Fjg3PI5dKNIiose2uL++zv5/u43XqetsOhh4cbKU+Wu3yZAhwwF8QARbbPx7FdvQp89auce5ub9uhXY3j+ZC6FkUuMwe3uLy3+ZCxYlkrdCV13O7aQK/Yhk9UA7XaV95MngZ//+RKjXskj7sowxrZCiORumvfddjpLK8YDjGqox31Z/mwbGeGbl6/MVXuz2VkejzKYFAoci9dLA8zSEl9XbuxqJp2iliE0FKKS/OADhtyPjOgpAH7/dhWh1mNVPj8i6IzHznhbWH1Jm6Lbhl/BVtKiWCxic/OD272Cf4BY7IfI59frfr2muREMfuROXnAg8DNwOHaWjNxZR9MqdgqtFITdhl0qY3eCRgozJRL6Yry8Z6cRY27txgZXdzdv8nefTw+hNhZeyuW4z717gTNnzJ9tdkuUM5reEwkegxIuqkjP1ha/f+xjzD2s18s9N8cVrc+33c2TTlMgG8VxOq0L1c99jivvZlwC1YwO+bwefqx62jqdvNY+H7cpFjmWjQ29yvH4uL7qyuW4Ci8WuUBW4dKpFMceibBy9YEDpfGdH3ywvWoyUOqxV9XM02lum8nw3KteuMWiLrb27KERIZ2mJ3VpiR7sbvarMRF2nrXjcM1+Ail3GDh8e14ZC9apsOhUCsjlkHX5EXBvwNPfB2RuX3OnE3jgAWB83Fw7bh1D+MNfwInln+Bc8C2MxxdK+24rVHSAaqXUjCem0sp8bo59rJNJvqfDwTH09enqTUUVXLhA776an62kU1QzhG5sAH/+5ywUNzPD7/39nOs+H8e2f/92FVHj86MTHjt1W1y6xGl+61b7LmlVpEmyreimtMhkbtwOh6Y3OJu92dDrBwYeuuMJDgafgNNZIcd/hyCiuBy7hFYKwk5E7ivSSGGmfF5fNZn07LzD7YqsuH6di/YbNyiEhoe5sI3HKe5UGGtfH0VYJELv3uqq+X7t1mxRLfAXF4Gf/ITj1jS9FU4qRSG2Zw8X9j/6Uf1e7hs3eF08Ho5fuXk0jec0neY+NY2rXHU9vvUtLt4ffFDvZ1yvS6CW0cHppGhJp3mMt4VYydwpP/54nPtNp/n6rS2Kjb4+zj1Vkdjr5fx4+OHt710tjtTosZ+c5LVQ3utcTh+3MsCotlFKlKdSfO/ydIBO96upIOzGtGsIx65iZtOLXPoaXFsZXRSnUry+t89nLjCElcQIxgKrGDtYBGKjPBfz88DXvobJ6yN47sLB7dox14+Z+AlcXc3j6vIgnhl14KHQre1jVGJ1YID7vXSpudZW5Svz69d1g4/LxRX63r2lha1UC7eNDYrnCxeAz3yGv1uRTlEuZI3XQ9P4v2SSY1xb0yt633sv8Cu/Ut/cuP2ZM57J4AsnQkByDFM3BtrisVO3xfPP820rFc+26pKaYofaD8I2OiUtcrk4YrEf3RHBm5vvN/R6r3f8tgj+BIaGnoTbHa79oh2EiOJK7CavlSC0G7Fcl9JIrwblbVM/V0NVZI3F6IYoFnU3RX8/RdLqKn8fGWE+3uhode+uHZstDg1RVLlcHK9akKuEvVCIgmx6mivOrS0upGdnK1esPnyYnuFEgueor4+rVr+fLh9jMqISx8Uit0unef5u3OB8fvRR4K676nMJ1DI6uN0Um6qA1taWfk3K8Xj0omw3bvC718sxquufz+th0ffdx/GardxrxZGeO8c81ZdfZp6wMhAol1gmoxsUhob4frGYHq7t92+fU53sV1MlZD0C4ETei6vvpDC35MF43+30heFhHoMKU+/vx1xqL0KuBCZ88yyylU7Tk7l/P6YnY3junVVM5g6aa0cfMPfNLCZjJ4GYB8HgDzDuNwhjJUqTSRZZA1qLwjCuzL/5TXrrVZVnswJcxhZua2u8l2Zm+N3qdIry6/Hkk9yPSl9QylXde7Uw+cw57XJhyHUcLw4+jsvhe7GSC1nusbvnHk6NjQ3aGlUescLqS1qCXWo/CBWxWloUChnE46/caZO0vv4agELdr+/rC2No6Ok73uD+fpuUvu4SIooFQWgvYrneTiMFowIBvV+sqrxcbduBAQq/eJzCZG2Nv6vCWl4vF0KnTtHrAlT37tqx2eL581xFPvQQRb1ZaVeAXuIrVzh+1QPVWOnm6FF90e9yUcxMTuqhwKGQ3m9X5fKq8GP1pWk85yq8+tIlbvs//U8UnLVcArWMDqoIlvLyulx6OLV6f4DHt76uF94qFBgOffMmj+v++/WWSNPT3E9///Y51WgcqfKaq6Jfldja0r3cykhTqZBSI2H4zbpeauTJnxu/jquxMCY/3AtsbuGwexGulZU7x5ALDGEutRfLW0M4HZjC2eDbvOe83jvGvvN/HcRUQcPI/SmMj/dvew+Xo4jxPetAth9T6cN48dphjI9e3H6/qvZO8XjzURjl50nllzscvBeqEQzy9dEoQ+rbkU5R6Xr4/fr9PD7OuVtLaFf5zBlf+R7GQ69j6cBDmHn8C8gcnbDUY1cs8pEUi/ESzs/r+cRWX9Jt2KX2g9A2isUCNjbevpMXHI+/iEKhzs9mAA6HD0NDZ+/kBQ8M3A9Nc9R+4S5BRLEgCM1Ta0EqlmtzGunVsLqqe3FWVyvnFAN6RdZwmF6gWIyLwUKhtIDSkSOlgqSad7fdzRYbFTXl4cYul3kvU9WfNZHgijQY5P6NlW7W1kqNAyonWYm85WW9EJTq+azaFQHcr8vF86dC1AEK8f/+34E/+qPt17b8eJPJ6kYHVVBLFUJS+a0Ohy7eVaEtNT5No6tqaopiWnlmIxFe+8FB3pvXr1NINxNHev48X/vgg3yfGzf0sGyVh6zCp/N5vXexCtvev79yD9p6wvBbiT6pI09+PBTFF069DxQmMPWBD69uPoBweg3unAtZbS9WEhGEXAmcDkzhmT0/wnj6kh7ee+QIljJBTBWPI5pwYcK/CuCg+bX1enF4NINXo0dw2XMflrRJRLRV8/tVGRUaicKodJ6mp3nNAM4Vr7eyYcbh0POM1X6sTKewsm5BnZ85kcs/RsSfBJ74kqWfOZkML9vEhN46XJU7sOqSmmK32g+CZaRS03dEcDT6A+RyFVKdTHFicPDRO57gwcEzcDjaaLDucUQUC4JQilq0Ly7qi5+9e0vFSr0LUrFcV6aRyi+PPqr3Ka617enTzBHN5fh7OGzuRTVSzbvbrmaLzYqaenKcVVXdWIzbqJzWwUH+X8UwLizwd6+X415bo6A8coQr2Pl57kO9RoVMaxpFgvLSqjxkt5sCIpMB3nkH+Pf/HvgH/0AvIGR2vD4fvbmxGEOuy4/J6eT4VA/XtTU9KTGR4LjKc81VJR+A47pxA3jlFd07/tBDfL+hIb6nEv71xpEaF+BnznDMuRz3qYq5+Xy6N3J9nav/zU2+fs8exo7Oz1eem9UMNa1Gn9SZJ3963wKGvGm8mHPjcnQEKyk/ctE8Avk1jLlvYMI7h7Oe1zEemyp1/4VCmJkfwkouiLA7ARcqiP/bxg2X24HwqAsrjhOYOfoUInuump+TRqMwzM5TNsvzrlIFCgWeD7db7wMeDJYK5EKBBpm+Pr0CtJXpFFbWLajzM2cpFcDMKwVkCpfh+aVxyzzFygmvWqBX6lGssCywxm61H4SmyWaXEYu9cCcvOJ2eaej1Pt8pQ17wObhcg20a6c5DRLEgCESJlNdeo6BQeVx9fcylO3WK4mzPHhZcqbUgfeopsVxXo9FeDcWivsCtte2BA8Drr/N63Htv695dq0u3tiJq6slxVlWjBwd5fjY3S4WjMVdydZW5xoEAx+J28/j27+c539zkuIw5s319uuAD9O+Fgr74X14Gvv1titi+Pv6ucoPLj1cVM3rrLeBnfqb0WEIhCsxYjN+NrZhUrrPDoTc9VZWllTe5WOT+laBW3vFDh3jMP/dzvL8bCT8uX4AfPcr9KvGjWn4pw4GKGwX0nO/33zdv3qpC2iuphWaiT8r7IS8u1i3sxkNRjE9MYyk7hJngg8i8+iY88SWMBVYQcd7Oz/ft3xaBkcm7kMtpcLvylWsBGK6t27+FnMODzJ79wJGt7ds2GoVhdp6Wl/ls39jQx6TC7tUcWlvj+QoGaTTp7+f8cbk4T0ZHeS6tTKewqm5BHd7S6WgI568dwdRyCCuzG8gtj8B1PYXwoX5LyluUB9YYo7/LaaUn8jbsWPtBqIt8PolY7Md3+gVvbLzV0Ovd7gN3RHAo9BQ8nv3tGeguQESxIAi6SLlwgVVGVfuXvj4u4mMxCod33tFfc+xY9QXpzZtc9IrlujKN9mpoZFsrvbtWNltsNaS+Vo5zMqlXjT54UF/Qb25uz2ENBuk1W1nhcQ0N8f2VS+fuuykYVlYoJFQ7JLXwVK2fNE2vqqwKWWkax3DtGt8jnebxPvaYXmFHHe+lS8Dbb1Mo9vWxWo86J34/x6VaGR07xnFdvsxzv7WlFyRSBYhUNWGvl/svFChu+vp073g4zL/5/RxTI5QvwEMhCm2AgjMW00W6agXmdusVspVIN2veuram94s2UwuNRJ+8+SbwB3/AeW30zmezvC6BQH0KKJtFJJBC5Jf2AcNXgJff5nXA4YoRGB5k4MomkfKGKudOq4rxa2vIJjIIDPfB4zQpoAY03kC3/DxFo5xj8/O8h3w+zm0Vkq+iHtS1UMak/n7dzXnqFCMDrl61Np3CgroFS0vAzDeXkHk3BI92BmOZICKuZMnLJhf24blLJzG1ugfRdD/CzkW401mkFpOYWey3pLxFuwJramLH2g+CKYVCDonE63dCotfXf4Ji0cQQVgGnM4hQ6Mk7ecE+3wQ0y/t67U5EFAvCbkeJlJde0kMzh4cpGByO0rYcs7NcEO/dy09ztSAyxoi53bpnJper3+y+Wy3XjfRqUNtevEhhurnJxe2ZMxRSRqz27lrVbLHVkPpaOc7RKBf7gB7O6/Nx8R+N6vMa4Hevlx7XfJ7iMJNhTnAuxzk+OMhjVWJKLT6KRb5GLSo3N/l/lV9cLOp9hL1evlcqxXPn95cW+Lr/fr72ww8pWhKJUqNDNMp9ZbO651MlKap+xFNT3F9fH4WWGpfLxfORTnOfgJ7fGw43tyg2W4Dv28fjnJ3l+VIh05rG9wqFKKzm5/n7wYPmZXkXFnjdDh3arhYayZt0u2lsmJ7mPvbv173zN29yX7OzfJYZjRTlGIXdww9T9F+9ymtfZa6PbbyLcCCCGW0EOY+/8mLr6FHkVqJYueXB2MA8xgIr29+/0Qa65ecpGuV9dP26Hs2gctCVUQfQC2+pvteplC7cx8d5f9xzD1XfxYt8toyOVk7NqFf1tVC3oCQL4909yH3wOFxaDuGUCyf2rOLc0VmMh6KYjobw3KWTmFzYhxF/EhPhFbjit9MlDh1A7kDYsvIWneiJvI12134QmqZYLGJz8/07IjgW+xHy+fW6X69pbgSDH73jDR4YOA2HQ+RbO5CzKgi7HbWiUH1GBwZKPRsq1HRri4vWrS1+qM7O8v8qVNUYCun1cnHr8egL8Vr0quXaqsaD9fRqqJSHe/Xq9jxcK727ilabLVpRDKaaK0ZVx711SxfBxSKFrdvNOZpIlJaDjUZ5DHfdBfzarzGEeWVF3/eePXz/VKq0v4ryCKtoinRan/sqfNnl4vspERiP6+Ha5d7DBx/kWIaG6IVUFXgCAa6aPR6OY3mZBqzVVb7P2hrfA+D79fVt72FsHGMwSHGkvIDNLIorLcBDt72iRiMZQLEfCPD9lSCLx7cbKIJBHsvyMsOoy9XCG29Q6BYKFKeVcuSjUc6bTIbHfuwYQ5sVd90FvPAC76cLF0qNFOWUC7s6FU9kYxkn7noKVwuD1T2GoRDmQg8gFLmJif45RN79gfl9OjHBr/l5np9q95wxvH15mR7i69d5XQYGeF62bnum1H2gaTwOZcRQva9VasCjj/J6TE9zHqp7ROUhDwzo4e+BQGOqr0n36uR8pDQLA31wa06kMk7M3NyLq2vDuLo2jGdOXcJbi3sxtboHI/4kxkMx7ksZcZ1OS8tbtOPRW5OuuagFM9Lp+dvh0AyJzmYXGni1hoGBh+6I4GDwo3A6fW0bq6AjolgQdjNKpNy63RvT6E0qx+3mYkqJi2vXuDBVXqjyUMhMhttduWJNXqvd6HTv5WbycK3y7pbTbLNFq4rBmAkTlS954wYX/8rrpby2StAODuoREKocbCQCfO5zPG/BYOm+Dx7Uw3o1TQ+ZVq9XnlgVoqxpvA+UGFUeYyX6VLh2Mlkq6FwuPc/30582z/Odnua1/P73mTOuFvVDQ9xHXx/HkU7rocoAx2I8B6pYWDDYvAGn2gLcmEg5Pc33USG6jz7KOby6at6vxuPR+2sPDOj7OH8eeP55hpjn83qOdXlrLUA31Knw8HJcLvboVgL8pz/V++IqKrnzGlA8587cjauvDtT2GOb34PRTDpw9MgpEHym9T1V+dSYD/PjHwA9/WPs5o8Lbs1neE/PzPP8DA7wflOhV0QeFgt5iTBlUlEguFnmOn3qK51w9g3I53kvJpB6Sf/06n/eBAA+2EdV3zz2c25cu8fgnJkor7Zddj+mjT23Pwsj0A+lN4OZN5PZnMJcIYXJhH5LZPmTyLkTT/ZgI3/bEFwqcb0NDJXPHqvIW7Xr0VqUrLmoBALa2YojFfnSnX/Dm5gcNvd7rPWbIC34SfX012qQJbcEWoljTtGcAnAPwIIAHAAQA/FWxWPzlbo5LEHY8SqR4PAyPVov3Sjid+uJ6cZEfuHv2cIFWHgo5P0/xtrHBULsHHqi8316zXHe693IrebitencbodZ7WFUMplyY/PCHvA4ql1Xls4ZCPF9+P0WSyi/ev183/nzwAYVvfz/HX77vmzd18bWxQUGmjs/hoCgoFPQq1+rnwUGugDc29PBUVVBqc5PjLRds6ngr5fmqazk6yv0mEvx9Y4PHkU5z3xsb3N7r1QWxuj9VAb1weHvIfSM0sgBXjVuVANu3jwItkTDvV6MMTDMzfI6oe+3aNT1PuVJrLWNOuQpbNyt0FQpRoL/wArd/8UU9xLqWO69OxTM+Po4vHOBLansMQxh/6Blg6ax+D83MMC96ZaWx54wKb5+f51zwePQibLmcniOsafyfajPW18dzBvC8jY7yvjh0iPfOCy/oz6BPfYrXT4XLJ5M0DiUSPDePPFKfIDYaF2MxHtv771McRyK8N93ubdfj/FuHt2dhuPQcbVcihvEQ77t3lkaRLziwL7ABl+O259vYU9pwH1pZ3qItj95qO+uKi3p3UihkEI//5E5IdCLxOoBC3a/v6xtBKPT0nbzg/v6jbRurUD+2EMUA/u+gGN4AMA/g7u4ORxB2CUqkKM9ZpSqpgN4GRuWkZbNcgJiFHarFv+rnevWq7j3odct1u3svmy16rGhtVe7dXVpi6KgVK7V6veZmuajVepZUC6k3CpOvfpXitb+f59vr5X5VW6ClJS7WEwkuvJeW9BZHDgcX9n/919yXGu+XvlQqegIBiobZWQouVYhOeTkB/R7xeCjQ9u+n50wVwAK4vVkbpVrHa+ThhykCX3+dObGLi3xfl0vvaZ1KUaSo8+316kJctWJqJSqj3gX42Bjff3qa35eX9efDwAArpStvsbr209M8vzMz7Let7rUnnuAx37xJT/rw8PbWWskkhbbXy+s0PFw5NPrQIRoGEgl6m5VRoh53Xp2Kp2GPobpPp6eBv/97vqjR58zYGM/p0pIeEaCMDyocWqGiBpxO3j/hMIW02w3cdx+vZTLJZ97Cgp5fDJiHyytjaSRS+7lnZlw8dozX99YtzpV0mnP1kUfunKylgXFM/fcKWRiqEvr8PJBM4rBrBRejDyBbdGLUsQkM3M6VNvSULsfq8hbNBtaUUO8ztisu6p1PsVjAxsZbd0RwPP5jFAp1FjUD4HD4MDR07o432O+/F5pWxQEhdAW7iOL/BRTDV0GP8Q+7OxxB2CUokaLCKo2L93KU1yWT0b3FgYD5tio0bf9+3WMTjXKx0+uW63b1Xq606OnvZ05mLMYQz2qYxf6VL9o1jZ57q8K+G/GaG3NRl5e5cC3PR1de2YMHa4fUj49TWE1O8jhPnuR7axo9p9eucR9KxAJ6bm00yu2U2E0kto/3i1/cfv5++lPgv/5XCpJUSjcUAdzf4CAX22NjFAm5nN7mxuvVQ563tkr79AYC9acQlIcvj47qbZsGBvT7MpPhl8tFsXnokN6PeWKi9VSFWgtwj4fXeW6O19np1EN2YzGejz17dC+vQhkH3ntv+7122xOIeFwXZYCeq+318lpubOj9nSv1xAEomkdGgF/6JRoYGjUS1aF4tunnxSg8KzcwFk4gstcBDIwBKNtHK8+ZSITzUEUJ+Hyc4+n0doOLyo1X+cTKgxwI6OdU5R+nUhSR2WxpyLoxXP7Agfrij6sZFx94gNf3gw94rQcHmd7w6KMAgJkLNbIwnE4eazwO19YWhgvDuF48gLXNTWD1km6Mud1Tupxslvu9coW/tyuwpm4ajUzqZHTQDqVYLCKdnr4jgqPRF5DLrTawBycGBx+7LYKfxuDgGTgcdUZICV3DFqK4WCzeEcFSVlwQOogSKZcvcwEZi5UWEzKiFk2qCq9q1RGL6bmbKixWhaZFIno43vHjeu5wr1qurSgUZUa1RY8q/NTfT4FhFA/lGGP/XnqJ18EofmMxvQiV283FaDbLBeRbb1EsNxL23ajX/Etfoph7/XUu4vN583z0tTXue+/e2iH1qmfqsWOlc2hjg8eu8n3VnDbm1joc+hy+/356pMy8b8b3f+wx5vz+3d+x8NPNmxxDMsn57PfzPaanKfZjMX5XubUql1jlZRoNUv39XKSbGTPKF7Tl4ctuN8/l9LTujc5keHxDQ8zrP3WK19/rtS5VodICXNOAb3yD49mzh2JqcXF7VXujlzcU0p8Ro6O8duX3mvIEqtcFg/yameH8dbn0OR4M8p55883teccKJcD37m28NVWDRDamEblUh7fPiufMPffohpZkktdEtQxTohHQQ9dV/nsiwe/r63zdrVt6Hr7TqbfcMoasG6k3/riW6A8GeT2mpzmOS5fuiOKKWRgLC9vrCgAYKq7hVnEE0fwgcukcXJ7K7W+Wl9l5UKUzv/RSe0tF1KSVyCRLXNTdpZO6PptdQjT6wp1+wen0tYZe7/Pdc8cTPDR0Fi7XYHsGKrQNW4hiQRC6hNHjdOMGF6bKA1OOqha7tsYPYhUKCehFhbxeLpy2tvTQtGiUf/vkJ9lftZct11YVijJSa9HjdgMvv8yF6KVLuniohNvNhezXv657RMNhnvPLl/k/1ad0c1MvGqXGMjPD9/qn/1RvrVXpejXjzVLhtAsLXGzv3799kXfzJhflg4MUM9WotEJeXuY8VBWi1b5VCxq/Xy8ed/06z+1HP1qfl398HPit39JXbF//OoW+w8FzrnJafT5+pVJ6+DagV3r3+TiWWIz/i0S4Iv/ylzmuasLJGL584QLHu7Ghe4YBPb+6r4/voYpUtSNVoXwB/uyzpXMjk+EY1PNFVbUHSityq/oCg4MUYMZ7LZnkVyik5yMnEjyH6+t6Sznl8fT5+LfNTXMR18kCf414+1QUTflzplKqgdlzZmyMhqJcTo+OKBb1+0X1j/Z6uY+tLT1SSBVsczq5PxVSXSzyM8DMmGGkVvxxi6LftCVvNMp7WEVwqHDwvj44kwGEshm4ClnMOY9hXLvFfZU9TxcWgJ/8RO/opjKL2lUqoi7aFZlkczpRxzKX20A8/uM73uBk8u2GXu/xHDSI4Kfg8VQxWAs9gYhiQdjtKI/T0hIXEqpIj1mfYiUoVB5lIqELDrWS6O/nQkaFpt26pedJ9rrl2qpCUUZqLXrcbl6LfL5yOx8jKp+uv5/eeSWy33yT/w+FeK0WF7naiER0r//mJr9/97s0kpw8WXlFMjDQ3MI2Huf77dvH91KFrIwViNVCvb+fIdDVqJSnrHpqB4O6+FVFsfr6uH9jsaxr19gWye+v38uv5vPICO+F736X41Dh38o73d/P8SivtcvFsF01Vp+P4ZwOB/DKK/RADw8z3LlamOTp09znO+/o80Tl+wM8FtWC54MPONannmp/qoKZ6DHz8Borci8t0dO7scHjuuce/t3t1lssLSzwXBSLpUX/NjYo6lwuXjsVDu/3VxdxnSrw16i37777Sp8z0ah56zuVauBwcI4ZnzNjYzRCLi1xLkWjesEu1V4M4DlUecMqDFpVCnc4OF5jbnwlY4aRWrnxLRoXTTuCqfOj8qbdbqC/H7miAyvYg1PBeXgcW7gc3wdkXDjsXoPLMP7lZQrihQU+ms6e1dPzzS5RK32M68bYHeLYMY61Uk9oq8pm24B21bEsFLaQSLx+RwSvr7+CYrFy1EA5TmcQodBTd0Ki+/tPSHTrDmNHiWJN096o8C8p3CUIlSj3OH34IRevS0t6f1PVmqOvT8/RU31OVVVT1Z8V4Ae319ubrZaqYeqiqEKtxWE9HpNQiItftZg1a+ejyOW4AC8UKIjVqk1V5FWeSmORKOMit1CgSL1xg169Gze4GDNbkUxMNL6wvX6d+we46rxxg/swq0B84AAXeLUWeWYrZOVpBvQKzCpXEuCxqzH39+uVc2/e5HlrtATt+DhX0MoIokI3jULf5SodSyqlF70Kh/n9ww/1/sR33UVRY7y2ZqvymRnu92d+ht5VVUhM9aItFHRx3N/P6I12u7nMRE8oREMZsL0dk+p77vUCjz+ue0tVYufSEl+TzepzVnmEVUVlVSTqgQf4fXKyVICr952dbbyPbqsow9fAAOfIjRul4qbc26dyfFVExaVLpdEH5akGAO9H43PGGAXU38+5pCq0q/Op9qnmZyDAcxqP68aeU6c4r9QzQQnySu3F6nnmt2hc3NYRbPT28y2Z1McwyNDVufQoQq4EHhv8APf7P8Rzjo9hanUPXk3ci3BmHW5HHlmk8c6UF+vrFMQf+UipIAa65JB96SUq9eVlGn7KjSHGlAAry2Z3ESvrWBaLRWxuXrotgp9HLHYe+Xyi7rFomhvB4BN3vMGBwGloWpVipELPs6NEsSAITaIK5hw/TmF86ZLeuqWvj54Gh4MfzAcP8sP5ypXSlh4qr1iFOM7OcmHSS62WamHqoqhAPYvDejwmfr3NyJ2+qu+/zxzIco/B1JR+LYwiOxrVhae6pl4vheDmJv+mvKnKy6hCpisJMxWm6PPVd+7cbn0BHw5zxTMyUr369Opq7UWeWc/ceFwX/koIK/GkwqlVpXUV+p/L8XXG8dZbglaJ0OFhilnj+Xa7eTxOp16Ven6eqzkVzuv305O/usprrc6JUWyYrcpTKeBHP+JK8vhx/h4I8F5WxeyMhbzefZf7bbcnqZLo2beP8252lmIvFtOLoKlz8/DDNIgAHOt77+mFntT1LBb5N6dTf6/+fh7j/v08Z+UCXBX7u3yZ83B0tDMF/paWgNdeoxdcGT4qiZvDh3ldNY3X7coVjnttTQ+TLm99pwoYDg3pc11h1jbr4EH+nEzyvlLFrEIhnpObN/l9YoIGFCW6ygucVWovVo/33QLjYsmhrWzi8EYaLmUs6OtDDk7MpUaxvDWE04EpnA2+jfH+BQy5NvBifhyXc8ew4hpFLpuGK51AMMjaF+Ue4nI65pCdnGRahop4UakQlVqRAdaXze4CrUaLp9PXbxfGYr/gbHaxgXfXMDBw+o4IDgY/Cqezv6XjEXqLHSWKi8Xiw2Z/v+1BPt3h4QhCb6HyFD/zGS6WVHitil36zncollULExUK6XLpoZAAf79+nSuWSISen15otVQPZgKsEvUsDuv1mKgCRNGoLviM/XMPHuQ1uX6di+iDB0tFdj7PxdTWlu5FUWJQ5Ru63XqfUNXXNB6vLMxu3OA21Qp/GTFWNjcer7FybTn1LvLKF//l7Y5UiKjy3no8emVoJZbLBUW97ZEA3bhx6BCNCOVCX/VeVbncw8O6YcLvL+2te/Agx1Spl/Hhw+zL/NWvAt/+Nqthr69T+Gkaz9ngIEVSuTepXZ6k8mo4yWR10aPaAm1t0dC2ucnz8d57PGevv87xX7yo70PNSYWqhK8Es8qTVefLKMBVNILXy/ceG2Ml904U+PvOdxgSn0hU9vSurfG6b27S6LW0xOO9eZPbBYN6mLQR5TEfGOB5MBSjAlC7bVYsxhSJAwdoIIjH2QbK59ONCgqz8Hdje7FG2utZYFwsObSXgVeXxhAuDMCdSSBbdGFlawQhVwKnA1N4Jnwe4/0c93j/AsbDl7CUG8bMwH3IDO/DlfvDwI0R5HLVBTFQv0O2pQJRyl169SrvC59P76sOVC5S18gzy4Y0k2r+4YdRXL36IxQKDIlOpS439J79/XcZ8oKfRF/fcAtHIFhGlyqn7yhRLAiCBZjl/V64wMWp8mhWC4VU4aIAPQ290mqpXsy8L832Xq7HY7KwQO/S1hYX9Kpa8tYWv2Zngbffpqfwrru4WBoaKt2HKn62tVXqPVVeN+VBVqG7aptstrIwu3aN+7t5k+9bz8L2wAFdoNdDvYu88sX/woJe2TqZ1D3ESgwr72Q+rxcfKhb1nMtG2iMB240b5UJ/dra0D3h5r2LlWfb59Cq/lXoZLy/r3sFiUZ8LCjWfotHt3iSrPUnV2ojdvMmxGeeGMRQ4Huf1VdEJhQL//s47+mJItazSNF4zVQEf0I0c6hwp76vRiFPeR/f6dc7tz38e+MVftOYc1Do/zz/Pa+bxlOaZqzHH47yXrl3TDQpK5BSLpc+GSERvt6Vem0zq3l8z92UjfWsvXOD5V2kWRsye+crDPz/Pc1tvez2LjIt3Ds2xjsvRWaysFJFzFBEoJDEWWMWEb/6Oh7iEfB4RTxyRwCXgYAoYy+OlJfOmC2ZUu40sKRCldnDwIJ8FN2+WVtA3y+tu9JlVjg3aN9UTOOVwpDE4+BOEQs/jvvt+gJGRn2J+vlD3e/T1RRAKPX0nL9jrPWLR6AVL6ESFtSqIKBYEoTZmHk0zT4wKFx0Z4WrlZ3+2g2U6O0Qt70sjvZdreUxURdWFBd0b1N9PT6OqYKyKY6l8zDff3L6oDYV0T5sqjAZw0a28Tem0nj+utnO5zIWZy8Uw1YUFLtrqXdg+/DBf8/rr1oSfGzEu/icndc+rEgA+H89LNKoXjVNGnGKRX9EoXxsMNhb2X8u4ofJglTFA9SpWIjmfLxXN5f9XqPkQi/H9VJXgvj49b1ZdR4eDx2T0JlnpSapVDUcV53vrLeY7G+eyy6W3w3I66dnes0dPvygUuEhXRbWUkcZ4jtT5VGLB5eJzymjEKffY9/fz2bR3b+vHXw/nz+sRHaqomxGVcpLJ8D5WIt7r5ThVL+2tLb3f9p49PFbl+d63j2I1Hq/svqy3b22t55Hxmb+0xO/9/Qy3PnSosfZ6FhkXx8eB8d8MYCk+iZkXryOTc8KztoCx/XlEvOvbX1Ao8NwNDnL+hMPwHNkL1xutl4qwpECU0V165gzfzBi2bsSY1z011VyqUpdFiBHzwKk8BgbeQij0PEKhHyAY/DGcznTd+3Q4/BgaOnfHG+z33yvFsexKuyqsNYCIYkEQalNp0V/uiVGLz5UVLup2QnEtMxrxvlSjlsdEVVRVi/zBQW5//Hjp+Va5sLmc+aJWFXRSYZs+n56X6fXya3NTDyVWgsvj2S7MFMr4ofonA7UXtp/9LPDNb3Jh+vrrXEibVVIFmqsMbEwBKBT4XslkqShWAlgVjysUeJyjozymDz/kMf3cz9Uf9l9LTKhiabEY/7+5yeuhFrlG0awW7cb/K9R8cLtLr5/yFGsaxw5QQCmP9eoqF7+plDVF7+qphnPxIr2O77+vG4zUXE6ndcGr2mMNDeljX1nRWwAp4aiiHZSRRh1rNqt7/dNpfjer1qxp/Ps992wPlW8HStxsbfEcLS6a94BXxavUmJJJGr18Ph63CptdW+Oxbm7qhdnCYT3vV0V5VIsCqFX9vx4PrnrmX7rE8//oo8Av/VLjnkUrjYuRCCIPHUBk4W2mdRRiQKoP8Ia2bxuP6wXvbudOjz08jPCLrZWKsKxAVLm7tFLVdkC/N27d4rx/6qnGUpVsIEKMcJlRRF/fh9i//3kMDf0AodAL6Otba2AvTgwOnrkjggcHH4XDUWdBN6F7WFlhrQVsIYo1TfslAL90+1dlwn1c07T/fPvnlWKx+LsdHpYgCIpai35juGguxwXpyZM7VxQD9XtfalHJY6LyTFXPzVRK7/1cHp67dy8XlQsLegGu8kXtxIS+4FKCxOXi4tvt1gtubW3xbyr/OJUyr3adzfJ9nniCi6paC9szZ+iRUIV9lpf5QagKbqnc10bCzysRiQC/8zt6IaqNDS4cVUVjJUCVKPN6aQRIJvnd7eY+6v3QrSUmVPXnYpHH7PHoVdyBUtGsxhMOl55z43woFHSv6dAQF7TptC4qjUXUhoZoDJiZ4bisKHpXTzWcBx7gOZ6e5pfKVx8e1isFq3kcDutjDwYpII0h9oWCXj1b5YFrmu4xjcV0g0IsxutQXq05FuO2S0vAN77B69zOhb661/bv53EbezQrVMqCivRIJnn84TCPV3nAlQiem+P3kyf1gmLGfVkRBVCvBzeR4D39i7/I6/HBBzzmRp5/VhkXjeOup7Wgz8djOnECOHu25Pa9fFnvgGfW/aiSrc6ydsLl7tJaqUrRKK/5XXc1lqpkExECANnsLUSjL8DjeR6f//wP0N8/29DrPZ57MTKiimOdhcsVaMs4hTZik37cthDFAB4E8Gtlfxu//QUAswBEFAtCt7C6wNROotXey5U8JvE4Qy9V6ysVJmnWo9hY/eWRR3ityhe1Bw7wvVIpvb2HWu2trOheVOWpVPmq77/PMElj0Saju+TTnwY+9rHqC9vhYR6X8kiMjuq50R98wHzE6Wku9PP5+j1Etc7rb/wGxcbLL+u5tx6PXmRM9XcdHua58Pn43mtrFFSNlJetJCaU13JpSc8B9fm4uE0muf+hIf5N9aI+dozGDyMq71gVC9M0XVhnMnrIvPKCGYuoKbG4Z0/rRe8aqYbz0EN8X0AP6VaiVonhYFAXxICeU628xIBeyElFLqjf1T5VW6eNDZ5XFUKtvKzxOK/F8eOce40u9C9exNL33sLMfB8yLj88D57E2NPj1aeGUdyMjpp7+8pTFtR9c+QIX6cMJYUCr+vwsJ6zbVRqVra+q9eDOz7OOfb1rzcedltuSPzMZ/QCj80aF+ttLeh00nD46KMlz5exMT4aL13iJkp3ltcyNLPVNVMgqmL1arOorGqpSkND3MnnPteYkaeLIiSX20A8/uKdfsHJ5Dt3/md8FFQinT6EublP4Nq1T+DkyafwK7/SoXQIoT1YegO1hi1EcbFY/DKAL3d5GIIgVMPKAlNCKWYeE7WQHxmhF8DYHsUMVf0lHK68qA0E9HBbt5uLbK9XL9ySSume4WCQK0KzFiCpVKnhQ3lVzbzmGxvAV76y3SMRjeq5icvL3LfTybzoxx6r7SGqx0OvzuvwMBfv0ShXXcrDOjzMkHS1AlZuoQ8+aLxKs5mYcDj01kPKC61yw69c4Xsq8aPa8Kj84ECZtyOb1YtThcN6SyLVnxfgYnl9XRcB2awuCoaHgY9+tPWFbT3VcBQuF0Pkjd45gM8RFX5vhtvN86FCipWQViJfhUsDerEtlaM8O6u3CVtb2557u28fDTD1LPR/9CNM/8l3cH4ygKnYCFa2gshpGbg87yK8932c+PQxnPvHd5vvwihuKnn71P2mCsH5/TSIVGqDVKkAm9WGyFoeXI+H8+rixcbCbtudv1pPa8FTp7Y9XyYnge9/X7cfqaLo6jaanWUmwLFjfGm5ra7RW6Jq9epKUVlmqUoAxf9HPsKInXrpsAgpFLaQSLx2RwSvr7+CYjFX9+u3toYQiz2FaPQTWF7+BC5fvgvLyxpOn+YjTehxLL2BWsMWolgQhB6g2RwwG1S17AnKw7HffJPtXDQNePDB2q83hk9WWtTu20chorwN6+t8TaGgt39RBYGUB8IYeqgqCg8PcxFWbvgw85p/61vmHgmzysC5HENDv/jFysfZ6MJ6fBz45CcpQtfX6bUzi4s00myVZuN5v3CBrXjW1iiADh3SezWvrPC4VR5ssUixHApR5GYy2+8vVYHc46GQX17WxxcI8BzE47yuShA7nTzvXi+9/Pfd19jxmFFvGzGF2s7j4TEODOih7JVQYcOqAJlqUQXorZdUrruqyu5y6aHxqvq68qQZc2+B+hb6f/VXmPzfn8dz0w9iKnMEUccehJ0xuJGh9osP4+qNm7h6OYdnfv/e7U66cnFj5u1T4fwqp/zgQRrAFOX5pCqHXB17C4bImo/lSukhmsbw85mZxsJuO5W/Wq214N692w7UGEW8fz8P58YN/RKpDJJ8nrfmJz/J4RlPy6VL9CI3cktUfLzUk4qhnlvT03pP6UY+U60UISYTqTgygmTy4m0R/Dzi8fPI5zfqHx88WF19AlNTn8ClS59ALvcQ+vqcDaeaCz1CM58pberHLaJYEIT6aSQHzEZVLXsKJSzHxriAbrZSc7Wc542N0mv4/vtccB88yOuTTPLLrNVWJsPFej0rkno8EmqRZ8yLriRUml1YqxxeYHtYssLogbl5k+Mxy8+spSbUeY/HOU5VmVfT6IHe3KSYOHxY9/4WCvRuBYMcfzLJ91eCCeD/1tZ47dbWaJzIZPhaJaZV4anNTZ7HwUG+z/XrFI6LixTrrRim6mkjZiSb1Yu83bhBcWgMCy4vPKU8oQMD+nxTOeDqPlDh1cqD7HbrIckDA5xr5d5/I7UW+j/6Eab/33+D5648jsniAxgZSmGifwYurXBnjLn1m5jbCGPyfD/w764h+L8dLb0dzMRNuSFoY4P33uIiDU0HD5aO1ehhXlmhMWF0lMYdFc3QoEJo+LFcbuh69tnGw26B9uevmtyXS2OPYQZAJlTZHmsWRTwysr125Po6p9prr/FtjOdvbY2Pardbv8TVqJn+3e6oLCtESNlESntiiB5YQvTICqKReWy51hsYkIZA4GFDcayPYHa2H4kEz3srqeZCD9DMZ0qb+nGLKBaE3UwzXtx6CkzZrKplT2JVHreZ99YY7vzGG8Bf/iWv4xNPcEGqQpvL89fGxihmDh5kjnItrPRItFIYplqhuPJKxbmcXgjq1Vf11XIjamJpiUJH05jj7XLR86+qL6tVs9dLETczw69QiEIpGuUK/MQJbqdacXk8XBConr2qgFgmw3EEAnpesqpyfeEC/7+6SrF/8CDPR7OGqVpF94woY80jj1Dkb25yHOVhwUbicZ6j4WH9HKpe0iqXWrXRUt7hYJDGjoUFbpfJMOKgGtW8DX/+5zg/fQhT2gRGAhmM998q/b/DAdfQAMa1W0DGiamXXXjxxaPbT2UlcaMMQWrOqqJhZgYb5WH+6U95zJEIX+tyNawQWn4sNxt2qwxE7chfNbkvpzf34vzGw5jCcawExpDrHzS9VasdTnktw1wO+N73aNfZs4fnTJ0/TdPruPX1Affey8tmRl3p31ZW5jajVREyOYmtb/wlYulXER2ZQ/SxOFJDjXiCgf7+43dE8NDQx9HXN1zyf6vqWAo9QDOfKVbUTzBBRLEg7Eas8OJWKjBlo6qWPU87PQZqtTE7S3F14IDe67ZSq61QSA9zriefx6qwqKUl4P/4P1gwS/VFLf/grLawrmRgWFhg7KOxUvHmJj2O8Tjw0kt873vuYf5kvWqi3BigKken03r+ryKZ5H4SCf48NMTrEYtxbBsbXJSePAk8+SSTGxcWuEjVNI5zbY2CKZXSBb2m6dXEVfXy69e5bSuGqWaNNWfP8lxOTlLkhUIU9IA+71QhstFRGgvW1/VcYU3jqljlUjqdei/tvXv13PhEgufn+PHK4fFAZW/DxYtYemcRU6n7EPVGMOF9v/I+AgEcTs3i1bWjuPzyMpY+M7I9BLmWuBkaYrIqwLmlQuEVuRz/PjhI48LZs9xHgwrBksdyM0au69dpjGlH/qqJyp9MHMdzM6cxtTKMaLGI8MD7cO8dRsofwszlAK5e9dyZ9uoS1HM4iQRvxUSC5+bMmdLX5PO8NWdm9E5Jd+w9hufo3C0fQr4AJia81Q/Pysrc5TQhQvLHDmF95Dqik/8Z0evfQOLjC4BW/1v29UXuiOBQ6Gl4vYfrel2rdSyFHsBGhVxFFAvCbqPdXlyblNbfEbTDY1BuEJmfZ76q6n2rKkwD290lQGP5PK16JNRY33qL32/dogBKJEqrYRuptLA2GhhURZ2pKYrEYJAJhYkEV7RHjwL338/fX3qJbZ2UJ68eNVFuDFCVo32+0nDhVErPDVZF1UIhbuN26wWNtrb0wmvGgk3Fot5jWnlVVT5uscjtBgdp8AgEdNGp8nWbNUw1Y6wpn8uq2FssxrEDPBblQR0cBD7+ce7j3Xf1kGrlOVZFyRwOnr/NTR6feo55PHx+mcWyVvM2vPoqZpYHsOIcRdid0EOmzXA44PI4ES4uYeVyADMzI9vXafWIm+FhLL3wHmbeSSBzMQnPsB9jQ1FEnKvb7/Hbz+Q7HrQP6tPHljyWmzFyra3xZ6uL6Jio/OnECJ678RAmk2GMuBcwkXkVrtVNYJPF6HLBYczdOIzJpQMAfLjvvvoP59o13jput57ZYGR8nFP5ww/1zlkPj+tRKLmNNOYSQ1jOBHH68Ls4e2sVmH64+n3XLndpHSKkiAISgUVEiz9F9NduYP3AiyjM3e6HHqz9Fs4tF4I3wggNPonQp/45/P57oHWiP7jQm9ikkKuIYkHYTbTbi2uj0vodo93xXVZ6DMwMIprG/ancVlVhulL8XyP5PK2ERRnHeu0avYYeD8XUzZul1bCNY620sB4fZ+nYt9+mS0cVe9I0uoBu3OBxHTjAfar+yWrheORI/Wri5MlSY4AqGKXygxWrqzwulVtbuC3AnM5SL+/gILednWXRNWPBpmiU+1he1lsdeTycj/39FPuqz4kSiNGofnzNGKaaNdaUz+XpaZ73RILXYWBAD+9W8/q114D/8B+oONzu0nOlWlStr9Pg4PHo7ry5Of7PbC5X8zZsbiKTcyKn9cGtbdU+Fw4H3LkMchsZZN68BGRWtj8Hqoib6Y0IBWvmY1jJLyGXTcB1fRPhW+s4EVrGuVPLGH8scucebybIx7LHcjNGLoXVRXRMVP75a0cwdcOHkdQsxovTelXvdBqIxeBKpTDuXQWcCUy9NgaHI1TX4RgDPfbv334bA3r6d6HAmn7vvpGB8/ICBjNxZNNOrOAIQt5NnB68imfyf4/xn64C62/VZ3xuh7u0TIQUDx9CKrCOaGga0dAMYkMzyPWl696dVnBgcP0gQtExhKLjCERH4XjldeCRI8ATEWBABLFQhXanDNSJiGJB2E2024tro9L6baeThcQa8RhU2qaSQSSZpKi4cYOrPVXptiT+7zaN5vM0Gxa1sVE61pMnKWSLRW6jqmFXGqvZwnpykvm1Kh8VoOjUNL2YU7FIYby4yH2qhbwSX8lk5ZBco5p45JFSY4CqLqxEggpzXlriz8qDsrbGbYpF/W+qd/L8vF612qxg08svc5z33899x2IU8uWFrIJBfV9jY/TCXr7M8PCNjfqNO80aa8zmcjLJ/ylBb3zv5WVe/+VlntN8ntvPzXG8fr9eZMvvp3JR/X9v3iydH/V4G3w+eFx5uIpbSBX7Kh+/IpdDdsuBwPJNeL7zJnDhSuXnQJm4KbVRhRDeF4J7NIXUWhIzUSeuugq46vHgmQcG8NB480E+lj2WmzFyHTjAa1at2riReoxuJip/KenH1A0/omvAhDYNuB00JgF8vjmdPJhUCoc3PsCrVwYRP6DBFxyqeTjqFgNKSwKUo9K/cxtppBfWUIzF4Aw4ENjfjzF/DBPhVZw9MofxQBiY2+xuCtH4OLKf+ziiey8i6voxovsXkQnWL4IBwL8RQSg6jlB0HMH4YbjyhmvmRG9/vgudp50pA3UiolgQdgud8OLaqLR+W+lWIbFqHoNaIn152dwg4vfrhY+UsFBeyfLVXzP5PM2ERZUbb+bnS0Wl6qsMmI/VLAzbKLJVn2QVfquqa2ezHEsiQWG8fz8F1sAAv0ej5qJYidNCgXnAc3OlxoDRUb3isiqnur7OfQIUwE6nXm05l+M4PR5dUKt8Z+MYVHj7/DxX4y6X/j6BwHZBrM6d2lciwdf95CcUkOp+rNe400p4Z73eL6MQu/devWjZ+vp2heLx8Bi8Xh7j+jqjDAoFns8bN/iao0eBp54yP64zZzA28hzCt25hJnscuX5H5RDqdBq5zSxWHEMYy89iTLvGeVTHc6By0E4/gH49aOcygK/RBvT97zcX5GPZY7kZI9fDD9N41WwVfTNMVP5MdAgrywWEC0tw9Tv06AigtG93KAQXgPDaIlIzeew9O4RQqPrh5PP6rRIOV09VD4WACf91ZD238PH9V3DqFOBx5jAWiiHiv238QXdSiHK5BOLxF++0Skom3wMa6NLmwShCVwYRujGKUN9jcG8NVH9Br36+C92jyxXWRBQLwm6hE15cG5XWbxt2LCRWS6S/9x7FYz7PRpvlGPuh9vfzdcoraayS20w+T6NhUQMD2403oZB5Gx+j19M41vKFtVFkh0LMUU6lOAafjx+8Ru+xan1044YuNlWrICPllavjcYrYv/xLemyVhx6gBfzWLY43l+PfVBiwqkLtclHIqYVkeWEpszEA/JsSHMWieai2EbWvpSUaFFQVoePHtxt33n6b1+bo0cqLk3ZWwykXYqOjlYuWxeOcEwcOcC4sLTHJc3aWc6evj+cpnQaef577Kxf999yDyP17ceLD67iaXcJcehTj/Qvbx7W1BcRimMMhhDybmHh4AJEH9+v/r/EcaDRoZ3GRU6OZIB9LH8uNGrk++1kerJVFdExUfmZjC7lUDu5ChveTEZWHrtITgkG4lzaRWErjcDYBrzeAK1c4LU6c2H44qsD74GDljm53SCaRjW4iUIjjoVMZPHZksfK2bU4hKhS2sL5+4Y4ITiQuoFjM1f16lyuEoaGn7hTI6n9nBdprX+Hz4u4aghjozc93wR50qcKaiGJB2C10wotro9L6bcNuhcTqEelvvMEqsIEAFzTlHmBjP1Ql8G7epJgOBlvP52kkLOrChe3GG6M329jGx8yDWr6wLo+QePddnoO+Pi6UNzYocJTYLhb5lc3yy+WioUD12lWYVa5WodlTU3ytKnIVj/P9k0m9mJcS9n19eouddJoLeNVjN5PR85Hzed6TlcRuNquHCS8sVA9XVcJ6bo7nemCAIt644l9epkf2jTdYaOyuu7jvbvQZNwqx5WWeR2PRMhVOn0wyhvXUKY51eprnIp3Wi8gNDvLcvP56ZU/ur/4qzr39J7j6/mVMrp8GiqM43L9c2qd4bR1z2QNYdu3D6fEkzo7Pl465ynOg0aCdF1+kLaWvr7Y9ykxnWfpYbjb3z8oiOiYq37MZhSu/FylnP6Ctl25fLJbcc9GMDx9k9iB7y4PUK1soDnFX77zDR974ODuCqcPx+TjkfF5vd17x/K1EsbLeh7HBLYyFE9U3tjiFqFgsIpl8744IjsdfRD6/UffrHQ4vgsEn7ojggYEHoWmG58344M7/fBd2NSKKBWG30Akvro1K67cFOxYSq0ek793LbZJJ87BoQE+Im53l9VOiyqp8nnrDoioZb4zebEDPI1Vez2yWIqh8YW2MkFD9egsFvnc0qocu9/XxZ/Xl91Mwp9N83f79pYWqLl3iWPx+3WO5ucntHnlE7ws8Nsbfb9zg2NbXdc+z8uxubfG+dLkoUMNhejYBjktVrx4aMr92Gxt6i6aREXOvukIVqHI69fDt0dFSr6sS/LEYx7W1pQv3bvQZNwqxl1+m21SFlufzPB6vt1QQR6P6PPP5gJ/5mdK5W82T+/GPY/x3buAL//vzwLQTU7EjeHV9DGFnDG5kkM1qWCmOIeSM4fTRNTzz+CrGQ1HzsZs8BxoN2lFFyA8ebC7Ix/LHcqO5f1YX0TFR+QOOJLIFF65sHUZ/uohw3zr8zrR+f3m9gNeLhcQA3lsawbXNIfhcWRwt5BEc4m0xPc3vKltjdFQ/nFu32Cq65vm72YdQ3wYmhpcM4dJVaDHEOJ2euyOCo9EfYGtrqYFXOxAIPHxHBA8OfgROp7fy5jv9813Y9YgoFoTdQqe8uDYprd8W7FZIrF6RrioY37xZGmpcjirgBHAx+elPU/RYmc9TKyyqkvGm3Js9P0+xs7HBFez771M4ly+sjSJbictAQG9pBJhfSyWM19e5XSKhnzMVMm3MaY1G9aTDYFDvvbu8DDz6KHDffXzdnj0Uuuk0V9rxuO6C8vn4uv5+veBWXx+vc18f38t43dS9tLFBT26hwHGZedUV8Tj3VSjofZGNiZLlgv/YMc4bTQMOHeL7dKPPuBJiDoeem61pvK7qGI4c0Y9XXSO3m2MsN7LUiuj4B/8Apw8cwNCffhcvvrGOy7EIVraCyGluBNwFjGlTmBiN4eynvJUFsXqfsudAo0E7Doder60ezHSW5Y/l20aupYvLmHn1FjKbeXh8ToydGUXknpHt21tZRMcgzqYvpnC+8DFMXevDta29WN0awkvxQYy6o9jTt46juIbQ7Vz7aH4Ql5ZHMBMbQr8ji/uGb+DBu8PAQb7tgw9yaPPznDKf/jTwxBN6FsT6eh3nb92D00PLOBt6D8Bw7WNp0Pi8tbWGWOyHd4RwKnW1rtcp+vtP3BHBQ0MfR19fhaphldjJn+/CrkdEsSDsFjpl5bVJaf22YLaaVUWW8nmuWo3Cpd2FRuoV6cYxbWxULhgFcLwbG/Rufv7zjV//VgtkVDPeGL3ZKyscZzZL7+jjj5f2xFUYRbbyKqvqzqrC89YWtynvo7m1pYddptOs0HzwYGlOa3norjEE2eglDIUYk6lEpPLaf/ABBWwgQDGrPLtOJ8dpHNfsrG7gKL+Xzpzhe01O6mHUt27xdUqgq3H6fPwZ0MWkwkzwG0PUDx7sXp/x8XHgN3+T6uQnP2FVard7u7FA9dBRlb1VBW8zqkV0fPzjGP/4xzF+8SKWvvcWZuYdyLg8nNZTFxFxx4BQHcde9hyoO2jn9rOlsOKDa6sf+ZQDQG3xZKazrH4s63X9RrCyMqLXZ7taJbreyiI6585h8qVNPPejYUzl9iFaHELAvYJANoGVXBgb+X6spv1Yc7hxKngT+4IefLgWwlx8EICGw+4FjEeSQOj4nV26XMA99+hlFdbXS7tq1XX+HnPhmfiHGL9+Ccidadn4nM+nEI+/fEcEb2xMAijWfZrc7r0YGnr6thB+Gl7vobpfa8pO/nwXdj0iigVhN9EpK68NSuu3BeNqtrzIkgpV9fkobo4ebX+hkXpdTion9/p1ejzNijUpmjWIWNWiqpbxxtiO6OJFzrOPfYxiyWy8RpF96BCvUSpFwdnfz+u2taW3ZVLjVtsMDupGh9VV/Zqrns5mobsKo5dwZaVUCfn9+vYqN1l5v51O3oOpFN/f6OmcmdH7KT/ySOm9dOAAt5ma4jG53fSqLt4u9uP18n1VK6pwuHTMxoasxnBqsyJfjaYHWFVNNBKhS0+1Wzp4cPs2KiKgWOT5VMcyP19qvFLbqqrhb7xB92A599yDyD334M5oL1wAFlJAork2QzWDdgzPltxGGpmFuxAqupCdcSL30zhcx45UFPnVdJZVj+WWi+9bUERnGuN4Dp/HJBIYwU1MOK/A5d7AAacPl/InsJwfRgxDiDmCiGX3Y+9yGlfW9iCV68Nx/w2cGlhE6GDE1DhYaWrXd/4GMH4+AHw71JTxuVjMI5GYNOQFv4xisX6jqtMZwNDQuTveYJ/vFLRyY1+r7NTPd2HXI6JYEHYTnbTydrm0fltQq9m336bAjEb1IktOJ89hLEaxpBYKTz3VvkIjjeSJHz0KXLlC98etWxRQVhlErG5RVY/x5tYtip6PfhT4H//HynPKKLI3NnitFhYohNxu7jeT0Vu2OBwMLx4c5LVVntFCgdWZr18HXntNL3xlFrprRHkJw2FzJVTu/VatkhIJvb2Qqvyj+kmr1kuf+ATw9NP6e5UvVqenuX0iQRE8MMDj8XgougIBvr9CiUljESvAvMhXvekByljy1lt8z2yW+zp6lOK2mYJdteZHNktPuIoi2NgAXnlFN16paw3wXKgogr/8SxoQao2pxVSUErvPVArjg6u6WM9mud/bxom5wlGMeuMYdCaxvuHE3LtFjMdXacwwXrvb1LJptfpYtkvx/fPngan1fRh5YADjiWXgmgbkctiHBXgLCcw6jmLFGcEtbS8SOR9cmw4EPSmMutbwM/3vI3QgoEdIlEX7uEIhhMN+06ld3/mr3/hcPP0QUo8fQvTGnyIafR6x2A+Ry8XqPg+a1ofBwTN3RHAg8Agcjjr6a7fKTvx8F3Y9IooFYbfRaStvl0rrt4VIhOcukeCie2SEi2OjgFDhtDMzXBGGQu07/kYW54EARdHQELezyiDSjlWy1cYbo4hSRbZUwau+Pn5XnsX+fr5XschzdvAgr28wyPvigw8o7lIp4O67WVirWuNS5SXcu7eyBzwU4rH5/RTsi4sc07FjwKc+pZ/PZJLb3rzJcXzzm5wDxn2ZLVaTtwv++P089oEBCsDy3rGq0rVR/KrCXGZFvmqlB0xOAl/5Co0Iy8s8j6o9zttvMwT6pz8Ffv3XGyvYVWt+fPihfp1zOZ4vZbzKZGi42tzk630+zgGvV68aXsuAY0EqyrmxOVxNRTF5yQs4V3G4fwWuwm0xn8kgNxTGnP8+LKcGcHrfAj55bBbfvzKGyZkQ8OEyDhfeh0uFyaNxm1azj+VuFN8v110lXduObgDLac4ttxtwuxFKpRDKfYDk1jRWEMY7mXsxggS8jgwGBwoIHQ7o9QnefPNOtE8y24fo1gDy7kWsYxQ4MoRMJmA6iMjYGCKPVTiBNeZnJnUDsXuziP5sGtGDbyGz8P9s6Hz4/Q8gFGJIdDD4MbhcA02e2crUrXV30ue7sOsRUSwIuxGx8jaP1aFordDo4vzIEYbcRiLWGUTatUq20nhjXKROTjKMNpOhsFVhwS6X7vXN5/Uc4QMH6OUcGgK+8x29gNXaGu+ZjQ16Pc28xOVewpGR7R6kREIPyU4mdc/uwACFeOJ2W5fyUP1kEvjud/n/3/u97eeh1mLVbN44nRQXxnZO8TjPjcPBY4lG9RzeaukB09PAn/wJ2znlcnpqgaoYnUzy+fPd7/Ja/PN/3ti8qzY/Hn+crbdUZISq6J3J8Pd8XjdkbG3xa/9+VlVaXa3PgNNKKsrkJMa//xy+kN4Cig9gKj2OVzfGEc7chHszj6xjBCvZ/QgN53H6wAKeOXUJD+1bxKAnCzhOYmougFev9COci8E9EepYKmeni+9XysjIZm8HOjiTcF02FIUbHdXTI5aX4Y/F4N+cRSrnQqrgQ9HjQTbfB3hdnAe30xaiCReuFQ5hdWsQm1t9KGwVsF7sw+BSAt/7kwUcfOVtjMcmG0sLMczP3NV3EHNdRDRyHdH9i9gcMhRmqyM92OM5cscTHAo9Bbe7fZ/RVmXB/P/Z+9PYOPI0zRP8mbn5Tae7kU7noZPUGVKciowrIzIiMyOyKitr6srMxu5sV/dUoWYGO91bvRh0ozFAf2j0YPbDDqZ3FjXYARbonpqt6QEa0xWddR+ZioyQKjLuYJySQhTFSxQPp5Pm92luth9eGs1JOkknRSkoyR7AwcPdzP6Xmf+f93heDx7uR3ik2IOHhxmelXd3SKdlRxiLSTirYazPA20tDzM8LDsKw7i7JZm225yXSrKzmZuTTeBzz7k75nYGEZD/zc52ZiS527vk/TTeOJvUU6dk1/fGG+uVuEMhGbeFBTcsenhYwppXVmQnXqvJ7jAWE2/j5KQbLt8unHWjlzCVWu9B+ulPhVSXSuLJtCw3t9nvF4KcyYghplpdH6rv90tbf/EL+IM/gP/sP9udt7XdutF1t5yTQ+gd8r+yImvIIbeJhMz7yy+3Tw/44z8WT3ClIsYAp4SWg54eIdxLS9KHP/5j+Of/vPP2w/br47/5b4QU27ZrsHBKTPn9EhEA0gbLkleravhOBpy9RjO0RFZcGOojcaafy7ejXJ+vkJmqYmoqMX+dYT7kjGbw8gmTkUELgAuD8yRCVS4nDnP9ixqZ2knM+gCxWLgzO9FO99EO799L8f3tMjJu3BDbRcyscSjQZDAWXW+UMk15KQr4/QQUG+w6Pj8s1nTMyTG0r74CYD40zFVGWK5HqJp+Iv4GitakVAhhZct89tNF/u1HJj9OGjw1XOgoLcSy6uTz72MoFzEev0j++PvANjoOm8auB13/7hoRDoVG9j8vuA32OwvGg4f7DR4p9uDBg4dO4ewKR0bEK9GaB+rkqLbmmC4u3t2STNB+cx4KCYkxDCEyfr+0K58XQugc57RpYgL+8i937x64V7vk/TLeOCTqBz8QEvbv/p3MoUPWnBBqh5y+956MYTgsodLnz0s/+vuFmDphuY7okxPOup2X0CHnf/zHQnrzeSEgg4Ny7WxW/h4YEJIyNSXHDQy4odytaDRE+Cka3V0C51akzsm5XSUNgPwPpH1O3vytW0KOQ6HNc5NOyzpbXpaxaudFV1X5v2XJfXLpEvzO7+xdfGsjuQsG3drTzhxWKjI33d3SF6dOs6Mw7hhIOjXg7CWaYUNkxQgFuiI36K9oTAfK4DM51lviaetDUvYiZE8DT64dPqIbjDxtkPbNMWlPUft2F8Gnzm1vJ9rJ/Tc8LPfkDvf/bktJbYyu79S2tVNGRjgMb18yyRgaV/0DhHqL6KxGN6x6iSkWZf67uqiXe4lVl+jvylEPHWImG2ekchsjOMDV5jHmqzGi/gbJ7hyqAkYlRG+kwonGdfTqEqMrx2FgkHj/Z275rZa0EBubUngeI/rVal7wZSyrgxrFq1DVEPH4t9ZIcFfXkyiKuvOB+4iDkivuwcPXCY8Ue/DgwUOnaN0Vtqogb1WSyTDubkkmB62b80uXJE8umxVy090tXjl9VQ31r/5qvbn/TtwDd7pL/rqQSsE/+kdSxuh/+B/Eo5nLubWJVVWMCo4CdTwuxzi7xI01kx21YMsSheu5OfnsoUOyu+zakPM3MuLmoycSLskuFoWM2ra0wSHo4P6vFX6/jGl3994SONuRuqEhWTtO2HZ/vxuWCtIeRZF+1+tCaCcm1l/344+F8CvK1qWQHOi6sKXbt7dWf94tnBz7U6dkDpeXXeOVbcv/nDJc3d3y07LcUmW7MeDsJpphQ2TFhKFzaeoYY8u9ZNIWZimLhsl0rsJCSOeVyt8wskVd8VR3lZTvBpzLwHPbjMVO9/eHH8rvkYiMzTb3fzD4VMe6fuBG12cy8Id/2LnNbVNGRqkEC+4zNhnW6Y81KS5YLDV1pgsB9OiqwvqGaADTVsmYcYaDE/x65BJ/6k8wag5A8ygr1STLdT/RSAM9XMWyhRCXGn4GlXkG1CVsGli2wnu3DtHfXeafPPcBANVoEeObWYzAVxgDb9JY2E1esEos9sxaXnB39wv4fKFdHL//+DpyxT14OGjwSLEHDx72joctJ7md2nM0urXQ0t0uydQKZ4fyzjuy60ylZIdz7Jg7JxvN/bkc/Oxne3cP7Eb9Gu7OeNzJGkwk5OWIkPn9Lvn0+13CW6mIevEjj4gXMRpdrxqdTrtRAw6JVRQ57u/+Dq5dW7/7d8hRuSzEvFaT6xSLbm3det39HeSzjnKzA0cVemhIPLd7SeBsR+r+6I9kl1yvC3lcWdmcHnDihKyHpaXNO+TpaflcOLyZyG+EqsrnymU5bj/gGGsGBoR0T08LcXdC1H0+6UMkIn1w/t9acmq3BpxOohlaIitGl47w+tVHGFvuxaiGSZIhQIFKM8Bk4RjjlUOM08OPM2/xVLu64p3cSzu5/5y5m5+X9fzyy/I5Bxvu/+Hf0Ekmj+9KdDsclkvcvt2ZzW2d3SBlwCdTm8reRSMResuDLPu6yZpdZMoWpbqfKKX10QDATLUfXStwJjTDs+Ev0WK9kHmMLxojfFk9RUWJkArWyJQjlBsaftUioDQoVAN80HgUW/FBVaEWVPkiNMMfxz9g4NSHmF2Z7ed6AyKRs2v1ghOJb+P3J3Z1/N3Evc4V9+DhoMIjxR48eNg9HlY1jjssxXJXMTEB/91/J6TYEY6anxfi69RN1vX15v6FBQnf3at74Oscj07WYFfX9oT50iUhBk89Jd7QVo//0pKMj0NuZ2ZkLG/fXj+eTrRAsymb90ZDyNbgoOz+C4XNu38n5zQUEkEoZ9PvKCPXavJ3teqS4EZj/d+tqtDJpLTxTkL1HVKXTst6SKXcvPmt0gNisYO5Q2411gQC0t5iUcYW5O9QyB3LUmlzyamtSOedGGFWyfpE7RCvX32E0flB+qIlziQzaGYNzDQUCpixNDO1AUbL58FQiWdvMHK45Tyd3ks7uf+cus3d3fLz9u31pHjD/Z+6+hanT/9Ox7p+fr80c2Ghc5vb0tKq3cC3gvb5J27d7A1l747Xc6zYx8laERaLUTLlMFF19f7z+zHxMVPpZ6mR4EJsjJeDH4KqciF+k4Q+zh/av860OYRqgc+2MW0fPsWmYmqUqwFUH5x54gOefvoiT1x4i2Mnv0RVRRXL3H6WAQgEBtc8wYnEq4RCh3c+6GvCvcwV9+DhIMMjxR48eNgdHmY1jn0oxQLsv4d9dFS8e++8I+ceGFif/7mysl4M6uhRIbizs7Jz3al+y1bugf0aj62QTktIreNBPHYMnn5a2r3dGvzsM3m/r092cVsR5lb3iKa53rj5eTlPLre2yaZWk7+bzc3jWa8LcaxUxIP6zDPb7/4fe0zCjqen5XzOpl/T5FUsyvlt282NbQ2lBmlLKCR9ikb3LzTd2SEfOSJ51NulB0D7HfKxY+IidESstvMWW5aMWzzu1o29UwwPyzh+/rmMe7XqCqXVajJufr97/Y0lp9qRzv0wBK6S9Uu3TzJW7KUvWmJEzwJQIoqhHKZpF/EVoT9qQK3KWO04l9M+Rphxz9PJvbST+69Ucgnn0JCE/G8Rqt16/7/yWxnGx5MdiW47wQW7tbmZRoHA3BRUVlWl25S90zMZzuWuk7UjFBp9fJ7upxJsEKgq1G2NTKMPXStwITbGj3vfYiQ7BpEhiMcZCV/je5F3uFE9Qs6K4Y90cavRR9/xzzlx7h0ee/JNzp1/F3+gvrnRW8BX95MIPIN+8v+Err9GJPLIPRHH2g/cr1kwHjzsNzxS7MGDh87hqXHcWSmWu+Fhd+bk/fdlBzowsH6j7NRNnp+Xvx0xqGBQNs6HD9+Ze+BOxmO7Pv2H/+ASdyc8OxKRtiuK9PXYsc1rcHZWxmJpSYjZ+fPi8dxotDlzpr17xDCkVEs6LYTYsqQPtu0aMQoFt/ZvKCT5xNmstO/Ikc3juXH3n8vJmGQyMpatm/5QSNhEJuNeX1FkJ6qq7nw6JaMcIrlfoekbd8jbpQdA+x3y00/Lupqfl/Hs7d36eMOQsT18WI7bD8zOSjh5Pu9e3+dzDQ6Li66SuGmuNy7AZtK5X4bA4WHS4WOMzXdhNOFMcgZjKcJUbYDleoxyVcVqVFHNGpFqjYS9guHv53rNR7q0TCqY6/xe2sn950QAOMaYSET+bheq3XL/j9g3+dGPksD2ottnzsjwz8zII2E7tNrc+vtBW5qjki1DT3RrkbZUisHCTY6lZykoFY73qQSqNUzVJmaVGI4tcyYyy8vxzxipXnXneGgIpqcJLOQ4dHiMk49NM3ThS46f/4BINL99Q1vQNDUaC2c42+hD/9RHrHIM9ff+Szi8XYL3wcRByILx4OEgwCPFHjx46ByeGsfeS7HcLQ+7Myfd3a4wVCsclV8Qz9D0tPytqkIIWkNGt8NW7oG9jsdWGB2V+rbvvCPtVZT15XMmJqSP/f3iydxIaK9fd4WDnN2ec81Wo83MjPu5VkxNuWGlDiF2PD627YYSK4qEm3Z1uST1yJHthaWc3b+TPwybSxWFw3J/WZaQn3rdLRdULgv5DoWEEJ8756pd71do+n7skFMpIWwTEzKHqrq5nw65X14W0vrKK/sTi+kYiQoFGZtyWdZ4PC7jpqpu9ESlIuN99KgYF9oZcPbTEFgsClfNB0k2J1mq1blaO8yyFaVKkEjYwhcMUbd9ZOsxVuwoEOD6fJ3JT3Ok7Pc6v5d2cv8569u5/32+zXnVrWi5/y88t7Podne3lPXuJCTXeaR88QWkInkipQyTpTDmscS2m1QzNUQ1E+ab6nv89sANivpRalfGCS7PMTzUJBXIrjMg1U4nMYZvYhyfwRz8kF/r+dPtG7YBEzcfJzP+DfyLZ/jpOz/gyaTBhWfeJn7lDXgmdW/SZO4CDnJWkAcP9xIeKfbgwUNn8NQ4XOy2FMvd8rC3zsmRIy6Jaod4XMieEyJpWdKGrTbBG7Gde2AvpWnaYWIC/s2/gbfeEsLilPNxyFS1CjdvumRqdBS++U2XiE5Nyf+d8kSt/XVUhZ023L4tbWytLVwquYpAqzVOURS5vqK46tROaPrKilyzVpP/p1Lbe1U1TUj01JSMezwufdlIpGMxN+x7aUmu5/cLgU8m3Zxe57i9hKZvhf3aIf+9vydr8623hITm8zI2TkytswbDYZnDH//4ztrtwDESHTsmRpOrV2VNOPXEQyF5FQoyh5om87C4CFeubCadjmzynRoCV41itXQds6lQbyhcNY8yb/USpUxSy6Caqx5btYFFlRxxluw44wWNyeYRnnuu2fm9tJNxw+eTde08LxzRtq2MZBvu/51Ety9f3jkk1xFtX16W4bdtINvEXoyRI8LVTJjHB9JbHj9jDqJ35zgTXOC8+TlkvoBwHvyLsKBgRiD7WBPjySbGuSuU429vP2YbsDR/hKufvMQnn32Pzz/7DoV8H2eSGV44PEtcg0w5wuRXNVL7de+1w36k2uxwjrudBePBw/0CjxR78OChM3hqHOuxm1Isd8vD3jonyaRsqLPZ9nmcquqGSGYy0l5dl83ufrgHdjMeW+HSJSkRY5oyVhvJokNiIhHp4+3brue7NUfSCUfeKiT06FHZjTcakkt58qSc1zCEhDpkzQm3rdeFNDi5qA5xKJdFRUjTJGy9k5xYJ/94YMAVQ4PNntRgUAwNhYKwhb4+eOKJ9WG+ewlN3wn7tUMeGYF//I+lHx9+KG0sl8WwYNvySqUk//q/+C/2J6Jko+FO01yFcKckk6YJU4vH5V6Jx8VQ0c6As1+GwBajWLDnObRDKWbn+ijWA0Qpo2uF1dzqVTG1YBA1FkXvjpDLhSn4Ilw5/qvwXwc6v5d2Mm7ouvu8MM3NedWt2Ob+30p0eydOPj/v2iuqVblEMAi1ik25FqLYDPPZYg/1po8nBxfQVDcCxrQUZnJxlkpRLqSmeflQBp56Fktpki9/hBGaxhjJkj9Rhw4DYQDyuR6+/PQVrn/6Alc/fYX07SNU7QANJUgs3EAPVyg3/BjVEAGlgZkrUfOX4MLp/bn3WrEfqTa7OMfdyILx4OF+g0eKPXjw0Bk8NY722KkUy930sLfOSTQqYagrK+29j+CGSM7NiRe2u9tN/Nsv90AnpWnaIZ2W+spLS2647UZYlpApJzS7XJbd9alT63MkHXK5VUiopklu4fy8fMbpv1MSybaFTCmKnM803VDqWk3+b1nSBtsWMjE0tHNNXhAGAHKMk2zZ6sl0PKmFgvQjkXAJ/q1brqLyXkLTO8V+7ZAvXIB/9s/EyDM6KuTUKSt17Jh77H61u53hbrt64jduyPx9+9uSsrDRgLNfhsAWo9hwf5TISpD0fD+K2iDpXwBrdb06Ic2NBgSDWIUSSi2MrfnJWV2kSdDxnbWTcaP1eTE3tzmvuhV7cA9ux8mdtP35VR2tnh73kfTksSrB5hifLA7xVfUYN40ejGqYI/E8AZ9JvamRKUfQQxUuDN3mt479Kf4nr/D5MypZ+zMsu8Owf4BmkKmx5/n0o2/xyUff4ZNrz6HYCqFAE9un0fD70Ow6McokrSxmM4hVhaZRoF62iUWaBB8ZgR8/v79pQvuRarPLc+x3FowHD/cjPFLswYOHzuCpcewNd9PDvnFOjh+XTe5W3sdGQ175PHzjG/C977l1iuHrdQ9MTgppcghgO8ViJ4wZZLfWaIinyyE7rTmSsH1IaCAg3tdwWPoHQoqbTfc6juKz43EMBl0vp6bJ36GQELxmszOPe6Eg1wwG19c6djyZlYr8dIh8axi3c32fb/eh6bvBfu6QnQiCH/xg9xEEu4062M5w104wrLtbxvLcOXiujUDSfhgCNxjFUlqJ7mANRVWwg0HUWEzmvFKRdddsrq3xXDVI2MwT89WpfJpj8m+6Sf3DHQxrrdjJuHH4sHgTndD2Q4fWH38H9/92nLw1y0HXZWjWOPlQHKZDPJP/kkB3kNlCgkSoSixQw7RUBgYmeOn8Lxg+9w6x459QDJYoAlhbNKQVlkJ3fpAEF9BP/6dcz/+IX4wGmZ+pEYmU6Y77yJU0iCj4NB8hP0Q0iFMhbGos5ALYts1Co4eMmuCFEwWG/9FJeOp4x+OyI/Yj1WaP59ivLBgPHu5XeKTYgwcPncFT49gb7qaHfeOc6Lps8GGz97HRkFDfVEoIgONl6O6Wz3/d7oFaTa6pKFvnNTrhy9WqW1Kn2XS9f605ku1K7bSiXpf/v/SS9H1sTDyxpinvlUruOo/HZXMZDMq1ndJIjnvr8cfFELGdx71UkpzVQEBeKyvunDmezBs3ZEPrGASiUWEMwaD0z+eT+XzxRSnrdKelvLbDfu+QdxNBsNfQ0f023N3J+RxC/8kn4hbt6lp7Zp5PpYkF62TKEYxKkHi9gOoYX3w+LMVHrtlNSY0w2JsnaecwlwxqP/uU9Nkgk/bxzuwEnRg3nIiRSETmeXl53+7/dpy8VnNDpp0y2OuE1Fs82Od945jJQ7z0zN/y9DfeQDv8JcSW1s7fCQ+OBE6jNx9Ht54iHnkW/6OPrw3YSNp5fAZ5/tUgdlyGwAlUkVLWASqVPuYyOukmBAMW15o9KAGNm0GNv7wCryT38dG4H6k2d3CO/ciC8eDhfoVHij148NAZ9lON42H6xr2bHvZ2c9LO++iEZKZSQgL/yT9x5++guAeCQdmM2/b2CrjhsIxlK4F2wmFbc6o31vFtRavR5ld+Bb71Lel/JCJr0zSlDbGY/C8edxWwHeOGQ1Z7eiT89uOP23vkDEPEwZyyTT090q7lZfj5zyWn1sntXl6W+eruXi/Cdfo0PPqozPHCgtw73/3u3b9nvo4d8p2Eju5kuGsNoQYxarz44taGu70YAnVdyOef/In8PTsr8++s7ePHGU5kOaGvYFoqjarFbK2XiFLF51NomjZlO0zIrzAYL3AuuUyuFqZcNPnZRzp//a/yZIZ2kWLayf19/DhMTZEenWVyWqWWUwgGbIbPWaQuHN7z/d+Ok4OIapmmG7XdKqSuqmXiz06gf+N19KPv8+qRGZSWfOKdEAgMoeuvouuvoeuvEgwe2vKzGx+fZ87IEpmflyWiaRLYkclANqvRsEBToa5AIiq381/91d6KBrTFfqTa7FO6zl6zYDx4uJ/hkWIPHjx0jlbTf7Xqkg2HlASD24fb3Y06vQcdd9vD3s4d0+p9zGRk95nPi4e4lRA7OAjugeFhcRV99pm0u6enfQh1IiHEsVCQddfdLX11PEwOEVHV9XV8W7HRaJNKSf+feUbO++67cnwsJudsV0qoWHRDb196SYgFrPfIFYuy5jMZeS+ZdPOI02l5r1CQeVlaWq+cvbEW8ddZ7uxe7ZDvNHS0nZGoVBID0dycK1qmqvJ/n0/moVhs37/dGgLBVTx3CL3T7lxO1s7KCsPDfs4mz5IuhOlp3sZoBClr3VioBJQGCa1IMg7HBmrEgjU+WRhAU2JUlmzKlTBJf5VAd6jzFNMd7u+JCbg0CWNKiQwlTCw0VJJKlNN2lFeAva60jZz8iy9kCoJBcVL39Zk88cTHHD16EV2/SDz+Dqq6hYJ+G/joItH76hoRjkTOojgpFh1g4+Pz9Gn5ubwsQ1WpuCXJAwF5bAwMyG3f17e3ogFbYj9SbTxBTA8e9gyPFHvw4KFzjIzIBv6zz+Dzz2WTGQjIl6umiefu+PH24XZ3q05vOxwkT/TdrnfRaf7nN76xcwjkVuTnXoxnKiXz/u67cr2txMLCYTe/1yE3t25Jf5tNMdZUqy6paj3HTjmS58/Dr/2aGBAWF+V8GwWwymW5fiQiu+PnnnPHrXX3Pzkp1yoU5L3hYRl7pz0DA/D++9KWn/5UwsHLZXl/dnazC83B3Sp3dhDumf0IHXVYzttvy89iUfpWrcr8BYNuXno0Km7Bf/tvt37udCo6Nj0tvzca7j2sabI+CwVRSvf5YH6eFO9zOnyB8UCIcCXL2a4lDH8fTUvFV86jd1tED8k9/NlCikItgKbanOwyeTxxHS0ZlnxgOksxXUOb+3v9YzlKMhklEIdKHSavwPjcnT+WWzn5n/+5zaVLX3Ho0Bs88cRFksk30bR8x+dSmirx3GESytPoZ/8+sTO/garufSu78fE5NydjaFluaLfPJ9Hvjn2qtRravtqp9iPVxhPE9OBhz/BIsQcPHjrH6Khs5B0xou5u+UJ1SnrEYrKDeP759Tuou1WndyMOqif6bte7uFsh0Pd6PF95Rcr3/O3fuqWRNtYpllhGIccnT0purbMGBwdlfTltnZoSUrSbHMlWUmWa4tZy8ogDAVnziiLj8Oyz6+eqdff/B38goc6HDkno88YQ7sOH5X8ffSQk2CHboZB4yTfWInaw396d/ZzjOyHW+6XSPjIihoS33pK+5XKuMJpjRPH75Rnz5JMyn9s9dzo1OsVisk6Ghtafo1XlWVXl7+VlXjl0ifFYjNGMDprF0egKWrUEIQtivZhakLGlXj5fHMC0VIYTBv2RAhrmuvSCOwkguFeP5VptDsN4A8O4yJkzFzlxYm5Xx+ezTzAcfZxDgceJR7+B77Fz+2qwaff47OqSxwzIMj5yRJZdO3HufbNT7UeqjSeI6cHDnuGRYg8ePHSGjTuop5+WzW9rjl6xKK/33hOvm7ODult1eltxLz3Ru8V+17toRz72OwT66xjPkRH4z/9zafs774i3Np12xbUqFZec9vZKKaazZ2XHmky6/S0W924g2DhXi4tCUh1Pcb0ucZ+nT28/V05S4tNPbx3GqOvwne/An/+5kLXDh4XoO+Hg0L6UUCfenU7WwX7N8X4Q6/0K+5yYEGErTRNm02i4ZbwcYwYIQV1edsPrt3vu7GR0GhyEa9dEKM0Jj29Fqyr8ak78SOUKPzqUhPQwY+XDvLdymqSdIRDxsVI7wsS1FPWmSqEewLYVsrUg75ZO0ButcLwcZGMMxV6I2d16LJtmjmz2EoZxEcO4SLl8beeDWlCpjGAYr3H9+qtMTHyHV1/t49d/U95bW9Zf7W9Aw8bH5yefyG2gKGI72Q53bKdyLrqwIM+X1trpW2GrVBtPENODhz3DI8UePHjoDO12UJq22XQ+MbF+B3U36/S2XvNeuDzuBPvhze2UfOyH9/DrGs8LF+Bf/Av44z+Wvt64IX11hLWcpL6hIQmbLhZdguoQNydHeK8Ggq3myhnrneZqtwSvr0/a6PevhcViGG7tGkcszSlXVa/Ltdt5dzpdI/s1x/tFrHcb9mlZMj7/x/8hDObYMTFAOH1PpcSQ4IQzg4yfSApLW5eXJez50Ud3fu60sKb0x7dEkIogwWMDDGc/IfXGG9KmhYX1Rg3YrApfLsPcHBeG3yMR/YDLhdNcDz1Oxj/IYvAIs5VeLEuhaamENBNVsTGbPuZK3aygszKtcy4hXNzBbonZfj6WFxZqTEy8S73+BopyEdv+ENhCLK8NarUkudyrGIa8isWRTYEz9ypoxYkwr9XcoKhOsKco5HadmpqSQW4V4WuHrVJt7na6jgcPDzA8UuzBg4edcSc7qHsh/HEvPNH7gTvx5m5FPgwDPv1UcnEvXYJ/8A/g1VfvrJ13azw77ffICPzzfy6qzv/6X8OXX4rXz4ljdAhHJ8JLe93s3clc7Zbg9fSIR9op07S0JN5Op3aNk9Ncr7uJjpomBoFW7Iagfvrpnc/xfhpPOg37NAwpbXXliozz9etujncy6XrzT592UzoSic3nicddUaxaraPnjnCYFGNjKeEwRgFtaY5kpsTpzCO8EnyPkeyotKW3VzzEDqlpVYUfH5c2BgKMHC4z4n+DdGyKt1M/5Ce3jhFeaXCqdxls+HRxAMtSCDQrdIVrVMJ9zGcCcFVO18qZdkPM7uSx3NdnUSx+xs2bbzA3d5Fg8DI+n8yb3YFQtGlGmJ19mU8/fZXR0de4detx+vpUDh2SZbAxcCabvfdBK3c9CnmrezUWk3umVYTPMZRBZ6k2dztdx4OHBxQeKfbgwcPOuJMd1N0W/rhTl8fXITC0W7LWjnwUCq4n0TTFazo2JqWBXnwRfumXRBV5t325G579vbp5rlwR79vTT399xo7t5mqrtdNmR50uRZk0EtSaGkGfybCeJRVdlbVVVTdE++pV2azOzwv5TybXq18rioxJoSDeJCd0fjcEtVRyUx/uZI7303jSSdjn/Dx88IErYOZEqtTrkjs8MyNj09MjpNSytq557Xjdy2UZhx2eO5s4jG+FwNwUlWyZydwA481vMV49xI/9l3gqOyoGjpUV8RA7Ll1HFR5IV7uZPPE9ag2VoO9LhvOfkUtXqTZUBrqK1JsaU0aclXKYpgllFfzBBGF/BE1zndytpHg3xGy3j+Xe3gkOHXqDSuUi77zzcxqNDCBDuDN8+HzPcuPGq3z22Wt89dXz6HqQel3aYduy5KtVOHFCHKROMAaIDto9CVppuZ+HS1GSkbNMTkb3Pwp5u3t1ZETSMz74QAbl4kWJZOjp6TzVZr/TdTx4eEjgkWIPHjzsjDshtnfb5L5Xwv7227KRPmiiXO2wkXzMz6/3JGqajFup5OYuvveebHq+9a3d9WWv4/nxx7Jx20gQdxte25pf99Zb4kHdyZNxtxSZt8JOJP/8efn9+nUmzKNcWjjDWGGAjN2LqQbRVItkpMzp3mVeOXyTkUxGyFMwCG+8IerXTqkpB04pqEpF+ptMrieauyGoX3zhCpPtNXpjv40nO4V9GoaspakpWfPhsITRO4TTssTzOz8vZOLGja0JsQOfT45zvMtbPHc2cZiUgfb5J1CZh54o5mCEmSmV0cJj0IgT7/cxUv9K2gLrXLoTSzEuffkMY/YpMrOHMes2Wi1JpPQo49VD3Gr4iUWaGFYXpYYPxWzQtIOYapCqHaJS0AiFpNmZjNzy0ejuidlOj2W/P0Mi8XN0XUolhcOTa+81Gjuf3zDOcfPma2jaqzz55Cv8zd/E18bvmWfcZff447Ksr1+Xx1kiAb/1W6JhB/CHf9iyrPtLsLA+v16LRu/cLtbmfk5pGqfnfpnx3NPMXE0y8nhsy8N3HYW807165IhExnz0kQxKoSCf3U2qzUGpP+/Bw30EjxR78OBhZ9wJsb3bwh97IeyLi/CTn8jm+qCJcm3ERvJhGEKIHU9iKOSSY0WRzaJpilhLNivkcjd92e141mpCRv73/12ISitB1HUhMRJzub2bxzAk3NQwZA3Mz0u7FUVI3PHjbrh4q+hUNHpv6212QvI//BBu32Z0JsnrXx5nzDqC0YyTDBYIhMtUwnEms4cYX+lhfELhx/1P8dRz5yVM8oMPZH2qqrjQNpaCcso09fW5RPPKld0R1CtXhNl0Ok7tvKh3Iy1iq7DPUknyhicmZJ37fLLhbw2LVlX5O5uVz6ysiGGh2XTzsTei2XTX+TbPnU0c5pMpt6a0rqMBI/o81OqM5Qa4HHmKkYFFObjFpTs6P8jrb8QZW0xgKD0kwyUCYR8VJc6n5jAL1RgVO0C4WKcnXOFYd5l0PcFyI4gaDNEd1ahW3TJBhiGvaHT3xGzjYzkQKJFI/B2JxBvo+kVisU93PkkLarVDGMZra3nB9foQExNyW3zxhdh5tuKA8biQ4IkJyQi4elX+Xnv0zZU5o4/BRGZzfv1qmPrRo/re7GLb3M+vZP+U8aLC6GePQb3O0Sd77zwKuVNjkiPCd/myPPt+8zfFCLSbSKaDUH/eg4f7CB4p9uDBw864E2J7t4U/dkvYV1aExIXDol58EEW5WrGRfDgh0w4hXlgQT4JTZqZScQtr+nzihtlNX3YznvPzsgutVGTDdeLEeoKYy8ku98SJ7b2Xy8vw5pvS5nhc+tpoyDmrVSFx167JJlhV226Kdwy734+NYSchyp98An/7t0w0jvC68VuM1s/S589yJnQTrVmHqgZKGLMnxUw+wWh+CLp/QPz4CUbC8+IlajbdusWO2nYiIYamWEyMTgsLMl6ZjJDj3RBUpxZyOi3jvdHIsBHtvKh3Iy1iY9jnm2/KOsjnxchTKomRxO9vf3woJO0vl2XdRKPy2VyOdHSYyeogNctPUG0wHLhNqjwj41oqbfnc2cRhSiXXCJVMuh9MJDhaXuS9TJLrK0nSiW5ScWstb3liRuP1X/QwOpeiT13mzFABrb8XVAuoElgpMz0+RKnmx0eRUKCE2qsTD8apLAcoFICqdBHk8oWCTM3ExPbErN3STyZNHnvsQ+LxNzh27CL9/e+gqh24gHGuHyef/86qQNZrlMtnAGXdZ44eFU43OyvTsNuAj8lJyHyVIWncRjPGNufXZ7NrYerauXMkk4O7s4vtcD+PnDT50Sefwld1xm4+yntGmOSRyJ1FIe/WmDQ0JPeOUxN9L7gTbYWHHZ5B4aGCR4o9ePCwM+6U2N5N4Y/dEvaJCSEap04dbFEuB63kY+OGPJ0WAuD3C8kHIQ22LZvHQkH+jsU670un42kYIoC1uCjey5deEoLlIJeDn/1M2tjTI59vp6RqGLK5Tadls+ucZ3ZW1oNhSD8ccalUSvq6YVNMJCLramP4637K1u4U9lgoCIGrVLhU+wZjwcfpC1cZsefd65qmbOLzeUb6+mDwEcYiT3J5SmdkZEr6ceaM5BU6XvFyWcazUJDxdowCzs58aGj3BLVYlPHL52W9bDQyOHO1VfTG3UqLcMI+/+iP4PZtWQOFgrRDVd31WC6LUcYJK3X6FYnIz2YTbJsJ9SSX5h9ljFNk1H5MNDTFJNlc5LTvUV6p3GCkUNjyubOJwywYcm3HQOMgHEZL9ZKsVMjU40zO+Ej1rMhczc1x6bbFWFanz28w0l+FwaG1Q0t1P4ulKKat0sRHQwmQq4UJN5uEuwMkFbfL+by0o1aT37/4Qqr3tCNm65e+TTR6jUOH3mB6+iLJ5FsMDeUZcpuxLSwrQDj8Is3ma/zFX7zK9PTTnDmz/RZS02S602kJgti1HMXkHObNeQJZA/r8m/PrnZSC1TD1QF8XphnrXAG6g5SDC89AIvARl2dXuJ6wycQev7Mo5LutseFhf3Cv5M49HCh4pNiDBw+d4U6I7d0U/tgNYR8bE8+TaQqxmp3d2jt2r/NUt0Ir+TBaNuSmKb+bpoSJOnAIjs/nCglFoyLE1UlfOh3PqSkZv64u2ZW3EmIQIuOoqRrGZlWg1vMYhnwuEJDj4nH5rKrKe4530OeT/znncTbFc3Py+8jIeuK2n7WWOwl7XPXip+OnGJsfwaCLM8dLUO2VeWg0pA+KIv2IxTj6wjDvXddlavqjpDTNFX5qNoW4zs3JuGz0lC0tibHgo49knXSy0Z6fl3Y6m3PDkPHeaGRYFYhKXzeYtJ6hxssEJ1MMs7p87nZaRKMhbtGzZ2Vur1yRMQiF5FWtuurbmuYahRKJNUPKaP4krzf+HmO1QYx6lKSyQsBfp2KqTJqnGfcNMh55jB8/ucxTP36x7VrfxGGccOx2+cqxGIFkBLOsUIsPgX8afD7Sdh9jgfMYvl7ORG/BwDEAjEqIqWyC5UqYhWIX5YafpqVQVkKkKxYRo0B3T51YLICmyVIvl2WqQJpw6hT84AebidnoKPzFX8xSr7/B4OAbvPTSRaLR+c7GHrBthYWFp5iffw3bfpXvfOclLlyIcPmy2GW2ctZvhKrK+O2U3u1gnRzFlx+jFcJUAl2gt1lfrc+C5WXq9Qyx3lhnchTptCiwT03BI49s+10wcj7MSOEnpE8YTP7KYWrRnr07De+6rLWHO8Z+fm94uK/gkWIPHjx0hjsltndT+KMTwn71Knz2mWykAwH4/POtvWNwb/NUt0Mr+QgE3A15tSrEwe8XkgVCiB0yEQq5G3jYXV92Gs9cDm7elLE8e1ZqxG6Ec+1YTIhbqyqQg1bPdyzmih6BfK6VgHR3i2vMYQWBgLspLhSk3615svtda3mnsMeWvkx2nyWjpEiygqZaEvpYr0s/nfkwDIhE0CIBd2rmQ6Tm5oQA6rowg5UV+dnVJedxxs+y3PHM5eRvRREDRSfe/d5euR9XVuS9nh55rXreJsoDXLIfZSz7CJnuEcwbZ9H+TaujJMXI3UqLcDw0hw/LeWdnhbyUSrLGFcUlwZWKtNn5OxyGUIiJfJLXC99jtHCEPm2FM8oVNLsBNRv8fsxEjJnYeUbDT0AoSjyu064HmziMI85VLLrGDaf2MVDXIsSSPoLnzkCoBhMTTJpPk6mfJtmooAXCUCwyX+rmaq6H5UY3VSso6eOKTVMB01IpE+Z2HpSVOrGBAOGwGyCxtCTDMDAAf//vw2/8hjSt0ciSzb7F9PQbLCxc5OWXv9p5rFuQz59gYuI1ZmZeJZf7DqlUctNjebeczrLk853W+13jgKUVhvOfkbRHmFSOY1q30VS7/UHxOOatOTJlk+FIieHhNkbOVkxMwP/yv8g6y+c7/i5IVaZJ9dzYexgz3H1jkoc7w35/b3i4r+CRYg8ePHSOOyW2d0v4YyfC7tR8NE03f9K2t/SOreEghK61em6XltywWSdM2rbduib1uru5CwRkwxcISH9305edxvPmTSEo/f1SLqSdB9jx6prm+tI3raS41fPd6uEGV03ICZd0VLYbDfndMRDkcjIWmiYGAscTvt+1lncKe2zpS40gJhoB6i4JDgTWH+t4+g2DQCCKubhM7c133JB4cEOnbVv6nE7LPMRiLhE8eVIMBteuyTGdevfPnZP5c1TMZ2fXvNCjpTO8Pv9NxgKPYMSPk+zvIRCJUSlscJQ8/z2eOr3PaRGOR35xUXLRp6dlzp01Uq9LvxVFyOhGQ0kuB7kcl5rfZ0w5TV8wx4h/HiwVTN+agUV75BFGnngCFqOMpbee/nUcZslAm52VZ0UuJ2tUVdfSF8zuHjLlCMMJg+HBGgQHYGqK2pGTmJMBAsVZYAVj2eJq+RDzZoioViAZzFDU4pT8fmwCmJaKZSuUG36WDBUtLl127CC2Ldzt/PkafX3vMDHxBoZxkULhQ0DWW1fXzkNdqfQxNfUq2eyrNBqvMjY2TDYr7/X2Cune+DjfLaer1eTx4FTNKhS2TmFfxwGZJFWZ5nSql/FijZlcnBE92/5CqsqMfRRdyXGmWyWVOrF1oxwv4C9+IWssGLy33wV3W2PDw51hv783PNxX8EixBw8edof9ILZ3Q/hjK8IO8kWmaeIByOdlk70xBLdN+ZQDE7rmeG7ffdctvRQKibum0XDJp21LW53PlMsyJrou4dO76ct2BpDTp+U8qdT6jWMrdF2ITDYrO99WL7ADxxOsKNJep60gJNOyZHfeaEhfKxXW4kjrdVeReWjIDSmfXC0ds9+1lndykbV4tYNqAw2TCmFQt9hEt5QDqq8Uic1OEAxfEaGtQEBCpms1mdvubvm9UJA5LpXckkrHjsmc3Lwp783Ouv3aybuv6zJ+09Myv+UyE5VBXrd+k1HrFH0RkzPfDaMd7Vk7zXpHyWHiz/2n4mHdr7SIt9+Gd94RIl0suvnTTqh0s+mWZHLC6h1DSbMJt2+TrsUZ0x7BiB7nzMklqB93jROOgFulIorCR6PbTv8ah/nQYObyJCPNGTleUaSPfr9cu1Jhxkigd61wJrksNagnhNQEwypaZp5KyQRKTKlnWTYTRJUyejMLVZWQzyakRqioGjZgN8G0fWSLPuw5R0PP4uTJT3nyyTc4ceIiJ078HfV6hZmZnYcVoFaLcPPmK9y48Rq3br3K0tJj3Lyp0tUl/ezpkWGqVoUvGoaMSWuU6G45XX+//D41JRIDji2rnWN2HQeMyhp/5dA445nzjM7Lc+ZoPLfOY2xaCjO5OEt1hQvJGV4+bwFbkOJWL6BT0uvr+C64mxobHvaO/S4z5+G+g0eKPXjwsDccREXLdoT9pz8VEnHypOzQ3n3XzUFV1U15aWu5rwcpdK3Vc/vTn0r7MxnZqJmmW4rJ8YAXCkIiurqEpASDe+vLVgaQlRX4j/9RrrMVolHZ8a6syOd6ejYnFjqe4GxWdsjJpOs6ckhmV5dsTnM56YNznKPInEwKwTMM15NzN8oF7eQic/pSrzMcvk3STjPJMcxAtv0X7Wo5IBMfmYkcw9Ythk814PzjsikvlaRPDuFTFBmP5WW5/okT4s1y1u6RI9L3RELmvlPvvq7La/V6l756gbHq4/QFioz0lWFDyOomR8mpRxn5vd/bn7SI0VEplTY9LX1x1rQTeq4oMh7OuguF3IiJZlPWaaHApHqeTPQ4Sb2JFvJDaEMCrGGs3evak/qO0//K8AzjlZuMzndB9xBHj8bQlubXQqjNrjgzxR6WahEuBK/wctdNmJgSUjMywnDpBslahElGyPl0lumlqoRJBotAEEyTgFkmTJGyEqBJgIhaJRi0iA5meObZN3nmmYucPv1zotHlncdxFZbl49at5/jyy9f44otXmZ9/HgjQbLolrysVGbreXsjM1ylnG1hNCVGfKASYnPSTzcI//afuFO6G0w0NyVQWizI9joC6abqOWcd20my2cMAlMUKNBG/zo3MSBTG23Mt7s0dIRsoEfCb1pkamHEEPVbiQGOPHJ75gZPiXtx6QVi9gf7+so6/ju+Buamx42DvuxveGh/sKHin24MHDgweHsKfT8Nd/LTu/J56QLzKHqOVy68N+HcVjJ/d1cfFgha45nlvTFNLkEETHCx4OC2H1+WSz5xDYROLOw/A2GkDSq/GmDkGs1drXDz5+XNq5uCjk1lEJduCUFyoU4NCh9bnJLSRzrW+VivTnkUfkfK3xl9PTQo6uXpW/HaGvTtBJaOROLrIWz3hKmeR05DbjPMFMpY+RUHb9Zy1rzYs/sxxFt25xRh0ndWZ1PQ4OihFnZcWty2vbbj2eaFS8vRvDO8Nh+OVflmN2692PRkmTYozTGEovZxJzYNlbJoOuc5T8YITU79xh9IjjxRsfF++rYyRx0NMj635xUfqUz7veY0WRPq+mFdSGhjF9/QRCW6g7bbjXA4HottM/8tlP+FHjGnS/zJh9ivcyKZL+JAEtQ71ik8l3o/tLXAh8wY/rf8HI6AycPy/3rN9PKn2F04dOMd5ocj1/mnLTT8RXQ1VswPV2J6wsze4azz7+Hs88/TOe+MYlevpudTZ+azjP1auvcfPmq3z00SvcvNlNMChLIBp1b4l6XYbQNCGftZi+UiZAjYhSxUeTJj7KdoimL8DP/yZIKhXgX/7L1fHokNMND8vfy8tyjCNCXyrJ9EajrqB6KgXf/W4LB+xyjVAXTt4icaHK5eljXM/0kilHMC2VWKDGcMLgjJ7m5ZU/YeTs4a1J60Yv4HbfBeGwMPqJCWmk403ez++Cu6mx4WFv8JTBH3p4pNiDBw8PLtpZfo8fl42QEyIXj7tegkhENtpXrggJOWihayMjQoZGRoR0VKuys3VCkx3PsZNfq2lw44aE3+5nXxyC+Omn8POfy9g5NXXbxUU6ZZS++GLz7jkclvcdj6WD1vBrJ6wxGpUN49mz7ucMQzavX3whm8y33hLyPDUlY7TxvO3QaWjkdi6yaNQNU19e5pVDNxinxKghm+h1YZ+5HGYgwox9nKUlhQuhW7x8eBY0N0x5zQvu5FzX67I5dwTGNoZxO30YHhYhoD149yeNBJlyhGSkLKJUamBL2eC2jpI7iR5xvHhHjsg1Wz14ID8PHZL3DEP+Z9uucJ6uy/j09BA8+yjajSCV+hZbHGeNruZ01+vR9tM/MQF//ufw7/89F27PkIhNc7nyLNebJ8jQj9ndRSxcYbg5wRnfTV4Of8hI4QuIH4VvfQuef14834bBK0/lGW+UuVg4RK4RJeKrUff5sPxNhh/9iFNPvMvpJ97h8IndiWMFg4fR9dfQ9ddIJL7Lp58OcvkyvP++TLVluenrTuW2aFQeHbYNWE1qDahbJiPh26h+bc37btWXMRrdzN5O8cf/zmRgIMKTT8oS64TTpdPw4YdueqYjQr8aqY9lCVHu6pJ2HTvWIua7wQg1MqIxohukS1EmjQS1pkbQZzKsZ0ktfgGh6vaktZPvAkeHwXGhz85Ko/1+ico4fnxXc7Mj7pbGhoe9wVMGf+jhkWIPHjw8uGhn+dV12eDAJoEhikX5oksk4MUXD17omuPtCATg+9+XOq5TU7CwILvcalW+oEMhlwgFg/DMM/vfl95e2UBOTMgmWtdl8+gI1iwvy3vd3eICckKcN+6edV12yhMT8nKIZjQqu2XLEmLv8232Js/Pi2d4ZkY2Mv39MjbVqlu/xu+XcOGtcp93Exq5k4vMqZdcrzPSX+ZH/TdgLOSGfYaKBKp56hWdTPAwenyAC73L/Dj3ASOJLNBCih2jwNKSm+jphFKXSqKkXijIRj0W29yHnbz7bcIDa00N01IJKA0oldfneLfBvjlKWr14zz/vqm5v9OA5/arXhWk5tbsffRQeeww+/hgCAYb7myRvl5nM6piW0l61eDWn26w320+/I8j07ruyvnw+RoJzjGivky6EmVRPUIskCZ44xPBgjVT9NjT7YXZVwOy554R1rhKxkb4CP7owyXwxyFRokhOPv8eTF37O6XMf4fc3Oh4qy4oTjX6Xw4dfQ9dfJRw+jeKozyNL4uZNt5x1LCbNcJaQI9ZtmmCZTSzLRrFt/L4mZlecgOaOVU3zUS/6sEyLqWmN//n/XeXZl0LrSrX+zu+053QA/+P/uD49c0Ok/lpgSSwmNi0nh3lt2bYxQqWiJck3ht3l3u70XXD7tqw5y5KXM2hOJE61KknR8fj+l+E5iKlIDyM8ZfCHHh4p9uDBw4OLrSy/g4ObBIbWvFJ9feLl+d3fPViEGNZ7O/r65HXqlPTDqWXrqDg7qriplGwW93MjNzEhrijbljY4ZM1Rjw6FZIdr20KKv/99+LVf29oj0loX8r335PiVFfm8k0Pr1KadmnLb8eWXrrDWqVPwjW+4JMo0Zac9OemWzWlH8HYbWr6di+zll6VfS0uQTnNh+ick4te5bD3K9ZUUmZwf0x8h1t/F8IUuzrzcxcvd44z89RwU6uuvE426azefd+fT2awvLwurWFlx6zpv14cOFJKCPhNNtahkGxAJuTneG1nMatj6vjlKNnrxtormAHcuV1bk87/yK/B7vydjPjYGhQKpaInTvcuMr/RsrVq8mtM9k4lsHrpWQSa/3w3jXl0/qR6LVO7aaqmxQTh6AVKH3fP6fGuWgsVCiAm/n3p4DOVbP+Hv//AGvmCHnijANAMsLr5EKvUap0+/ytGjT6Mo7b33ExPw5psyNM5yaVV3dkTMSyVpplm3wbIJ+UwsNUC16SegyTos1AIslSNUTD9NVExTIb9UZ2kp1LZU68Zl9/77W6dnRqObywG3Tc/cz9zb7b4LajWxIrSq2Dtq5mfOiMGlUPDK8Dzo8JTBH3p4pNiDBw8PLraz/G50W9TrUtbmhRfg93//YH7RtfN2RKPi7Th3bjN5yeVcsa39hBPqevKk6+ltNS6EQiIEZduygVxeFQfayiPSSjQvXYJPPhFvc6MhbW80pE+3bsmOf2JCrrO0JHGXR4+uF50Cub6juDwzI+d/+mn3/TtReN0p7HFiYo00j2QyjPS9S7qhM+k7SW1omOAzpxl+aUCGIj0EH7ZZo07ypSM45kQANBrCRIeGpH/Xrsl6eOEF1+u1FXZQSBqOZUjW55gsHMY8lERLJGQulpc3hcebiSQZ4zTDL0fuzFGSTss1HNXsUmn7aI5mU8YmGJT155Chri7S4WNMfrpALXCYeKjKoVie68uy9teFr1sWZqnKDMMsVbu58NSG6W8VZAoEZI3UW4wWWwkyAdTrVFMqY/m3mCmM4v9PLxOMS7i3DWyR5bwGy1KYmXqKmdnvsbz8GouLL/L974f53vd2Hkqn2UNDEvRSLgsHdPTInPLO9TpUyja2pRJSagT9TUxboVgLYNkKjaaPbC1IpeHHr1qEA03MeoOAXSUZ1Xj00fCOpVr3LT1zv3Jvt/suMAz5e2hI1lWzKXN++LB4/KNRWQvgleF50OEpgz/U8EixBw8eHlx0Yvl13BYTE+KhunDhYBJi2DnnaaMLpliUz+9nzlM7wZp2MZG6LtfttGyFMzeffio79/5+2aQmk7KLn56WcywtycbYssSj8/jjcuxGL7BDrJzw6y++WKtRu28Kr1uR/DakORUMkmqXK7jVGp2akjFNJt0SQo4LsNEQA4FTmqnRkM//5CeSD//KK+37s4PnLZXJcDrczXjqODPNQ4x8+qkYJ+p1GTen3Fc2y8wtDT1ykzOhblKpY5uvtRMmJlwWd/WqGC9MUzxyTj76hQubDS6O6ngqBb/1W/DUU6unSjF289fIZJYwfxFAi0cxLRWfarFUijBX6HZVi3NVMuXH0ZMxLrwQXD/9G9d3rbY+t93xWMOaYFejuEC261OM/lmMR69RSZaBzmoFAywvHGfi6jeZ+PACU9PfZtZ+nHzZT3c3/Pqvt993b7THdHW5zT550o26t8wm+RULv89GUcFWfViWD1sKP6GqFjXLj2UKIc/XhQzXmyp+n0XIZ1Jv+vH7mmhWnWauiKaFdyzVuq/pmftVBrDdfVYqiWGjWhUSrKoyiImEPH9an6cPehkeL7fZUwZ/yOGRYg8ePDzYeJAsvwch52mrshXtYiJhd2UrLl2S3L5Tp9ZvNhwRK4d4f/mlWwS11fu7EU6YvOOCsm03ifFeKLx2miu4cY329q7fqFcqkjdumi4pdmpwd3fL3+Uy/OIXm+NaN2IHz9srlsb45TSj1yJQb3A0UEQLaXJ+28bs7mFGOcHSssqF+pe8vHgbJn64uzFsDZc3DGF0gYB4vp3czpUVMWo8+eR6gwsIgf7mN+Gll9afKnuKZBgC2SUqzQAZJUlAs9BUm4GuLJrSxMxXiDVLDJ+scuY3B3h547524/puo1Lc1CzyR3IYw1mMo0sUjk6C2q6j7ZHPJfn8k+9w5bOXuXn1RTLpY0TsEj67SbMrTingp1KRFPrvfnd9+1ptCc7UaZrs16emZBqTSUh2VSilTSJUqFg+GqYPGwVVVYgHVaxAgEpVpdYMYK8aDxQFmpZCw1JpWD4UBXK1EAFfE7+vSVA18bX4urfjiHflUXWnubftvgsMwxWzAzdCw6kB3ooHtQzPVouqNXn8YSJ/njL4QwuPFHvw4OHBxoNk+T0IOU93q2zFRg9dOzjEu16X/tXrsoHdJu91bQzqdfj2t4VodeIFuZdek41r9O23hRRblpCxclk2ZL298rsTYtzbK6Q/k5FxPnFC+r9T7uNWnrdCgZE33+RHub+DxtOMcZr3mt8gWTEIFCvU1RCZxV70niYXThT4cfwqI0tfweVk5/dNa75uX58bbeDkSjuluJx8YicX3DG4TEyIMeTMGSaKqfWn+k4EbSkFVzOwPINZGWemcZSlepw487wc+oDkEZvg8UGG/8FLpF5tM59t1rd9/CjF0AxG3wzGoxPkTpSx/FaHkwtmLczEF9/g3Y+/zyefvsri7Flqph/bhliwRkozsBpNrHCUgB4hkRA7x5Ej673NG20JzmOsUpFgiOVlWSaHgkv05pdYMWP4rTq9YZOqFcCyFNRmg5DSRFV7uI1OAx8aFhGtQVegQc30oSo2frWJZSs0LRWf2sRqQkRroMfdcdmOI256VPVvcX9yD9Mz230XOMr2zabcW6GQEOKN6RgOHrQyPNstqnbJ4w8LPGXwhxIeKfbgwcODjwfJ8nuvPN9bbQbuVtmKrTzQ7RAIyOa1XJa+Vqtt817XwnCdNjz1lOQIboevy2vSukYvXoQPPlgTg1orz1QsiqBaMrl+w76qpAywY1xrK1o9bxMT8Gd/Bu++ywU1TUKf4XL0+1yvHCXTiGNaIWKNCsP2h5zRDF4+YTJy2Ib3jN2Fk7bm67a2rVVcKxqVEPrWfN1cDr76Sj7zyCNw7lz7U7WI6GmZDCPlLORUbjf6yZ96lB/+vdL293owiK35qPjTGEMrZBOTGPokpr9zcSzL8pHPP082+xrj46/y9t+cY+qGynIphA+ToNbEZzcomiHUpoIdtTg6UEc/24MvFUTXRfepRa9rS1uCg3BYbCmZBZOr2SInrFl6Q0eZb/SBr0E8WkVVAFuDqkndVAAbFQtVsWnaKuWGn4alYFoqlq2gqRY+zcSyFBTVItldJzo0tK6v23HEV16B8Y8MRi+XwF7kqDaPhrkuL30mcIKlSmzbR9W+8pKN3wVXr7p1wJ10jWPHtlZdf5DK8Oy0qJzvkodZYMxTBn+o4JFiDx48PBw4CJbf/bj23fZ870QKz5+/OyHcu/FAO+WKFhYkh9apN+OIMTlloVZW3D5897s7t+Hr9po4a7S/X3JrC4X1+dLvviv93Cic5pBnp6bwXnIfnTkPhSAQYCSxwkjyp6TrCSarg9QsP0G1wXDtK1L2ImRPw/EndxdOul00wEZxrUpFjBxXrwoxNgxRiorFIJ8n/e9+ytjNIEb2FGe+E1k7TakERkmnqev4uirotsFRX4P3riW4fvIR0j+Itm1mvb6IYfwcI/gXGD/8C2rh/M5j1oJoZZCq8qu88d5vcPPmy5w40Y1hyJKaz4JfrxPFxGoohNXV0HdFoYmfRWWQSFzl2HC4Va9rHffaypbgIJmUZVNM18hUNXoTvZw7UoSlMMuVMLP5OBF/A59iUTG7WDG70RSLmJLH9IXQfKAqNio+VGxU1SasmWDblE1NhPmHtE0pEttxxJHsKD+qvgvmAGPLSd5TjpEMlwhQp367ScZW0XunOHOhnzNnUszOii2vVa/urtinWr8LPv4Y/t2/k4s884wQv63wha6TbwABAABJREFUoJXh2WlRadrujGwePNzn8EixBw8eHi58HZbf/d7d3S3Pd6ekMBgUErOfIdy78UBHo0IATVOI8aFD0tZWESQnLHJy0i1ZtF0bDpLX5OmnhSB++CEMDEg7Zmfd3MeN/SyX19cU3m3uYytZHRoSb/QqwU4FsqQC2fXXm63KuUul3YWT7hQNsLFUmvP5YlGuk0rJXAcCTL67QCazRDIM2lIKIzTI1NTGgIEwkUhYosz7IVN2h8M0i+RylzGMNzCMi5RKn7vtCO/clWApij4eR7+ZoHn4d7n1yj/j0w/go4/c9FSnPRL1H6BmBSjkLOywHwUbta7i03wEYz6WS65TfCP36jSzoLerRkYrki1GyNDLqeBtLgzOM51LkCmHKTf8WLZCpeEnqFn0ssJzsSvMmgMsNpMU7SjRQBPLhprpo2kp+DGJKg26Ihb2wPpa39tyxNX76cLcKImz57hsfpPrhkqmHMG0gsR0E720RL3QoHatxN81Q7wZ7l5bui2Vze6efSqVkpJeCwvC7peXtyfFD1IZnk4WlYODIjDmhTJ7uMvwSLEHDx483E3cLe/jTp7vdFqKhXa6gdgNKRwZkc84NYL3I4R7t8o8pZIQN59v68/tBgfJa9Iud9wpzbSxv7mcEEmnprCDvZLVQEBId2sJolY4oenlslvKrNNw0k6iAZxSabdvSyh1rSbr64UX1hGWWuAw5i8CBLJLzH9Q46qWYLkU3jJgwO9vcPjwB1SrF/nkkzfI59/Fts2d27wKrREikR1GN4bRl44Rvl5gclrjr2L/CWON75K5Ic0dHxeHdj4vQ+o49lVVQpwrFZWqHSQcBtsC1bfm/F6zMywurude62r+1kqw0D4393jcYMWfJ6f0sVjqIlMOcyyRRw8vUKr7yZTDzBViNJo+YsE6Z4O3OdO1QkqB6VxViLMSBV83djNEwG7QEyxDwE8o2UXTYfur2JYjttxPIyMxRviCdCnKpJGg1tSYNOJ8sjBIpqZizIZJ+pcJnOmmUpHggJUVmb9HHoHnn7/L9qkHSYyxU+wmXeXrFhjzhMA83CN4pNiDBw8e7hb2y/u4nYV8o+d7YgL+8i93v4HYDSlMpyWMWtf3L4R7NyJiY2PSnnhcvIuGsbmWrSOaMzwsY2AYW3s5DqLXZONG3RGgcsiq4wnfSil3r2TVCU1vV4LIgZPD7Mx1p+Gku4kGSKfl/LoOjz66yYMXDNho8ShL1Ri5W0Hm1QbRwXBLwIBNKnWF4eGLHDnyBidOvEU4XMS2Zdh2gkKA+PIQ+lgX+tUwMfM4ij+02ucxRrnA6+avMFZ7EuOGTjIppFdRhNRWKkKIo1F3CBMJ+X+xKCmsTqWrSMS183z5pXy2lXvVamAaBQJzCzA7vWXuvB6pcS4+R7YaomDF+HxxgIoZkDJUTY1MOYIeqvDModvkq0ECVakprp8cQjdNSvMGRjZLtrrMeLGfnNlFsDtMIxhFjQbX7DE7csQt7qdUtEQqWmLC0Pnb8RNczyTp6y5yRv0czT8A/SlKRJmdFVLcbMryKhTWp/juu33qQRJj7BR3SzBxv/F1p7R4eKjgkWIPHjx4uFu4U+/jbi3ke91A7IUU1mpSJ/bq1f0L4e7UY3PrlhDekydFcbm1lm29LtK9XV3CQs6ckV31dl6Og+g12bhRd5iWQ1ar1a2Vcneb+9hKVqPRTSWINsHJYV5a2l04aafRAKWSnLtUEgnmNm0Y1rMkI2V+UTuNXakSjRY5NrTEyJnLjIy8wcjIRbq6Fndu0xoUYrGn0fXX0PXX6O7+Jr7peShchvz69T2hX+D12V9mtHGKvsEIZ1qWqWOzcOwVliXDGg7Lq6/Pfd80ZShLJSHKtZpw/xdfXM+9gpNfoY0XqCzXwD/X3hW+sgLJJIPRPMciSxT8FscTWQK+JqalEgvUGE4YnEkuc64vzU+uPcKHNxKYCQ0tkYDDh4meKhE1DA43m/QaQa4udLGUDZBOQ79f2lwsdsARd7ifLk0dY2y5l75oiRE9B3YIw4Cp92vMV6NMr/J+TZPHQa0mj5KNy2Bf7VMPkhhjJ7hbgon7iYOU0uLhoYBHij148ODhbuBOvY+7Jbh3soHYKym0bfid39m/XK9OPTYnT8oO3cmjdcJtr1+XsQJhG8UiXLsmzGRoaGsvx0H1mmzcqL/zjsx/o7G9Uu5ucx83ktVWJWiQteK4Oy1LWBxI/3cTTtppNIBhCCmORuWY1fDg1vDboM+kO7bM48/+FSceeZunnv45yaGpztqxinD41BoJTiS+jd/fs/4DW6QoXHrvEcYy3fTpm7vgDF2hIH9XKrJUw6t5yk71sGpVvMTd3eJdVlURyvrWt+B3f7flvBMTDH/yH0nmTzBpnsc8dgRNU9wLOhED8/PQaGCiUa3CN49P89tPfkmxHlgbr2E9Syoqc3dlIcm4bTFjDjLirJ+WWuODxyBkSI60M3VdXXL778gRt7mf0qUoY8u9GNUwZ5IZAOZrPVzNH2K5FCRbl1vd55NrFYtiA3v/fXjiCbEBOdh3+9RBEGO8VzgINe93wkFKafHwUMAjxR48ePBwN3An3sdicfcE9042EHdKCvdTvKwTj013N/z1X7vMY35eyvUsL7dXoW40xPU0NdWewB1kr0nrRv2ZZ+AnPxFSOTi49brYbe5jO7LaqgTdGpqey8lYJpOS57vbcNJOogFu3ZJr9PTAsWNMGDqXpo4xnutC6b9B/6l3GTz9Ps8d/ooX1M7rBReLKRYWXuORR17j6adfJRQ62tmBLes7nYaxP9na1uWIaDcaspycXGGfT8ivE9V/5owsZ8fec+0afPOb8Pu/v+FWunSJ1O1POD3Qx3hWYaagM6Jn3fdV1TWK5PPM1A+hR2qcUa5zPrW0ZZde0X7BeO83GVVOwLTK0egsGm6eshmMYhhyqz3zjCwlRwBrR464zf00aSTIlCMkI2U01caohLiajTNfSxDthr64BEXYtmtIaDZlCfr9btlqB3fFPvUwlOE5CDXvt8NBTGnx8MDDI8UePHjwcDdwJ0RztwT3L/5CiOFeNxAHjRR2IiL24Yfy3tKShHA79W03qlCbJty8KexkdBReemnzmN4PXpNUCn74Q3FFOhEE+5n72I6sXrjghqYXi2KEME3x1P/mb+4tv7KTaADLgr4+7IEUH0WifKpcJfT9f8+3T3yCP9A5+6lWo1y58m2+/PI1pqZeZXb2UUIhhV/9VbEp7MWp1ImtyxHRrtVkSOt195ZxSk63OvgnJmRan3pqw36+hRi88lSe8c+XGZ0XV+nReA5Ntdc+asYSzNxssORPcGHoNi9r78JEc8sUhJHqEj96rA8yg4x9vsJ7BY1koEBAa1LXlskoSfTjcS5c6Np9uuY291OtqWFaKgGfiJxNGXGWy2Gi0SZ6n598VYwHTtltVRWeHgyuL1vtoONH0eqzJL1gMZmJUUseIjigP5BO4I5xkAXGDmJKi4cHHh4p9uDBg4e7gb0SzVJp9xbyjz8Wd8peNxAHlRRu5bFp9XJ88ol4g4NB2T3n87KTXq23u6bS44RYtwuxO+hek1bcrdzHrchqd7f8r1aT/N7hYfjt34ZXX933PtixLirn4xjDBoY9zUrvNazIzzjV4WmbTY3p6ee5cuU1PvzwNa5ffxbL8qPr4nWs1cRT+8EHslT2os3Tqa1L12UaqqvVqxIJ0QtrFQnfkXO0EIORvgI/OncNgLHlXt6bPUIyUl4voqUtcqFniu9+W2Mp/SyzU/MEr60wfKhOqru63nAyNMQFbpAo3OKyeozr3afJmHFMUyFWNhiO3eSMz+Ll5x9h5Knzuxukbe6noM9EUy0q9SClup/lrEqVMMmEDYEAIcQjXK2Kt9i25XbeqNAdjXb4KFrVZZj4YIlLV/sYM/rI1BuY/ipaT4zkuRSnn9UfTgHjgywwdlBTWjw80DhQpFhRlMPAfwt8H+gF5oE/Af6VbdvG19g0Dx48eNgd9ko0YfcW8uVl+bunZ/vPO2gX/ny/kEIHr7wCn30mG7l8XnbNzabsohXFHTtVFePB448LAdsqxO4ge0024m7lPm5FuPv6pDbOfooNrfahPvclxuR/xGi8j6GMUrMXdnWahYkTfDz6GpNfPE9DeY1Q/2GuXZO83t5eN3DAssQ+cviw/H+v2jy7sXXpuiyjYFCW561bclzHnGMDMbgwOE8iVOXy9DGuZ3pXa/66Ilp6+Ta2qnJx7nky5guY5iJawyA5meF0bJ5XDo0z8sywXHRqCiYnGenrY+TpPOnaDTdfmxrDxS9IFSfgvQtw/vd2P+db3E+OQNqkESdcWaFcVYmEbVRd1MUDAYnUr1TEgFGtikHD0XZzKoFFox08ilZ1GUbfb/D6zScYM0cwzBhJf55AY4VKtsrktG9VnkFfM5I8DCnFazioAmMHLXrJw0OBA0OKFUU5AbwDpIA/Bb4CngX+78D3FUV50bbt5a+xiR48ePDQOfZKNB0XyG4s5A62qi27Ee02EPtFCu/VjnJkRMbMiU1dXnZr7Drlgvx+YT2plBC75eWtQ+y+Tq/JXsfsbuQ+7nf961U4p6tWC/j9l+nqukit9gal0hfuh+ytj3dQzfRiXD2HceURjE9G+GD2AmPNEbJ2nBP9RbrsEqYZpbd3fZitU845lZJqYhMTe9Pm6djWVSphZgyamShPHDLpPRJhsRClWJS3O+IcbYjBiG4wohubRMcK9QBvftTNWOUIxvU4XYe6qcW6qVHj0+UGX1pVxiM1fvxamKdm/lTSD1rSM1JaaU2ES9AHE4W9CxhtcT+lAgFO17sYL1nMKd1Y4Si+7m43gXi1244RA8TGlcm4ldaWl+WW3PZRtCo8OPH2HK+v/Caj6iP09ZQ5E1+WsHNLg9wSZnGGmYWzjL4dxDAiHD8upPuhKod7EAXGDmr0kocHGgeGFAP/M0KI/4lt2/+T809FUf5fwH8N/D+A/+vX1DYPHjx42D32QjSXlnZvIU8kJB709u29byDulBTutnzUnWJiQsZWUUQWNxSSazqeYifsV1Vls2cYO4fY7cZrsh8byE7GrKtr3zaqu2ryPtW/vnmzwfvvv0+5fJHu7jdIJt/Dtk1WVjprc7UYo/DZMManJzG+eoxKOiXkudEATeN4IsuK1SSb05hbCRG1q1QDUZLJ1eOrQqLKZeGATkmkjan1sP3YtI6dpok3s62tyzDEC7u8zNVbOrmSTjBdIHC7RjOYhO5+tFiUgQH4tV+DZ5/dpvPbEAOn5i/AhKHzZ9dOMboYIdQbJKyH1iqUWVYQJRRkMt/F1EdgUOKfhZYYuQMBo47X0Rb30yvDM4xrZ/j54iFKzQR+v2vYKxRkCGs1N3TaNKUvtZqETr/3nhg2nntuG/vU6n11qfFLjDVP0tdVbitQpgEjjXGWs328+WaEri6xoz2U5XAPksDY/Ri95OG+x4EgxYqijAC/BEwB/58Nb/9L4L8E/oGiKP/Utu0SHjx48HA/YC9Es6tr9xbyZ56BgQHZOd7JBmKvoXR7rY98J7h0CebmXI93d7cwIMtan1NsGK5CTyi0c4jdTl6TiQn4wz/cRA7T4WNMdj9B7dGnCQ4P7cxddxqzzz6T9/v6ZA3cgZHhju0Vu5hf+8knKZW+xDAuMj39BtXqJYaGih21E0BVQ8TjL5HNvsaf/YeXyPzMZnjlM9foodigKvJ3JIIe7+KcmSdrdZPJauSXQ0R6mqTTPgoFt3pUMCjL49o1mdrjx93b7A/+QLyQ7cZmeFg+0zp25fJ6ofhz51Zv0/l5uHoVc8ng08whrlUPEfA1CVAnNr9CIFSGQoGF/DC1WjeWJcEMTx3aYq21IQYbPcTDelbq/s6GUQMqGfpYng2uE2F32txswptvKvT3nuFfnhrdtf7ARDG1+3XU5n4aCQb5UeEUpb/o4W/+BhZWI+YtS27VYlGWl6N27QR+OAE0gYA4lr/3vS0eJ6sCZelFmzFOryv/tAnxOMZklqxtki5Z+A6pvPSSEGMHXjncrwn3U0qLhwcCB4IUA99d/flT27bX1VewbbugKMovENL8PPDGvW6cBw8eHnLciVdwt0Rzrxbyl1+Wdt7pBmK3oXR3Uh95r3BUeRsNuebCguRTO97hVsTjUs8lnZZ2vfhiZyF27bwmbcjhRO0Ql26fZCwdJ6OEMWPzaCcDJM8ktyYKO43Z7KyEKC8tye7//HnpX6VC+rrB5PtQ+7lJ8HsNhr9/ZtuleMf2ig7mt7p8DaPxZxhf/QlGIU3DcgnITrzLshRu3foGpZLUC3722W9y4kSI99+H/K00ueptZmOP0IzE8DUq6P4S0UDDNXoAgxQ5lsih1oOUrCY1U8MwfGsBAdGo3G6aJnaUlRXWPNW5nCwfh9y1js2HH8rvkYh4LZ33FUWWtWkKyb59G4b7igSm58kvhplonCJnxTAVlZHeJZ47vIiGDbkslGYxtWVmms8w+rYPPrtB/MjfMmLeaM8yV4nBxNtzXBo/xBinyVS7MC0VTbWI+GqMz0VYKEQIdftZrPUSDW8WYbcsmf+5aT9/Wz7Hr6ROs52Teg2r0RWjX/h5ffIO1tGG++kCkBgRz/AvfiG3cq0mP2MxWe7xuCz/el1u31BIHmsDAzIfU1NbtHlVoGwyeJZMsWut/FNbqCpT1hGMUoBYuE4gEKJQWE+KvXK4XxMOshCYhwcSB4UUOzE8Y1u8fwMhxafZhhQrivLxFm+d3XvTPHjw8NBiv0KCd0s092Ih3+8NRKehdHdSH3mvcFR5h4ZkV57NCrtpTSJ1oKrCapaWRD15ryF2bcjh6NIRXr/6CGPFXgwlSNLOEMgYVEyNycUI4+OR9kRhuzEzDDGeOGxsNa90Qn9aPIKmTmbewrzeQPsiT/JdY0v13H2xV7Rpa0OrkE1MYugTGPoklUhLLHQHZYMXF09z5cprjI+/xueff5tcTicWE+7/5ZcyXooCc4s+riwfJuFPQDmEqthE/A16wxWO+7PoVKUflkLV9PNkzy0Wq91ct2NYqthIenuFTK01z5KlMjMjXmS/Hw4dgqeflrEpldzw3c8/l6U1NCS3mBN6DVKV6soVuU19PijOrJCdD1Ns9mI0u6mYfrr8NSqmny8W+zmeyKLrwlI1I8OI/2NY6WbsZpXLEzDyeGFLljl67rd5/a0FxmaCGOUgya4aAc2iYqp8mu0h09SpKSFCdpBYwr/lbdDbC4VMk/ligj+fOM+zh34m7uPV2sRrstitqNeZsId5/Rf9jC60X0e5nCzZixfF6PBf/Vc7hIWvYmQE/sW/EE/922+LlzgSkcedM2eW5Xr7jxyR+ygW26Es7apAWU0Nryv/1A6lup/lRjfVpp9Y2MSyZEjawSuH+zXgoAqBeXggcVBIsWOTy23xvvP/xN1vigcPHjywexdbJ4S3U6K5V4J7rzcQLXVU95qfuCe0qvL294vbb35e3ovHN7vInITEQ4f2HmK3gRxOGDqvX32E0flB+qIlziQz4o0yCtBYweyBmfATmwnnTmO2mo9KNLrm5R6d6uH1hfOM5QcxqmEpxdPMUlmuMXmpwnhGb0u+79hesdrWZiFD7oUhjORFsolJCrE5UDofunq9n4WF1/joo9d4991XqdePrE1TT49MTyIhnx0dFc9tMAjpXJByswl2lHjAom75yFbDrFTkda5vicFYkZlcHD1U4enQOH+79DSlokb/qsr0RqymkrK8LF7KZFJKJRUK7tA74dH5vByzvOyOY+vYPfGE3FpjV+vcWtBQqhqlQBjN18Rvq0QCJnOF7vXtjVvynCgUOOoL8F7zKa4nniN9RHGFrlqsFROGzuvK7zGqHaPv2Bxn7GlqhQZGNYxPg2SvzUIuSr4WoVxS6R3afi5iUYvlFZXJ2QDpd2+S8huu4ai3V+LKHVa9mp5xKfhjxiq9m9ZRS/o05bKQ47fekmXz4x93ZjMcGYF/+A/F+HDpkhDSbFYu3WzKbdvVJbWfz51zm7ZtWdpVQ1LQqqyVf9oKRjVEueEnojWwUdfqIreDVw73a8JBFALz8EDioJDineB8/W6rTWnb9tNtDxYP8oX9bpQHDx4eUOzGxWYY3BXJ0r0S3Hu5gWipo7qn+sh7Rasqr67Lbhlkdz476yZTOnK1Tpj19763t7loQ2QvTR1jbLmXvmhpvYDPKpHVjCVGzpaA6HrCud2YlUrSh2p1Lf51QjvN6wvfZFTrp6+34ZJvy4LZWcxEjRlFZ3Q0vHZ5Z/r3aq/o62tSKIxijP0hxuN/Su7VBWytAxewAyvC7Nx3mZ5+Db//NZaWzvH++wozM+KZ7etz7RYOH6tWpe3NJrzzjgzNyWGNQGGJxeUAoNITLtMThlw1xHyxC8uGpVKEiunnQv9tnq9/xN8GXgBtC1azinrdFXIKh2FxUabFGfpAQH6uanmRy8FXXwkx20gKb9+Ga1+pWDWd3oBGQFEp1wJoPptYoE4yUl5rL0BIM9FX3Z9aMkmyCzLVLiaNhEuKW6wVlz4MM0aWvkeG0fWTfHH9CMulGmVFwbJVKr4gJTQaJqAIuW/n8AWgUMDOlQjRoNAIMbkSJ5VakQHJZt248nPnpLMzM6TDxxizTmOUQ5x53D3Vavr02phFIvJKp8WDrqqdywhcuADf/75ECdTrMq7mqnPX75d5CoXWe/y31cxbFSgbvv4VyVCRyayOaSltQ6ibTQWrYaGEFUrNAIlI+4CTjq7r4e7iIAmBeXggcVBIseMJjm/xfveGz3nw4MHD3UOnLrblZXjzTe6aZOmdENz93kC0a8OGOqo7Yr92lBtVeQcHZcc8PU2L7K5cr7tbNvwvvCA7771gA5FNl6KMLfe2F/BxWN5qQdWjR6PrHeTbjZlhyHGRyBprvFR5lrHqUfp6c4zo5qbraNUSI93LEDq8jnzvzl5hc+LEDXT9Il99dZGxsTcxzay8Objz8CiWSnf+MPqEjr5wiE+P/CveGP0GuZyQ3IUF8SiWy0LYajUho4mE/PT5WAtbdaprpVJw8nyIVKmGWq2wXO1mtt5NxG/iUyxMS+XGSi/1psYvnbjJj+NvUC93E1MCJIM+KhUZznaBA0tL0oZQSN77/HMRd4pGZbyKRSHC0ai0L5eT1+efC2HSdZcU3rwJ1ZqC3wa/2qTR9FNqBPCZFvNKF32RMnpYwryXK2Gml7vQGw1ZA9EoAUxMS6XW3DxJ6d5HGFvSMTDpPl1hdDTM8nKQajW4ZvdRaq4IlW3LUu/pabO8KhWsdIZyMUQkaBEOaNTU1TJIPT3yyuWkY84gVSpM9v86mepxkjF3HRmG9H1+3h0zZ4xtW4isae5ORsC5LUD6FYnI9Xw+6d/t20K+Hb6+bVnaVV2G1Pg4p2+PMR5KMpOLrzdercJXzqNqcbJ2jEhUI5ncxqiAVw7Xg4cHGQeFFF9f/Xl6i/dPrf7cKufYgwcPHvYHnbrYDEN2oOm07NzupmTpvbCQb6e2vFVetaYJ01E6jKXdrx1lOzEyh604SaFOrmQ+L2HTzz239zHcQGQnjQSZcmRrAZ8WlrfJQd6m9uwamk05bjV+M11PSN3ZZpwzsSWga8vrbPT27mSvCAQWSCTeQNcvoutvEArdAuR0VgdO4WB+kObsozTnzhPMjHAoViV162OIxQidCZHNSltAbpN63W1uIWdRyTepZJv06SZNggQifhoN+ayiCLEyDDj8ZD+h8lWmp7Nk6KWsdmGhooeEaKYiBX6j6yJPNT/i8qEfEq70MVIVfrdV4IBlCdn1+2W5FArrlZoty63spSiyXB1n6vS09OnqVTm3aYJfgyh1or4aatimYmpUGxrFugy+plrEQ1Vm83EyhQClmkbU7wefj3pdIxaoEWyT9zpZSJJR+wk1yoxdaTBfDG8ioSB9WliQ/jmEvjXU25mEXF4hFGgS7fIRi4UIhrqh3lg/SKYJN25Ih3/pl6gNv4r5i24CLXm2rRH+G72qPp+M3cCAtGfLsPyWZ82EcoJPPkmSz8vYnzix3pDj5IE7GRKa1kFZ2lVdhlfS7zDuSzFafASAo/GcG2mRyxFrWNT9ZymYYQ7pcOzYFufDK4frwcODjoNCit9c/flLiqKorQrUiqLEgBeBCvDe19E4Dx48PETo1MU2NSW79lhMmMf9Klm6HekNBmUDu7TUPq86EpFjmk1RHtpLfeS9YisxsmhUXo5RolDYW7mO1o37jRsSS7vqyqo1te0FfJpNGadVcrvOQX5269qz+HzCdup1ACbL/WRqMZLBAlqkDbttuc5G8r2Re/t8BRKJS+j6RRKJN+jq+nJXwxGsxNGzIzRuPcbo6Hf4avYEmXJkTQU5GSpyOguvvGKjHBpkcVHCkoeGhKAtLoJtmoSbFWzbpFpXKZZ92MUa+EyO9VexC1HK5RjhsBCrZhPQdfQLI+ihq5QWv8Io+mkGI/g0yPii9FXS2LUGvHCB4JmX0f4uRldBiFW7wIFEQoZ4fl7ec4IWnNRzVZXrVqtCiAMBaYtDjDMZt/ax48n0+RXUpoLabODDJ223VRS7SakeIFcLMeAvEvE3KDf8GI0o0S4TMxAmk40wnDAYbuPFrDU1TMXPSi1MNusjGm8f2ptMCmEvFqU/+fx6UmxV6+QMm1LdT39vAxSVZBKGH0nC0un1g+RcIJWC3/gNgvZptPfddbQxwn+bJcmhQxtkBIrtnzWX5n6Z2+mnGdAHyIbCFArr++nkgYNc+9NPZV1tq5m3qsswwuv86P1fwM0iYysjvJfuJenPE2gUqWt9ZHwDhFMxUpa2ZlfbCl45XA8eHmwcCFJs2/ZNRVF+iihM/2Pgf2p5+18BUeD/69UofsjhiSx4uBfoJCS4dWcYi3HfSpZuJyZ29arkF9br8Mgj8Pzz7fOqHXJ35YooD22F/d5R3q1yHe2MBI2GxMnmctDbS9B3aGsBH4ddJRJrO+x1DvLtSm7puhgaslmwLGqFOqYvQCDsg4C243VayfeZM3VOnnyfWu0ijz9+ke7uD1DVrVV4N0LTetD176Jfi6D/dZpQI8kn4ZdEbXs1dDwZKRPwmVTqQSbng4z7XmR8Nor/vV4aDckqcISLFLOBVa4BFRTLIuzzgR0gXw8SVaskSzMEJn1YtUeAyHrBo9Xw+Oj0NNFMBsriUqwTwAz1U3vuZfi9Mwx3jZC8Jkvy5El48snNgQO6LgR9YkLsJU5J62ZTln29LiTY8ZY3mzKmiYRE4ufzcpxz6+fzYNkqit9HrtFFI++namo0LBWzqWArCnYpQsRfx6dYWKZFUw2A389MpQ89VOFMchmA92cPras/HPSZNEww6l3U/D6SWySYdXdL9HO1Ku1dXpZ+adqqcaFkEa3DYFeeeFgl7Dc5k1wmdcgPh9oMUiYjrNq2N2UqzM2Jjcy2hYS3VMbatCTXGWr++itSY//bpmdN2vAzdqWOUS7w1JF5Pg8+xnwhBmwOfY/FVsPVq1KafUc716ouw4VTl0m8f5vLV+tcN/rI1Lsx/T3EemIMn+tFH44yPS1rYmLCK4frwcPDigNBilfxj4B3gD9QFOVV4BrwHPAdJGz6X3yNbfPwdWK/yuJ48NAJtgtvddCa+2nb3JeSpTuJiRWLElbZaAgZ3Oi+cTzhxaIUax0fl13rvdxR7rfa9lZGAtOUMcjn4fJlhp8Kk4ycbS/gk8sJU1hNTmzrIN/Oy93bKwfMzhKs96GFNCrhbqCwvq0brgMWXV1fcuLEReAi169f5rnnOrcjm2aIRuNbnD8v9YK7up5EUVQIT8An/5aJt+d4fWWA0fIAfV3l9YJfuRxmpMJM5CzvZk5R/an8+/BhIaBBpY5WK1Ot+7CDKkrQj40C+Kg3g3QHTfoiReyVOjQGqDQDRA5r6712bcLj67eixAaiBH8zDCOQYrO9wQkccA5zUv0LhVUvr0+G3gkEcMKmbVte5bJ8plaTPlUlanst2rjRkP/XfEEadgyzbqP5GpiKSsP20WwqlGw/c/kYUbVMnCaEw0zUoywVIwz3ZEmXovyP7z6/3vMeKTMQyVEuQ96MEo/61hHEjejrc73YjoKzzyd9CasQUBtEtAZNO8zp3mVePjbtHuwMkgMnSblWW7PhfPYZ/PznMm6ZjDsWfr+bH16tbliSrN4+RoHaxb+DzOZnzeTsITL6KZKU6ctNcC6mgf4Yy6Vw29B3TRMjwIULHd7Wq7oMIz9IMzI5SXrBYjITo5Y8RHBAX7Ott976XjlcDx4eThwYUrzqLf4G8N8C3wd+AMwDfwD8K9u2V7Y73sMDit2WxfHg4U6x0TXSLiTYyf1UFNltt3jr2uIgSpZuJyZWKrm76u5ucT1NT7fv47lzQp41Te7Rubl7u6PcL7XtnYwEvb1CvufnSfG3nO57gvFQjyvg4yQ+lkri2VxNTmzrIN/Oy+3E7larDOsZkgEfkwUd0yoKCa1WZUwrFYKnbfTnL6IP/z9JJH5OMJgGOssJtm2VfP4bTE29xtWrr5FKvcDv/m6Io0fbjO+PfsSlzyYZu9lHX3OKkXAeci1MJRRCG+pn5NwgmVsRJq9JXx99VOxFyzdLVOsqTcVHvhnFj0WjKeSvK1AjGqhjd8fRAwuYt01su4Gua+0Fj1YJnGlC5hYMH1kfjb/R3hCLyfJ0ygal07K0nZDoRkOmTFFkuYdC8nttVcDKsmQZmKYs764uIYLNplvPuNEAn08jHArSrRVRzAYBu05ZDVO1/Vi2Sq7ip6h0o3T7uBl5lP7mHEPKHHUzxoe3hzZ73rM6kXqUyXoPVYJQ8pOobw5gqddlSaRl6teWrJM3rShQq6jM1RLUTB/fHFjkx+euMqIbWy+ODbn/miZjODsr/XbsgM5SXdWUIxgUIf7WvNx6HWJLcwR9E3B487Om1tQwbY1A3A9EGaxNEUp2MX3oXNvQd9uW2+v48a2b3xarugwpxHiyEV45XA8ePBwYUgxg2/Yt4He/7nZ4OCDYTVkcuDMhIw9eeLqD7cJbHTi5n9msuDLuN8nSncTEWj3hui674UxG2MPGfrbmTp865eYO3+sd5Z2Kke2kON7XB9/8ptQLMgxeqfxvjAe6GF0agZzKUWUWLRxYK6hqxnRmJrZxkG+1Cx8cXHP7pUyT09NXGW/0MDNpcTryKfrIZ+jfHkN/cpzwwNKuupjJnGFh4TUWFl5jZubbzM0l0HVZ7j/84dbTkz58gbEjwxgTFc4krkE1sJ6pJJPChHSdZEUeIaXSqkfvbJnphTkiBY1Za5BSI4CiKKtk2ARsQlqTuulj0TeE0mzSG8yjNRUg1L5BbB2N32pveP99uY2dEGjnlnXyXv1+IXWm6XqNHQVkx+bl88lt22yyJgQFrpfUESar18Hv92NGYvjNKsFGA7VRw0alaVvYKFiqD5/ezYu/7EO/fo3pcZOJRZ2+3jpnDmfWIg6MUoBits5EVmfe7KNkBygtC/lutb9ls3KbFgryE6RNwaCU7w6HV9trKpgLZZRqnZDaIB7axjjXEtowoZzgj/97+JM/Wc0JX/WeO7Y9x8terbpGhsOHN5Q5nqsx3Jhj2H8Djp7ddLmgz3RTEXqknJlemUN/8hilU9FNoe+3bt29R6lXDteDh4cbB4oUe/CwDp2WxYGDLWR00OGFp2/GVuGtDmIx2QUXCqImc79Jlu4kJtaqgryhxFBb8u8o63zve3D27P23o+xUcby7W97/6CNGQnP8qF8K6o4VBnnPfo5kTCPQl6Sei5G52YGDfLtdeLFI8+8u8uzkB1B7m/CJr+gfuYHSTu16CwQCA+j6azQar/HZZ69y9erhtVs8GJS8zE7sFZOTkDF1ko/raEfim5N0W9ZEICDeVme5HGYFPXaTUz6FcSxuGgkKtSCWraCpFsW6n3rTx7XlJMfjOV4euEFVjTBnPMbERGhP0fgXLgiB/fxzWb6tCtKaJq9IRAKOHM+nbYNp2vgUC1WxCWlg+1X8QZWuLrfctVPfuNGQc6qq+3c+D7WgRizWRTDcRGuYqCWVgGrjD6rYqsb5J+G3/28BPvgPj/DhfIG+8jIjpRmwJU54vhjj6nIPy5ZOVYsSiWpUiyqmKZkKpZIsF1V1093BVexuNuX3SEQeW4kE+Hx+9NkMi9eWSWfCXJ4+trWneNXaMBp8gdf/NMlPfypBIo59rFBwQ81LJfGc67pLiluzTmZmQPcXOaNMkRrU2j5rhvUsyUhZUhF6fGgtz5ro4ei6x829epR65XA9eHg44ZFiDwcTnW5S4WALGR10eOHp7dGJiFM4LGvtfpQs3UlMbIMK8rpCsu3Q6gm/H3eUOxkJDMOtQ+OUoKpWuRC8QuKbfVzWBrnuGyJTlrDemLZLB/nqmNl2k0LhYwzj32DkL5I7/g72sRod7//rIXrjL6If+nV0/TUikUdQFIV0Wm7p7m63mwMDndsr1i2XjfmnG+BohS0vry4fnxhYokGbJ/RFjsZzTOcSZMphSvUANTNMf7TINw/P8tTgAi8rf0e2GeP1+FHGKok953c62Q+9vXJcpSIezVZS6/evklrLxmraqJaFopqEfA3CaoO67YeGDw2NYDCw5jH2+2UJVCouKQV5r1SS60WjPmzbR8OCSEzUsCMRac/MDIzVjmP0lDlz0gLDhHIZoxrmaukos3YSLeQj1hNCCQUp33LDoWs1IabgElXH2x0OSxuc2sqZjHw96joQPczRwhLvfRXg+riP9HCQVLzFY9xibZgYfpXXl77Fu9ekj9EoHDkiYzUw4JamckKbe3pkbTkBJU45rKUluDBU5OXKtS2fNaloidO9y4yvrKYi+Fa2fNYcxEepBw8eHhx4pNjDwUSnZXHg4AoZHXR44enbY6ckM13nvpUs3UlMbIMK8sYSQ+twED3hu8V2RoL5eVHidtTGIxFhRM0mLC4yEv2QkdM50t8NMtn1mOvs7VqSEjSzNVhq7zG3bZtKZQzDuMjCwkUKhbeAbMfNbpoauakzKNOnODvv40zBRv2VX4PnfgfYOQikr6+zx2Un2nMOolEZolJJlv7IofUGFj1cRQ8vUKr7+XKpj3ioyreOzvD7z31AKlqCr25DLEbiVwwu54/tKb8znZbb9quvxGtdq7l5wU54tBMqralNbAV8SHHiWlPDtkVpq9FUsBSIKAXUSBeWJTG7iuKGTNurjnunprGisObVDQSEMJ49K6n3hiHvOaWikkciaGefWFMBu/pplJvpKKbfh8/no5B1r+W8gkFX7Csel1c6Le81GjJGAwNu2ag1KQBdR3v0EZJGmkwpzOTbt0mdyLS1Nlzy/z3GrujrlKVbRb7E+yyhzNUq3L7t1neem4O335ac3wsX4Mdn8oz8nQGF+pZr5pXj04yv9DA6PwhmL0cTebSWZ81BfpTuGl5stgcPBxYeKfZwMNFJWZxWHEQho4MOLzx9Z+yUZHa/SpbuJCbmqCCvrLj5xVuJiT0I7putWJ9hCCGen5cxSSaFHWRWycTjjws5Hh0VAZ/fW/WgbsNEay89ghEbxzAuks2+Qa02u7umrqRoXjtK87MBote6eMxaIBWcFvaXzUJPCn7wA0ZnU3cUBNK65Esl8T5upz3nwDTFkzo4KMdO5Hs5GoqiOQYWVcW0FBZLUbAVXjxyi9996lMhxC0GlpGXhhhJdc4hWj/3zjvwwQdC2Lq75RGXTrt1h528YLNuiYfYtvH5mvh9NqYlNYbrBLB9ENdKDLDAVOEI9ZqfUFhd00OzbZcYO4rVDmxbjAPf+IZbqWxxUUirM05rX2/RKBOLUb5ahFxFxi+guoS40XDJtkM+VVXm0rZlflRVzp1MylwFg22kAAYHCZztwkxHqB17DCIfbbI2pM99m7GfHMMwpBbw3JxrC3NEvZzrDw0JIQ4G3fxrn08eBa+9tmq46OqHa9sLF47oBj86dw0si7EbCu9xhmQmSaB+8B+lHeNepyl55NuDh13DI8UeDiZ245qAgydkdNDhhafvDluFBN+vkqWdiIkdPy6k+OZN2aVvyB19oNw3WxkJnJDpaNQ1CLQWY20VWBsbgz/6I2EwLUzUjEK25zaGPoXRnad8O7+rplWW++m+1c8p/ykS1yMEPplc9VpfEdal+aC+WoOn0YB332Xij97mdeOHewoC2WrvPjcnYbGdlKMeGoLz552hCPNe9izJRpDALNQjCTLlCHqowoXB+fVKyG0MLDtF47dr7+ioEEInv9k03VDfcFi+VlQVUJo0bQUbFUWxCPsbaGqdXDWET7WJBWuc71uhlPdRXlFRFQtNU9dClaNRd9hV1SXbPp8reOUQZafG7/Cw5B6vrAiRBFkqn38u4+v3y3w478FqreGW3Odw2P2fkz+saeIhDoflmK2kAOqBGLFHYgR/2As9T24iTZPvu0FagYCcp1gUMuyEiztGAL9fPtPVtZYGTywGf//vw6/8itP6Dp41wIXBeRLpMS7XR7ie0sn0he6LR2lHuJdpSp5GiAcPe4ZHij0cTHRSFsfB/Rq++XVacr3w9P3D/SpZ2omYWDwuu+xAQHbxX311f3jCd4t2RoJSCRYWhKn09gqTCYXk/xuLsR49Cm++CbdvY0UC5J8KYvxKDaP3F+S7b4PSuThWo6pjrHyb5dz3+fKtJ5l4O8SFnkl+7+nPSN382WavtQPLEia4tMSl/5hhLFGkr69rV0Eg2+3ds1khPZ9/LsToySe3zxb4h/9Q/n/5MlxPRsi8G8RcMoj5GgwPqJxJGbx8bFoI8R4NLO3a61TGchSRFxZkCTs5xH6/XK5es1FtC1BXFaJVqZys2PhUi6at0BOucLg7x/v5w9QtDb/WQLFVLFtdK93kEE9nXB2vrvN7JiPe1CtXXCJcq0lYs6OE7YyvqsqrVnPP4QhqxWKuenYoJEvAtuUx4+QPb7QJb5QCWPdV+XQPpJ7bNKatQVq6Lsen09KW1nxqp06xZcnnm01p37lz8PTTG06607Nmdf5HqkuM/FKI9G90M2nfP4/SbXEv05Q8jRAPHu4IHin2cDDRiSfLwf0WvnkQLLleePr+434TmOpETEzX4fvfl3459XEfGPfNBrRu3AsFIWhTUzIWDqtwXIHHjq0pjtvYlOIZjBduYRzNkD1bxwpsIUjWBmY9RH76PMZXj2J89TjFhREId0FvL32hEIWIwVg2xeXP4ozUNnitW7HqGkzbfYzdjmJk85y50LXttVuDQD74AP70T929++HDMgzNpngCn30WbtyAa9ckeMAwRHxpJxvJyAikf6Az+dcxahc/JXh7gmHzBqmQBkYAFvdmYNmKa8zOSsh0oSCPq3xelq4jlu33C5Gl2aRhrhI8G0xLpVgPADaWrRDUTPqjRUxLxagKA/bRRMXE5w+seXJDITesGBwVa/lbUdyvsHpdPhuLyZgFAkKmP/lE2lYsugS2Vd/Otl217FDIFTDr7pb/HTsmS7VYFHLcujQ2SgF08lXZGqRVr0sbzdVx6u7e7MHO5eSzX30lX19tz93ps2Z1/lNPHW9bS/i+xL1KU/I0Qjx4uGN4pNjDwUWH1uX7KnzzoFhyvfB0D7C78O/7zRO+Wzgb94UFSUqdnxdmo2muXDFAOEylu4wx9CnG8DLZxCSNQLnz69gK4VmdL6++xjsf/ypDc3585YYwHJ8PmiYYc+JW7O7maKTBe0uDXLd00lqU1LFw+/OuhnVPdj1PZqmbZGQJrRYHbWul6NYgkD//c3ksOcrFExNuyLETitvbCydPStMSCVkm7ZZLV5fUCG5dKs/9Z2fhWwG47Cc9GuX9aZVaTiEYsBk+Z5G6cHhXBpatuIbjsYxEXC+rozjtONaDQVAbTWqNOkUriK3YqIpNw1KxbAUFG9X0cX05yfXlJKal0uWvYtsKKhq0EEPLckOknd9t242yLxZlnA8fhm9/W36CcEC/X1LWi0VXpMuphObkK4OQYYcYO0Jb+bzMnZPVsLIiSxaE74Ab5R+LyXx28lXZGqRVLLq50Q7RdzzkrVBVMUJo2jbnvl9TTe4E9zJN6X7XCHnQv1883BfwSLGHg4tdWpcP1AO+HQ6SJfdhCE/30Bk6Df++3zzhe0Ei4TKQnh5hh80m9VSQ7GMaxhMNjEfyVPuWd3XaSCmJbgyjGyPEc8cZ/es67331IiW68R0uwuH+NcZWqvsxtCDNQhnfbBk9UCepZckUgkwmT5JS59tfJJeDUIhaPIVZjBGo5WWD3dvbtp6wg0BACE2lIiG9fr/s4R2hbZ9PHrfZrBAvXZemnjwpQQTR6LrSytsGwQwPjzBpjzCmlMhQwsRCQyWpRDltR3kFaH3ibbUk02nxsE5NwSOPiHfY6Z5TTSwcFvLm1NV1wpKd/2samKqFgo2mNon4G1i2ioJFxfRjKwr5apCA1sSnWOj+Ig07QK4ZRlslwY2GEE8nrNghso6gl2NL0bTNw6/rwoNu3HADEJwSUY5nVtNcAprPy/HhsOv5diL4o1EJWwbxJM/OugS90YAvvuj8q9IJ0rpyRb6ymk0h8pmMrJF83g2hrtXk/N3dMj99fWIQ2RLbPGvSpORfsw8QJ7pXaUr3s0bIQYicuxvwSP59CY8UezjYeJCsywfJkvsgh6d72BseBtK7Ey5dgnSa5jceI3e8gGG+jzGSp3gsB+rOhzsI1GJrJFg3hgnWu9e9X8vlMWsWgW7W4l2NSoipbILlSphyw49lK6j1KpFSCcu0GGpUqVUs13XrwEmiLZVgcJBgdwjtRo5KNQBf3XJdpo6r9/jxdTG2Tg1fx6spNXbbpyzncqKgHAjIz54eeG41LXWnIJgPP5TfRQgqSjIZJRCHSh0mr8D4nBskE49vvU9OJKQU0N/9nRDezz9f371Uyq0mlkxK27JZ6ZfP55K6Rs2PYjexgYBqMdBVIuqvc7vQjYVKyGfSHaxTMxXytRBlK0Z/dwXb9FGpuKWeHMLtlHxSFLdcdyYj/z90SKZnrTzSKspl+Www6OYiq6rr7Q6HXaGwSkXG1RG5cgizMzaDg/LZiQkZbyeU2rFl7uar8pVX5OtndFTO3dUlY5bLSZvrdem7U6P47Fnpg8/XIZ9redZMTMClv3zwOBFw79KU7leNkIMSObefeFBJ/kMCjxR7OPi4X4WMWnEQLbkPYni6Bw97gGWZFGd+hmH+rxi/+jm5owVstfO8YF9NI3HVjz7Thz74nxApJ1FaY2xbUSoRLC6jWXUqwW6gwnyhi6tLfSxXwlRNPxF/A59iUfdFyBaDNGyNMn6magO8PPthS6h1U1hKKCSsKJViePZDkuUeJuuPYzaW0Rz3pePqXVkRt+Lg4FoQSH+/RI2XSltX3lJV9//Ly5Jb/MEH8reirM9H3hgEs7QkJGt+zmIwUeHlx7P0ddlr7tPWIJmFBXm8Ly1t3id/9pkQ4XJZXo7Y1MbuaZoMSbMpw2Lb8nnHc6oo0NWtUlpR0VSLuFYm6DOZziUoN/xoapN4qEZYMwlqKrmKTc0KYjQ0unUVw5AxcPKHNc0VnfL53Nxbn0/a2Ne3uTxSqSTnUFUh88vLrqJ1vS7tbC3H5JBRv1+++h59VN7bGEBVqcj7vb3w0kvw2GO7+Kpc/Y4dqdV4cfAwH3cfIVfyMzvrhm6DjGs8Lmvl8cfl63liYvd8bi+c6L7aBtyrNKX7USPkIEXO7RceRJL/kMEjxR7uH9zPnqyDaMl90MLTPXjoELZtUy5fxzAurtYLfotmMwenOjteaSp0T4TRx7rRV44TmwqiVlbjZr+jg7YFIQbIZBiuXiMZ/i6Tls5SCa4u9TFf7CLqb5DszqG2HG7aVW6W+skrOqM8xUuJ24wwIYwpEHBLQyUScPMmqcwcp9UTjHc9wkzkLCN6UU7kuHqdxNNQiBlDR9eFFF+5IsTOyUdth0pFXisr8vPP/kw8tXNzQlaOHGn/mJgdK9FcrtPdbNJcrnH740X6krNr7l3t+HFGRnSKRUnn1jTZM7bukw1DPMS5nOv1dRSSN3bPCVU2Vis9xWLyv0RCyHM+L6S0ZvtRFBPVrjO5Ese0NaKBBoe683QHVwsQV6uEwgZfVY+Rr4cI2uIdXV52OUWz6YYrO/WDnTzhYLB9eSSn/HcsJuQ2n3c9r8Gg65V1SiA5fKevD377t+WRvBspgK++2oZEtvFuPbZyikfsX2XKN4i/J0bZCmNZ0o9kUl7Hjrnjv1s+t1tOlMtJP+4rB9y9SlO6HzVCDlLk3H7gQST5DyE8UuzBw73AQbXkPkjh6R48bINabQ7DeGONCNfrc7s6vmsmiH4lhD6RID4Vw7dUkM3l6SC8+KK48K5c2TkdYW6OVCjP6a4M44EGnywMkq2GiPob6OHqpo8XmmH0YBk92uC2cprLvu8w8kTClVN2GOAnn6y5L1/pu8q4+iKjtaNgaByN59BaXL3mksHMR8ssdetcuCD5wW+8sX3/CwXX0+mU4LEs8eheuSIELhAQUjo46B5Xmlhk+asK1VyYIS3NnJkiU41SKitEs3PrvNf1+iDLy0La+vvX7ymnpoRI9vUJUUyn5e+BAbeUkUPQSiU5Rygk7Uun5Xz9/eLFnZhwxLB8BKNNqIfwVZrE1BJDoRxhy4SymxDclQjSb4FRVqlWZbgTCTmvabptdEKaW8W38nkZu43lkZzxc7zJjqp0qSRtHBhwVa2bTemHZcE3vuHaKLcLoJqYgD/8ww5I5BberWFlipHKFZbLCo/1Xqdw7BGaiWTb9PS98LndcKL33xfjSyh0nzng7lWa0v2mEXIQI+fuFA8ayX9I4ZFiDx7uBQ6yJfdBCE/34GEDTDNHNntpjQSXy9d2dXyooq/lBSemEgRuLMlmslWSua8PvvUt+N3flYP+7b/dOR0hn4dEgld6JvisnOfj+UEqDT8netaLd1k25KohSg1IRkoMHg0wMXWUN+dKPDMww/kn/O75SyU33jgSYWSwwo8OT8FsP2PLvbw3e4RkpEzAZ1Jv9JBJN9Apc+GZIj/+cReFgjxustnNZX1AHluZjJA72xZy0t0tXXRIEkiesarK+7oOGAbG5zOUcwkifg0t3kWkolD2xTAiQ0RT0TX3bqkRIGsmUJTwmtiXQ7ycUONq1c0TXlqStiwvyzQ4iMclVNk0RYTLEbFKpSQ3NpGQkOJSCb78EiwrgLFoQbrBsUgR1bTAVtyORCIQj9NVDeHvkjYMDMj5V1aEsGqakLRgUEKgnfJJc3MyZum0/L+ryy2P5AiC1etuXrGj7OyEK7dGyPt80ofvfW/9XrpdAFUnUZyffQYXDqc5/tnHBMdLDB9OkXre9W6lgNPNEOOfV1i+XWMk9BkcvdA2tn63fG43nCgWkxJgiiIGgeefv88ccPciTel+0wg5iJFzd4IHkeQ/pPBIsQcP9wL3gyX3fg5P9/DQw7Jq5PPvrZHgfP5DoPO8YL+vl8RsH/oo6InvEm60MK0o8OSqWpJhCJO5dg1eeAF+//fd+6aTdITnnoN8npGZaU50Z9DUkzTtAJNGD7FgjaCvSdNWKTc0fFioVoUqISZKKQzV4v1qkP/+c41v3/yIV0ZuMdKTFfY1PS3PlaEhOHeOC4MlEqlPuDx9jOuZXjLlCKalEgs1GO6/xZmUwcsvW4w89STvvy9iUCsr0kUQcuEIbTk6Xo7IUzAoZMUhbbbthl0vL7cISk1N0cwWsXwpfAENFBOfYmHZCk1rvXvXWKxRtkqEw2Fs2/Woghtq7GiGgRyWz0vbNM1trxOqXCq5NYufeUa4RjLp2vsmJ+Hf/BvxQPvCIWKDIdTuoJsc7JDi1eieWk762dsr1wqHxQhQKMjYadqmQ6hW19dKTqVcTqnrriCYosg5Dx0SQ0Cr7SUQkD5ks7Lcvv/97dfxTlGcS0sSVPDxx/CWqXKy+Sh65CQRK0z3Yo3zqTTDiSzDepZXRm4xnk0yerMPZgyOJmbQnnZJ8V753G44kWPgcAwxGz9/4B1w9ypN6X7SCDmokXN7xYNG8h9ieKTYg4d7gfvNkuvBwwGHbVsUi5+vkeBc7jKW1WEkBqCqERKJl0kkXkXXX6Or63GU//X/B1N/BeECjPRtPsipfzMxISrOFy6sv0c7TEeY+A8fc+mLNO9lemg0fWCDaSkYlRBBX5PuYI3uYE2Ikeojb8eIWH6UINSUBF8qj1G2ehmfvcWP1Q94KrQibC0WkzasMq8R3WBEN0iXokwaCWpNjaDPZDj3KamuMiRPANK0kRHZozleWsdbadvrBaLCYSFrui4vw3A9nj09LYJS6RLR5WV89TpqUKNuCZtt2ioB1cSnWu64xeM003WsZh2CJqqqrXlUYX2osQOntJKj3NzqXS0WZf8cj0tk+1ZhtcmkcAgnEr1OgCoBLERsPAQ0V1Wf02m5Vq0mf4fDMrVOxatEYvP543Eht4uL65eP87ujpL28DCdOiP6Zrru2F6dd+bwQ5uee2/krYbsozvl5qYuczUKl1KRR1vDRw4wdIb3UhYJNLFjnhL7C2eQyp3uXee7wLFgWYzcU3vsiQtJXJdAdWuNzkYh4zoeHhW91de3cxk45kRMhYJoy3s1tbFwH2gF3L9KU7ieNkIMcObcXPGgk/yGGR4o9eLhXuJ8suR48HEBUKpMt4lg/p9HI7OJoH93dz6LrQoK7u59HVTdssvbjHt0hHWF0FF6f0RkrzjK1EkBpNoj4IeRvkq8FUVWbpqWgNBpYpo9ol0r8mIa66kEMJPw8/kSSZinK6K2jEH+U+PnzjHz5Z6SLESZLj1LLr5JfPUsqWlp7raG4DJq7yWy12ZmmECrHW+mETDtlmkBIsFMjF1yPZ09Pi6DUbIlouYzerRApmyznoqhKk5VKiL5IiYCvheGoKr5wAHINKiWLyLH1UbqtocYOmk25/qlTMsQbI9v7+93I9nb7f6fP778vNo5GQ4ioI2ylKK5adb0u53X6W63KuGiaXNspzeTsiR2PsRMW7dT1nZ8XwSuHp6xGu1OvC4GOxeR4hzw7y61Q6OwrYbsoTsMQQjw/L+c+0V9ictxm0e4lUrNRABtlLaIgXepifKWH073LPH/0FqfMPNerJTJ2HNMXAqRvTnj3L34hY9mJ8FWnnMiJEPCvZgq0GkU24sA74O5FmtL9ohFyP0TO7QYPGsl/iOGRYg8e7hXuJ0uuBw/7hTvYBNbrGbLZn68R4Wp1cleXjkTOrZHgROIVNG0baWXY33u0TTrCWmjrhE7fCYuXuq7y4YTFXDlOKpAjFVbI1cPMF7qxCNEXq6IfCUNUlH/LZVdsOnosDKEwY5UEf1zuoc9QGbtSJ6OfwrQ1NNUiGSlzuneZV45PM6KvSjFvsclstQf09clbhQLcvi3/d/JmV8shc+yY69EEN79X01YFpRpSU7lOmFI9QKnhZ6USwqfaZKshPl/spzdc4Xgiix6uoocqmIaKzWYhp9ZQYydH2BmLo0fdEketke3f/Ob6yPZ2eOUV+NnPpM/Vqhv6rCiyXEslIX2KIm0YGpI+9vbK/0sleTkloWzbDaNW1fVh0ZEInD/vephjMeEnwaDcIktLd/6VsF0U59SUtD0alXNW0lBr+qhbQcJ2hSNxUT03KiEalkpPpEzY32B0XlTTfm/oT/lB8BqT3x7kCy3F229L3ysV6Uuz2bnwVaecqNmUV6Mh49euVFgr7gsH3N1OU7ofNEIetMi5B43kP8TwSLEHD/cS94sl14OHO0WbMi871VBpNkvkcm+vkeBi8dNdXTIQGELXX1t9vUowOLT7dt/Fe3R9aGsvGI/SaxZYueUj1+xCD5SIBhpQ16g0QzS7QxALUK+76sNOTi0IIfzpT+H27Ri95WeolHMkKROI+6nUg0xmdcZXehhf6eHH567y1ODClpvMjfaAL75wPcPNpoTw9vYKIT582CVZ5XyDSr5BJe8jm/Hh0xT6Bnz4/CrzVZ2ryynyZoCqqdFo+girdfy+JnOFblYqYVYqYc70ZqiXVRRFobfbRNPWhyFGo3LtlRXJIQYhsK3e6o2R7U891dkeOhwWT6RTG9jnk5/VqlsjGISEz85KeHA4LGnc2ax8xjTlc36/EGOfT3465ZhSKTh7Fn74Q/Gmt1OK3o/ltlUUZzuhsmzJT8O28SkW0UB9rQxYPFRlNt+NUQlztlfE38aWe7lcP8nvPD5KMaUw+bGEhPf1wRNP7F74qlNO5PPJuDuPjVZDSTt4DrgWHHSNkAcpcu5BI/kPMTxS7MHDvcb9YMn14OFO0In87fg41o9+k8KJZos41jvYdqPjy/h8cRKJb68R4UjkDIrDYu4Ed+EebRvaquscf1ln5f0687MWBHUUVUElBCUfxZrknBYKQmjCYSE3774rJFHXJX+2UID4iSTPR2+iLc4BUeiJY/b4mMnFeffWYW7nonw//h7DZpbh51Kk2mwy29kDQIiGZUnea1eXkMPlhTrVbJWIXSZgNYg2AlRrXeTLAarlJu9Uu6gZ5ymUVHxBjb5ICdNW8asWlq0S0hpUTY3xFZ1b+RjnfDd4+fgtqmd7mDOEKLbuk48fd0NjQabi2DG37XvZQ1+6JGT/wgU57/y8EEjLkvOpqhuyW6sJKa/VZA4KhfXlmFpVpcNhGUdNk3m7dQsefRSefrr98tlquXV1yfzOzkq/dlp+W0VxbhQqq9ehYgYwbZOYUkH88wJVgYjfpNzwY1RDHI3neO/WIa6X46TDx7h0a2RfKs90wolyOTev+tChrfvtfN5zwN1HeNAi5x4kkv8QwyPFHjx8XTjollwPHvaCbeRvbWzKgQSGMoqRvEx2+V/TzHce66goAeLxF9dCoru6nkZVd/E1tluSu4/36FahrboO554IgF/IVjYL1dUc1pUV8UA6isrxuPw9t1re1zSFnEUiEB+IslB7nGYhji9voGcz1IMxcpUu0nmNyYUhxru+yyOHnyWZP8LpSwO8wua9ZjuC9rOfSQkfn08I2vxUlWhthaSdRW02wO8npAYo1f3UbB9mQ2F61odNjKBSJ64UOd5T5lAsT7YWJlMOU274Cfia+BQLn1ljSC/yT//PBtnXXlizp2zcJzcarsq1aYq30gmZ3u0eutVI8fzz4sG9fNkdc6fmsKa5Ql/NpszPRjj5x45qdqUiy2twUH43TWn7TkvJWW57CLIAto7i3ChUVq1CvekD1SKgWoSaRcB1L7cqhGuqTdLOkFFSfKwlGVvo3pfKM51yonPnZA0WCutLb22E54C7D/EgRc49aCT/IYVHij148ODhfsdBijrYIH9bC+Qx9EkMfQJDn6AeLHZ+LluhK3AOfeAH6Ppr1OsvMT0dYXoaFhZ20c29sox9xHYCpYODEg48PS3TODPjeiGjURGNSiTEAwlCcJaXxelQrQopu3YNfL4klhlDtQpYlRrlrA/bAhMfZV+QbDDEUl+AyZko43+1fd6nQ9DSaRmyqSl45x2olRroTQO9mZF44Wg3+VqQmWKcUjOAT7Pw23VqTQ1UhbDfRLFMqsUGwUSDJwdylOrihWw2FSgWubmi0zfoo+vb32Bkm33yq6+6eaWGcWd76I1GinJZxjeZdEkYrCfGTvkp5/8OHEJsWS4xNgxXNdnvl1cnqsgdBlm0nbetojg3CpVZlvRRC6hEAjaBZhUqzbVCyWsK4UhHAvUYZlJnuucomen9qzzTCSc6ftzN+wbPAffA4UGKnHuQSP5DCo8Ue/DgwcP9igNA9tYhncac+Jxs3xjGCwGMnr+mHN2NQjSE8jH02T70axES2WECRx9j4vn/C3+aOb+3bt4Jy+isyx3t5XYSKHVKHA0NufWCg0E4ckRCpVuhqvJeve6qGFuW7MeCwSDFYJB0tolZh0ioyaG+OlE1RCCikTwGjw64eZ+lkrS/tYZvO29lOi1EsZiDqh2hFuwj7FfI54IslqI0miqaahHwmViWj0bTj2abREMmfjXAfFmDiTqh1DJ62CDqyBaHQlQG42QGHmXSTpJi+30yyP8WFlxS65QE2s0eutVI4eTcWpacxymH1GwKma3VXOLrjD+4xNgR/2rNQXbmJpmUHGzT3FkVeacaw53k67aL4mwVKjNNV0AsGPIR749AvksWZj6PpQUoVyMkgnl0YwKiUE/0ETt5CJJJzJv7W3mmE07U3S0/PQfcA4wHJXLuQSL5DyE8UuzBgwcP9yPuMtnrFJZVI5d7V/KCb/0Jhe9cBdXe+cBV+HMq+lw/Cfsp9PxJwtVVV2DchNwMo2/meP2tNGPxYxj1rt11cz9YxhbYrT2iU4HSaNQVCgqF3DI9rahUhBRWq27+q6NO7XRL8/tQVDAVH8vVAJEIaKshwJomRGJ8HP7mb+CTT6StTvtbFZGdpaWqUjaqigk25K0uatUm2WoI01JRFfCpNjXTT91SMW2Vph3gVj5OIg7+QJ152890rYkemZZJXJXSDqgjmPHYJvLUuk+emIC//Mutx7uvb3d7zlJJjA+FgpDFXM7Nuf3/s/fnQXKlZ3of+pxzcl8rawMKO6rRjW50s9lEszeSvbE5msXSzHhmZNkhzohjhhSOsWQ5bti698aEdW/EvYqwpasrx3iRw+GxrmVSER6SHo04GznN3rj0xkaj9wYaKGwFFFBbZlZW7me5fzz11ncykVmVVagqbO8vIllVmWf5zncOmvl87/s+bzbL+1CpcF7bbSN8xVVaTM/kdyEIPfoi2sSl+oUX2Gu4H2v1GAYGq9ftl8Up13H2LEVmPs/34sMZIO1wAmo1lJejSDhtjKbrSO8fhlsYw/zivTh8NIWDB4F33tmezjNraSINwCm3HXeKyL/LUFGsKIpyu7GNYm89gsDH8vJJFIs/QrH4IsrlH8P3Q9+S7f77AoDtRTFUOojChzEU/moR6atJWE8/2+maBACRCKYKj+J7lUM4MTeEsXuu4ujzRzZ2mVuhMnqwmfWIQQ1KJe1WomzXrvHLfyrF9yoVilWJbAIUZ+02X9Wq6bU7PEzhXK9TDKdSTKWdmWHP2mKR4teymKJt23x/cZGC5oEHWG8biTC1e+ZMA/nUIpqujQV3CPVGBA3XQYAAUdtHy3PgBxb8gOHSAIDr2ShVLCTTGVT8JM7HE7j3/lGkM9Zq76XWp0A20l88DTLf771H8XTo0NqBGVnMOHmS13TtGg2tymXul04z5TmVMi2HvM6WyqvCV1KmAVNXHMayjHP3Z58B/+yf8fh/429cP661egx3s169blhEvvsuU9+jUV5Xs2kWPq5e5XUXCkn48STKC21UfQ8Tww0cvH83cPA+XLyWRiHBMT36KI95MzrPaABOUZTtRkWxoijK7cY2ib1+1OtTqw7RxeJLcN2FwXcOLOSW9qFQPIxCcRK5pX2wlxu0UP5sHpjIGQegLl49fxCn3UmMWTOYtBaA5gQQMX1Z1rzMrVQZIW5kPWIQg9JTpyhUolF+trDAIcXjJpW3XqcAk0hlZEVQxuMUzc0m33NdRpvLZQrlaJTbf/wxhXE6baKItRrTkNNpmmm129yvUqF2dRwer9hMw7F8NNwoGm5k1be47vMe2ghgWwG8kDD2fIps33dwZTGJC3MNHEuysTDFU7qveFpvvufmKPzeeQd45RXgyBGON5lkRPShh4wwm57uFNexGF/Ly5zTRoNzOjrK+1Yq8bOw8A3/DL/fTxTLfXBdnve//q/5WbcwXqvHcDeD1OsCnSnfqRRr12s13otGw8xfucyxJpNRTByO4tixBLJjQ5jqqtW9FTrPaABOUZTtQkWxoijK7cQ2ib0wrdYcSqWXVoVwo3F+Q0NMzaZRaBxDoXwPhkqHEPG6QoDFIsNwAMN04p4UYraaxumFERSbaRwtLAO1CPfr0ay052Vuh8rAja1HrGdQOjXF8Uuv20KBYq1ep9Ct1SjEolETSZbUaRFmEkGVWs5o1IxN0qIXFky7oFLJ1M9evGjaDg0Pc7sLFziOVgsoVSMotRw48OAFgI9ObAC2HcAC4AcWAljwYcP3LKAZwAp8lFs+3v25h4krp1BINnCxtReF5DCOFtIYX5n3bufrDz7oPd8S8S6VeM3tNkVtJGIi4NkshfKuXRRz8/O8vfv3c7tPP6VYdt3VsloAXCDI5XjssLmWmGmF6SWIAY7Ftk0NruMwYvw//8/Agw92Xs9aRmy9WKtet1dkPZ/nPbx0iT/jcV5fJMKFjyDgXI2OUiSfPdu7Vlc7zyiKcqeiolhRFOV2YhvEnudVUSr9eFUEV6vvbWhIsdje1V7BhR/OIf79nzFU1y+UJDmliQTH10PonisOYb6WwmiqhohjmZ44g17mVqqMFbZiPaJffWQQ8DqSSQ6l3aYwE9fgcpmtmGo1k2YciXBtIQjMpUoLJ8/jfpJOHY/z5/nzHL+I4lrN7Le8bKKGIsDn54HLlzmvLT+CiN2E7bYRBNc/ewEA37dCXW/Nb57nw4EPHxZmaxm8PjeJ8VgZXtPD8fETeOb8OUx9/5fx6oqh2qVLTG0+d47X8LnPGTMygNcQjnjfcw+3nZ1lVFSE6vw8r2VpiaI3GuXx5ua4nTw7sujQbhtDqiDg3IR7FXue6V8sbtThiGwYGUMsxvNEozz+Z58Bf/qnwH/2n5lt1zNi66Zfve56kfUjRyhap6dZsfDrv845KpfNYkok0r9WVzvPKIpyp6KiWFEU5XZiC8Se77dRqby9Whe8tPQ6gqA98BAcJ49C4aur/YKTyftgSU7pV6aAU/Nrh5KuXjXf6rtrieUyvQhc30bMcak+wupkkMvcKpURYtD1iGrVOEJ//DFTe3/5l83n/XoB1+sULeUyhRPrPXlt8TjXEEQAB4GkvFKkSV9jEcTSL1e29X0KoeVlkyacSFCoZbMUULUaxy5i2rYpEE+dYtQ4n2yjUmmgHCThwgEQwAJFsEhhLlvwXRvByv9yywA2bMuHiwhOVfahks3h+UNT+K2JkyidLOJ7783i3eghnJ9NIwg41lIJcNs+Trzp4fzHbTx6rIajn0/i/Pk0FhYoiCWi3mxy7MkkI8G2zYWE+Xl+JrXW5TLvQ6nEOUinub3j8L1Wi/O2Zw8/azR4v69d42cyd1LH3WutxrJ4vFiMx5BtsllGZt95p3OxZFAjNmDtet2NZDIsLzOC/A//4cZqddX4SlGUOxEVxYqiKLcTmxB7QTaDWvQKitN/gGLxRZRKr8DzKgOf0rJiyOe/siqCM5njsO0+//cxSChJVIvn9bZXBhB3XERsH/VGFGjU+C28R5p16DI7Ne1WqYwQ661HFIuMxC4sUGCWyxRG3/421wG6HanDvYD/4i+4z8MPUzQtLjIKCnC6pFbYsjgGz6PQLRRMxDjsRC1pvrKOEInwdxGOEimOxYyJl4hlqT1uNHhN7TawOOci0W7A9VdSolcc1SRAGpbHAGDDR8QGfPhwfQpjywKiToBExEMu3kAm1sah4SXk7xnFH174Il6+MoFKsgk/k+YY0UbE92D7ARpVC1eqNupFC43z57AQjKLRGMHoYeaHl0ocp+NQhNq2ST2vVk0qdSRinKP37eM9KhZZb/vFL/JxuXKF22SznPtLlyggJbLcq29xNxJNTiQ4t7WaSe22LD4j4eSNrajXvdFMho3U6qrxlaIodxoqihVFUW4nBhR7jfgSSrkzKI68jeK9y2g1/xA4M+hJLGQyx1dSol9APv9lOE5q8DEOEkqanQXefruvAjhcKGE0VcO5mQLcfAqRPmnWQB9NuwGVMXuqiHP+Y2jiGcTPjeMwNt5rWOpbFxYoJlMpI5pOnaJo6Nc66tw5Ci+AqcqOw+toNPh3rcZjSRRcosSRiBHqQUABJ9FyiYq22yzbHh2l2J2bMwZdrZYRboCJHDcavFXLy3zVaoDX8OC6EUQdD3H4aLuMAodTpMNYAGDbsFbcqCwA6VgLmVgL6WgLX5i4ivlaGtPlHP67N7+I1xf2Y67mwHMD5PNtjA81sHx5CQ0vCS+wkIy5WHKTKDZTeOfCGHLxJlLxBdjVNFrx7GpUPJ0292dxkWOPRs29SCSYSl2rcXtZZ1lYYD/oZ58Ffv5zbiP9cefnjXt3Os19Fxevb8cEmAixRO9loaHd5rlFFAPXZ+rfaL3uNpXRr4kaXylbjq60KDcJFcWKoii3E33EXjvSQGnoHIqFcygWplBPbcAhGkAyeQSFwtcwNPQCCoXnEY2O3Ng41wslTU0xTNdHAYzHy7jP/xRngqO4GJ3EZJ80a2ANp9t1VMbUXBavvpvD6asPYD43Cfez+xH5XwbvNdxsMipXKvE05TKF1Ogot6/VmIL72GMUXb0cqaemgD/+Y7YUajQoUkRQlcsm7VaElusaURsEPEcyyVer1dkmCDDO0svLJsLp+/xdMtLFiTgW43HEiTkIVqLT8JGAh5xThRWPwfFc1L0o3CCADX8lNRoIQpHiABY834K/4kodtX3sSlfR9h2MpWvIxpqYKhbwo3OH0fIczNXSCDwP8cBHolRHMygh0awgasfRQBrJaBO5qIuFehRl5OC5dYwGJWCuhkY2hlotDtc15mHi5SY1wBI9tyxT2yuR8nyeqeXz88C99zKJoV6n2Vi7zSjy3Bzfm583JlXSF1pwHNPrOAhMXbfrmvR3MbkaGro+U/9G63W3oYxeUXaOjTZ/V5QtRkWxoijK7cazz8Kb+hRLsy+jWHgXxUOLqORmAKtPLmcPotGx1Ujw0NALSCYPbc9Y+4WSBlAAz+aLOHPPEZzAEaCYw4HsBp1u1zjHiat78L3P7sXp9mEUI+MY3TWMWCqLemX9XsMnTwIvvUTxU6vx+9vSkmnxk0hQcImPWD7PlwxDHKnFJfittxh5FFG1vMy1BNc1rXR8n0JP2jFJbbEI3cVFI4hFSIsjNcD0a3EbFvMniapKm55YjGKtXue55DhRx0fUd2E5NgJYcH0btsX2SxEr4DlhwYLV4UgdBFitLc4nGojYPhzbR8T28enCKK4tp1Ftx+BYPq8niMDyPSwUA9SRwGjCRSoF1Gs+Gl4EyYiLZMRFtR1F3U6gaSWAehHLrTqWl+Or6eMyN7IAIKnksmggCwrhPs+plLmXU1Nmnmo1zv/wMNOqr13j+40GFxDicSNGw/MtEWPXNVFicaK2LArvXpn6N1Kvuw1l9IqyM2ym+buibDEqihVFUW4DgsDD8vJJmmNVXkT5hdfgY/AQj22nMTT07GpdcDr9ECzL3sYRD8A6CmDy6FH85vC9wJu5zTvd9jjHVLGA780+jRPWEYwddHD0kRFExky98lq9hkdGKICnpkydaqNB4QMwIlwsUmgcOtTpIxau43zrLeBP/oTnGBnhdlev8lzSZzgIGO0UgS1Crtk0NasiioFOURaJMG1a0oUlOlwoUOhJJDMS6YyaSr9jiXYGAWBHAtS9KMWmF0XE9pGJtdDybPiBDc8CPM+GDxMnBgDbCmBbHuJWG3HHQ9NzUEg0UG1FMVdLoeU5iDtttH0HlhUg7bSQdFpo+FFUPOZyD0UbSEUjqLRiACKwECBqU80uBRlkGkuYb0fhtgM4EQtDQ6Y+mr2ReT8BM5/SKskOPf6Ow23PnOECQiRC07OHHzYLMUeOMM399Gk+H9Eo8MQTTJ3/5BNTwxyNGmEu98PzTFr6/v1r9+/dbL3uNpTRayarsv3cSPN3RdlCVBQriqLcggRBgHr9LEqlH620SnoJrru4gQPYyCW+gMLuv45C4QXkck/AtgfMq9xJ1lEAxwEMPXSDTrdd53j1j4dwujiKsftSmDyWvG7zfr2Gp6aAN9+k4Bkbo5hcWuLPaJQvidLF4zRyCnuDhes4/92/63QJbrWY9ismXa0W93FdE+GU1FzAGD2126Y/sQhZqROW6HQ6bY4jqdeRiHnPcZiq3Wrx3IkEo6OXL6+kVDs+lts+vMBCNtFEKuoiEWljsZ5EuRGHAwsIgJbPSDIkYhxY8AMHgRUg4fnYnWnAtnxcWsqj7dlouFFEbA+ub6PlOfAtH1HbRtJpA4ii1o4hGfUwmmKecq0dRc2NwAJgB4Dr2/istR8+bMSiPpyos9qXWcSoLAZICnWtxusdGjK11IBxkq5UeM333muegW4DtUrF3J9Ll4DPf57H/+QTfi7p6LJIIecFeOxdu4Bjx9Z4XlfYaL3uVph1CZrJquwYN9L8XVG2EBXFiqIotwit1iyKxZdW+wU3mxc2tH8ah1FwnsDQnn8PQwd/FZFIbptGug2soQC2zOl2fByzGMdpCyhawNH71t6826FXvrsdOUJBceECcPascSuORJhmK4ZOvdJYYzGKqlqt0yX40CGmQJ87x88l8iyRYBFX0g6o0TCpwQCFntStilAWJFpaLhtRLcJY0okltXdoiMJHDMPGx4FDEwE+fb2MxXIE2WiAkXQdtgU4K+n6tVYUDURWEqgDrFpr2RYc+IjBg+O3UW7EUG4lsNyM8ZxWgGS0jVorBi+w0QxisHwHaTSQsNtY8uOotSMYTtawO7OMUiOBdpVma9lYCxHHQ6uVgGP5GBlqoeolV9OaHcdEa1MpRs2Xl016daPBBQ3H4Xxdvcp7NzzMuRDR2stATe5DrUZRHI8DjzzCz955h/dd6pflPrgu3y+V+Nz88R8DH3209eLyRs26AM1kVXaQrWj+rihbhIpiRVGUm4TrLqNc/vGqCK5W39/Q/vH4/lBd8FcRj09s00hvDbbC6XazDr3vvNP53U1SkTMZRg1bLf4tDsNi3FStdppmt1pGLIfHUChQiJXLFGCtFlajniLiRMCKiJX05vDfUkvbblPIeB7Fm4g0Sbtut41AjEYpzPbvZwR+YYG1s0NDnO9jX0igUFrCxx/5WGjnML2UQyrqwrF8JBwXy4ittCYKELXaACx4VgROxEY6AeRRh9VsYKZSQNOPIWL7iNkusvEWJtIVLFSiaLaG0LaiaAUO4PnIOD6ijo+256DhRpCLt9BwXYylluH6Dr60/xJ2Z5bxg4/3o+xm4AWc5FrNGEeJ0JcovqRMDw/zumRRod02UdZUytz7YpGCeGaG93B0lPuLe7XsPz1tUtgLBc6hmH6F65glMi3PxuuvM+j19a8DL7ywNanKN2rWpZmsyo5yMyzTFaUPKooVRVF2CN9vo1J5i3XBxRextPQ6gsAdeP9IZAhDQ19drQtOJu+FFQ4JKuuyWYfeCxd6f3ebmKB4uHKFAlkisWLcVCwaUSx1nLt39x7DxASF0PnznTWhckyJCkejFE0SLRYajU5H5IUVA/JWi4IsmeQx83kK83KZ89FscvzRKM9dKLBWdmmJAsh1gYlHdiFR+xgXLpQwjxHU7Ax82MjEW6i7ESy3YohZbWSdGqJxG81oBi0XqDUjaNt5wEuh6UXgBRYcBMjGaihYy2hX2ogBiMUCuJ4FL7DQDqJoBi6cmI8AgOdbKNYTqLajSEbb2Jct4hfuOYfJ3DwunPUwkzkAa18G8ys9h0UUp1LGXbnZND2MH3mEYm9+nte9tMTrffJJ4Ac/MAJXUqbT6c40eGldJQsK8ThTzQE+C4UCj3nlionyDw3xvs/NMSMgleKCyZkzXHAZHTUtu5NJ/r6ZVOXZWYr8z32uU8APWnKw0UzWP/1Tzp3WHCubQi3TlVsIFcWKoijbRBAEqFY/Wq0LLpVegectD7y/ZcWRz39lVQRns8dhWc42jvjOZ7MOvUDv727pNI2yFhcpMkU8iXGTCCzA1HEePsx03Url+vNlMqbfcCbDnyJqpL2Q55m/ARNJlnphgL+L0ZS0IZLPk0n+bDToSO04HEulAnzpS0Y0vfoq8Od/LvWpBRSOT6KQ+BjVa5+iuByFF09h0c3iQv1ewPcxkljG5GgF9vgo6pEIymUKv0olglrLQWD5sAI2cLIAFNtZtBFFEInATsRg1W1eFyIIrDiiTQ9OxMZcLYV8vIlktI1crIXjE1fxzMELmDtdRCF9CJHxAPufia22x5qdNb2aq1XeF6mfjsf5/qVLJmr6xS8yatpqmWejWjUp09JiS4jFKGpLJRMJXlriZxMryRrSDioaNe2v5ufNsQEK5eVlRuVtm9sODfGVSvHvQVOV+9UAJ5OsYX7oIWOq1U+0biSTNZtlP+fpaZrGyXVqzbGyIdQyXbmFUFGsKIqyhTQal1YjwaXSj9BqXd3A3hay2UdX+wXn81+G41xvBKVsns069B48aOpFu5F64JkZ/p3PUxBJH+BwHefRozze1BTrkScmjCEWYBygJfVWWvpIRNjzTNp0N+H3wvWsgDleKmWi1zIWxwHef5/X8fWvAw8+aPbrrE+dQOR4AukLF5Cen4e7vIyfX7gHNT+BZMzF3okA9thuIJlEEqZ38sICcOWKBc9z4Hs+2l4MC/4QLAuIJywaZAVA1JVrtNDyo/AtGym/hXSkBcsC9mWXcHziKn7r6AeYLL6DTLOF0YnncM7ahSMrxmb79vEY1appK1WrUcCeOmXaY/WKms7OmmcjmeR+YXOzMBKwarV4f5pNzvf0NI9drRon6miU2zUa/D2V4j5zc9wvvLjRbFLE+z4Fe72+fqryejXAhQKPvZbjNTB4JqvUWVcqHGsmw+dYa46VDbMdlumKsklUFCuKotwA7XYRpdLLq0K4Xj+9of2TyXtDdcHPIxod3qaRKsDmHXoffZT1n72+u0k9MEABeOkSBdXYGL/DnT9PMeQ4jCi+/rpJx/6rvwLuuYeCtFDgNtksI4gSIQ6L3bUEcTjNWpymJUIsEeN0mrXDo6MU+hLZrtcppJZDiQy961MLiOUKaKGBK9UWyrEYnLiNsV1RJA+MXTeuWMz0811aWmnd5AMBbJqCeUBgmZ7OjCxbCHwLSdvFgcQ8Phf/DPsLVRwdnsUz+Q8xef5joFDA+FP34b7oYZz5KHXdvUyn+RJxXCrxuh97DPj1X++d6ht+NsQ8zemRmFGpMNIfruWW+V1a4hyKI3luxeuuVuO2Evlvt819lOPIM5VMcl+JII+N9Tfd3coa4EEyWcN11tEon9V9+0zrMa05VjbEVlqmK8oNoqJYURRlA3heA0tLP10VwZXKOwD8dfcTotHxVRFcKLyAROLg+jspW8pmHHrX++42MUFhd+ECtwGYBis1pvPzjAhevEjxNz5uosuVCj9/6CFuWyiwRjUsgMO1wxIB7hbH4opsWaY1UybDvysV/v7AA0z3lnTehQWKm3KZx+gu1du3jwsCvm9qZB0HyI4lcDifQAVAMA8k0uhLo8GX53W6MruuiYSLS3Q6TYHueTYOHrbxf3/uPA7XPkOmehXLjSimsQ9ze+/H4UeHMf7XH8ezOIgzf3j9vZQ2SnNzfMkiRb3OCP2zz/b+Xi3PxksvUVCL2ZlQrXLRY3mZgnDXLs7dtWu8NknP9n1Tc1ypcD9xEA+ntcu9kpR43+9M2V5Y4HO0tNTbdHcru9kMkskarrOWZyG8cKDdc5QNsxWW6YqyBagoVhRFWYMg8FCpvLtaF1wu/wS+3xh4f9tOY2jouVUhnE4/pOZYO0Q/N9/NOvSu990tm2VkcHycn/3SL/GYr73GyOLYWOc+Y2PAhx8y5fbTT00tZ7Vq+uBKiyWg023askzabffjJJHhIKDAkahpJEIRfukShZoIYCnPKxQYuZYU5O4aVRFBu3YBjz/O36V2V9yYu1ON63UTORURH4uZ9GNxcK7XuY20UorHgWOPJDD5u8/ho9eP4/SJCuYbNlxEEPEyGJ1J4r5XeU+676XjUMCXSsb9e3iY4/7sM15Pv/ReeTaqVeAv/5L3DaC49TyK32bTREizWYr5hYXO8Yu518WLJpIs90ruYVhMinO443AuGg1GWaenTUp0t+nuVnezWS+TNVxnPTzMOR4a6jQh28j5FAXAjVumK8oWoaJYURQlRBAEqNfPrLRJ+hFKpZfgusWB97esCHK5J1frgnO5x2HbAzprKltCP9OhsAnQ8eP8Qv/aa/ziLtut5dA76He3p54ygutf/StGfXtF8iS6PDZGkVatMhgyMsJxSE2qRFUlJVpMvACTeitiS0Sp45gWRKkUhWm9zrFYlqlXBihyJGr73nvAP/knfH9pqbNG1XUpEms1Hv/oUSMKfb/TaEwQh+tIxIj7eJxRaxHU4Sip45gIe6MB/I//I1Ct5lAs5kytbAs493Zn7eo3v8l7+eabTE8Xh+f9+ynIJFV8kPReeTYqFeCnPzXtrWzbLCAcOGBcxcXlW8zNHMcsWoSj/eHFivBChkT1HYf7SCRZ7l2tZu5XOJK/1d1s1suGKBZNnXWlYlLe0z2yBLa1e85W9K5Sbi028x9kRdliVBQrinLX02pdW0mHZjS42by4of3T6c+tRoLz+WcQiWS3aaTKevQzHSoWgZMnKZhefRX47d9mb1gxWBr0O/ZGvrsNEsmTdOnDh4Gf/IS1xQ8/TEF09iwFl4hdEb69BHE48hiNGodp26YYlpZE0qM4kTB9c5eWuG0qxe1eeYXvP/ww2xT1q1GtVvlZNMpruHaN2+TzRiBK/axEUEXUy35hJ+1KhZ8fOMBjnD3L6zh6dP1a2W9+E/jGNyjCT51iVHj/fo4rLNoGTe+dnAR+//eBP/gDCu1czrRhCgIe0/d5j+fneU2SOi3ivzuCHxbIkjINmPsSjZpU8vBnklIdiXSa7m5HN5u1siHkXkl99MSEqSXe7Pk2xCCrXSqabl8mJzf+H2RF2UJUFCuKctfhuhWUy6+tiuBq9YMN7R+P70eh8Asr5lhfRTy+e5tGqmyEXqZDlYqpg3Rdpg6fPcvv1e+8Y7Lxur9zrfW9bNDvbu+8Q1Mi32eEtVughcnnabiVTDJSfPAgx95uG+doaf8jAlhSj8N1x0FgjK1SKQripSV+JiJFRLO0chJBLNctEeQguD4CGRaVly9TLO7ZY4TSwgJTfkVgyzUAxolZDMckCh4ExpgqmWQ/3ytXuO/evYPXymYynGfbpqHWWtHTQdJ7JyeB3/kd3rPTp/l8LS9zzPPzvOZGg9czNsaFEXkeANM+S+iuAQ//HU6lDotpz+N1VCrUfmHT3e3oZrNWNsSVK7y/ts3Fm2PHeqdOb+R8A7OexbZaXt85jI+rCFZuCiqKFUW54/H9NpaW3lytC15aegNB4A68fyRSwNDQV1ejwcnkEa0LvgXpNh2S1jFSB5lKUTiVy/z+/J3v8Pfw9+iNBKP6fXeTY7z4IvDJJxQ2pRLPPzJinKa7EdE6OsqX67J2U1r5XLrE6Kw4HssrbNokabulEn+G06rrdf5Mp00ENxLhnIyOcp7m5kw0d37e1OR2I6IynTbbJhKss63VjGC0LCAa8RCBj1zCBywgl3NQb0dW64xtm/sGAccSjQKzM8znvj8zB0xbfVcUwuJ2166tTScGOjMDXn6ZUeNmk/cqnWaatuNQyLsur6PRMG21wosW/ZBtXNfMvSx6SLrygQPXm+5uVzebftkQu3ebvs8PP8x/Z1txvnXZSottRVGUPqgoVhTljiMIAlSrH67WBZfLr8LzltffcQXLimNo6OnVuuBs9guwrB69WZRbhu5U5XDrmHSa4kHqbfN5Csx6nenU8l6pdOPBqHBA6/x5CiipEb16leNcXGSUbWKic1+JrO3eTQH+0UdmLLGYEb9hJ+pwOq4YVMl6TbVqIpXZrEnLlZTrRIKCK59nhFaMqXI5U8sqPY27qVQY7X33XQqoep3XFgQ8VzQKOF4LfiNAwmri3uxVOPAw28ghWrEwknXQyObhRxOronhpCYihiekTJViVCMajZeQ/e98U1/ZYUQiL2wsXtj6dGDCZAY89BvzTf0pztIcf5v365BPOuW1TBIuwj8XMokTYZAzodA+X+1mvm7RyOZ70WbYs4HOfu950dzu72fTLhnjjDab5Vypri+It7Z6zlRbbiqIofVBRrCjKHUGjcXFVBBeLP0K7fW0De1vIZr+4GgnO5b4Ex0lu21iVrafbdCjcOqY7KivR0liMYuz0aeC732UE7EaCUeGAViLB887MMOVWBG2pxFejAXzpS2Zs3ZG1ep37XLtGodrdq1giwGETJxG70hrIskxaczZr9kmnTXQ2LCBl33B6djj9V5AI/LVrFHwjI8CRI0xLv3yZ12f7bSSDKmKeBdcHon4TBzJFeB4wU8kBzTryuSrsceYd+z5QXWwC7SLQriHrBtiTXimobrV40MXFnisKIm6BrU8nDvPgg8Bzz3FOPc8sVEjqc9hEq902faIjEZP63ss9XO5p+CVtpMbHKYb7me5udzeb7myIsTEK5R3rnrPVFtuKoih9UFGsKMptSbu9iFLp5dW64Hr9sw3tn0zetyKCv4ahoecQja5RHKfc8oRNh8KtY6Tfazci+kZHWSv56qvGEMpxrq8BHiQYJQEt2zY9gJtN4/YsRkq+TxGfTlNkAZ2RtelptkYqFo0rs6QZd4uncIsfyzJ1uYUCxV6pZJylfZ8icGio95yEzyGiz+lKkAhH4C3LtLhyHAqhahUoLnhAu4WEVUM+4WPeHcLZ5j60EzmMj1aBZAsL5Sim5x2k6lU4ozGUl23Uyi2MRsp4aPQaSpERxKMps2og9tYzM/xbVh1gxO3Bg4wWb3U6cZhuESrO4IDJRJDIc/iehI21IpHOeygmZLJ9u81o89GjwC/+Ik3h+gU+d7qbzY53z9lqi21FUZQ+qChWFOW2wPPqKJd/imLxRZRKP0Kl8g6AdYr1QkSju1ZFcKHwAhKJ/ds3WGXHCZsOhVvHdPfNFUT0xWIUIh98QDGyezd1V7+M3X7BKAloXbnCv69do+g9dIi/i0FTNkvRtLTEyOrkJEWVRNYOHTLR5iBgZK5SMTXAYSEsSNrtyAjNusbHKXxjMeD99xm99TzqykqFdcrd8yJR4USC46lWe/eglQh8MsltMhmOJ5yqvseew8JMCzU/gVSqjd3+Mq4tZ3C2OAQ/AO4dXsRIKon5RQvVZhRLiyl4bRtHEpfx6wdP4rlHl/DHnzyAt6/shetbiNgral0Gs7BA9VsodIjbRx/lYsZ2pBMLYVH4/vt81up1I2YbDSNqJVVdFkNaLT6nuRzvX6XCeydz6XnUdF/4AtOz/8bfYD/o9djpbjY7er7tsNhWFEXpgYpiRVFuSYLAQ6VyIlQX/BMEweBfdBwng6Gh51brgtPpB9Uc6w4mbDrUndbajRgYDQ1RqExNMStXxIvj9M/Y7ReMkoBWu00BHE7bltrLep1CSByYFxdp3vTFL5rI2smTFNfZLIWy9IOVSC9galJ934yn1aLJ1RNPdNYAj4zwPLWaadHUr59wOk3RtrhooujhY4Uj8Om06VM7O2tS1RNOC7PzNqqtBEpBDtUlF/l4A1HHQ70dxafzo3B9B0dH54GhKJpXfeyPXsWhkSJ+O/ldvPArXN34aHYcZxaHcbGcx2ShZAaRzzOUvuICdvFaukPcbnc6MdApCn2fCwK1Goc2NsZ5ikapy4LApFBLr2OpPRaTs0iE9yadBv7W3wL+8/9840HOne5ms2Pn2w6LbUVRlB6oKFYU5ZYgCALU65+tiuBS6SW4bmng/S0rglzuqdVIcDb7OGw7un0DVm4pwqZD4qDcavXetlymoEsm+YW+VOL2w8Od6db9MnZ7BaOk/ZC4LoePk83ye3253On63GoxGv3008Bf/+sUSH/0R4w+plLUfvU6RZYQNtoSUbx/PyPP7fb1xliHDlHklkpGhMnx8nkzH9Uq3ZszGR5LzhVOQy4WuZ0YQ01MUAR+8gmvOZEArl7xUasl4AY2bAtwfRteYMOygIjto9qO4kolg1y8gV2ZKr629xyOJi7gmZGPMDm6BETuBwA8e+gCziwO48QMa4cP5MsmYpxKwV1u4OJHNcwF6Q5xu1PpvSIKjx0D/uW/pDAeGQEeeQT47DM+V62Wcf0GKKTjcc5ho8HnT6Lx7Tbv1a/92o2Jyp3uZrPt59sui21FUZQuVBQrinLTaDavrrRJYl1ws3lpQ/un0w+vpkTn808jEsls00iV2wGJEr7+OgVJtdqZKiwit1o1Pk3z8/yZTDKiF6ZPxm7PYFQ8TvHTL207meSr1aIgKhb5+/79jO5OTrLdj7Q2On+eIjvcVslxTM2vOFrX60wZzmZ7G2MVChRuCwvcVtLGSyXuB/B86TQ1RS5n6pyXljpF5fQ094nFOH/HjvF4tRq1ysICUKk6iFoBcpE6GlYSlhUg4bhwLBtNNwLPd1BuxlGsJ7Anu4zdmQqeSZ3EZPQqEDN2xpOFIn7z2CcAgNMLI3hjej9GUzXEHBet5QTmW1kUhoDjX75e3O5keu/jj/PaxXH84kXe52yWz5qIX1mECQLek2SSUezxcW77wQccj2q5LrbTYltRFCWEimJFUXYM162gVHp1tV9wtfrhhvaPxw+gUPiFFSH8VcRi+sVHMYSjhD/8IVM7L15kRFTEWyJBQXf4MNOmSyUKZ8AIzW5BG87YLZd7B6MOH2aUtV7v3cJIiMUookolfn8fGjIRZymfXFykaPZ9viT9Npz9H4mYOtT5eRMF7pUyPjbGcx0+TJfo8+f5qlZ5zOFhcz0iGIHeolLmatcunluctet16accIBm0gQAIYMHzLSzWk/ACG65vw7F9eL6NajuGy5Ucau0jmE3G8Vt7foYvtK52jPv4xAyGEg28duEgTs2PYL6WguvbyNpVHB5bxNGnE3jmd8d66qSdTCcWEf6nfwq88w4XByYmTAq+1HtLC6zRUZqCyYLL1JRquTXZiZx4RVHuelQUK4qybfh+C0tLb65GgiuVNxEE7sD7RyLDKBS+uloXnEzeo3XBtzI7VdC4BiJQ8nng3/5bfldeXqag27PHCJKlJRpgATTXisdpktWr3lZMt2o14NNPewuY8XFebiLBCO/ISP8xSvp2Ot0ZcY7HTQp0rWa27xbEMiZxLa7XKcTGx01E1/P4eaHA69yzh312xZF6/37eJsfhWCUgNzlJbXH4MPCNb5hbeu4cI9mXLzOd/LPPuK/n8dy1GseSSzuA5yBottAIqNBdy0bc8ZCLN1FrR9HwHMQcD58bvYKFSzWcaD4EVIeQv/S/Y/JIZ4rsZKGIyUIRs9U0zhWH0GxZiH9yEoef2o3xf/BFYJ3HayfSiaem6Dw+M2Mi9akU8PnPc26WljgGef5k0eRGtdwt8M9tZ9hxy2tFUe5GVBQrirJlBIGPavXDUF3wq/D96vo7rmDbCeTzT6+mRGcyj8Cy+tgHK7cOogpOnzZhxRUHqNndD+Pc/mfQHN27Y1/cJyeBf/SP+B3529+mcKhW+T06l6NI/OwzCtDRUaYBJxIUF1I/nM93Rowti2I2Gu0vYH71V4GXXmJ0dWGB39PDx/B9Ts/SEoV7vU7xJBHnw4cpNItF054nEuF0dqd2iwu1CNNajfu9/z5/l7pj1wUsz8UDEyVc+FkTlxaSmFnOIFuIIZHgHLz7Lrd/+WUG4Xbt4rzcdx+DdNEo03unp03f40qFY69U+JIIuRWhFXajYSHwWAMcj7hIRl0EAWuM446HABYqRZcmWoVJnG7di9daT2Ly4ps9Rc14uorxdJXP2qE6cPyLqw/SzRSHJ06Y1OlikfM2PGy0WjTKefJ94NIlztONark1/rmt3rM7ThfutMW2oih3HSqKFUW5IRqNC6siuFj8Edrt2Q3sbSOb/eKqOVYu9yU4TmLbxqpsA71UQSyGqbksXv3pME77ccwnrsA9kEBk18iOfnH/2td4jl7fox96iCnE2aypLz52jD8XFigAYzEKTtelIM5mgQce6C9gHn8c+Gt/jdOwtEQhnkpRuEqrKHEdLpf588wZ4M/+zMzHxATFbrPJulPXpYAScy6JGLsujyvGW65rUryTSW5TX3YRtFrI2jV8MNNC23OQiNQQidWxuJBAI5pFtRVb7WMciZjWTefOcWxvv83zX77MNOznn6fwnpnh+ffvN2Zg9TrP7VlJNK02LLDBciLSBmCh4UYQsX0kIm3YrSa8WguYHMGBh0fwxsk4TgUPYnb6xxjH1EApsjdbHE5NmfZZY2PUZb2GfOECF1327TM9ozer5fr8c0O9bu7ZmTN8Rr/whe257pvGTltsK4pyV6GiWFGUDdFuL6BYfHm1X3C9fmZD+yeTR1cjwUNDzyEaHdqegSrbTx9VcGJmAt8rP4DTQQHFsoXR8jxi3gXU/TjOncvs6Bf3ft+jMxngW9+i6BMxNTFB8fLxxxTMpZLpDSyidP9+49rci9/5Heq2114zArhep0iW3sIiPrNZnuPP/9zMx333GWdqwAjcdptjt21TaxxOoY5EGKEcGuLfdqOGlDuLQnQOn5XHcLG1CxHLRy5aR75VgVcLsODFsew7iMUd5HK8ds/jsZ58koLuxz/m/DzwgBFu4cWDK1e4n21zjAsLQDYbQSLtw635sP020GyhjjjaPpCJ1JBoN2DbLpyxAnBsHyJjBYzuB+abD+Fc/lmMV19aN0X2RGnypotDEeRjY71FbSRi3q/XOYdPPLF5LTeoCJfS23z+Dg2c7rTFtqIodwUqihVFWRPPq6Nc/slqNHh5+QSAYOD9Y7HdIRH8AhKJfds3WGVn6aEKpooF/Ov3Hsab0/uQizewf1cFo60q0t4sELHhPvnITfni3ut7dC9T20aDL+npm8tRxCQSFDKffgr84R/2F1uTk8A3v0lx+sEHFNeNBgVLMkkRk0yyjvfYMU7dxYvAT34CvPeeaeUk5lXSN1nSsF2Xv8diTFcW5+fxceBLX1qJ1JYqcM58ikLjPEqJUbxbvRduKwLHcpFMAqMZYKZoA66LbKQGK5pEtRpZvf75eV7zrl0U2AsLHIcgiwcXLhjzMUmjFqfsSDKGpuvAbbto+1FE4CITbWAkUUXZyyI1FkPhsRFgYgioVhFbqsENPDSPHwPybYai+6TITmES3/vD/uKwXOZ9evFFRrh/7/cYxd9KZmeNID96dO1tDxygxp+ZubGg5kZE+OnTXJi5I0WxoijKNqCiWFGUDoLAQ6XyzqoILpd/iiBorr/jCo6TxdDQc6tCOJV6QM2x7kR6qIKpYgH/79eexs8u7YfnW6i7EczV0khFhjHSuIxDqSoK91YxOUmnodOn6dh7I9GzG6Hb1DabZZR4ZoaCc3ycQk9aOD38MP9eT9CHyx+/8x3uk8/z1ct9OJmk4/TZsxTho6Oc1maTAlNMsxIJ1qjG4xyrpOI2Ghzfnj0rJk5zZ4DWOSAfxZulw1huxZFwXNgW0HAjqLZjqFspuIgihxosWEA0g0aDYlvqkwGez7JMj2IxiSoU+KpW+Vk+TyEKUExXKoAXOAgcB7mch2zcQj4NNNpjSNhxjD4QQTpVZEHzwgJaV3LIRuqIx34KHKvQ/eyxxzgZXQ/Gq/+qtzgsFrkIIcZf5TKF5NwcFzG2Mp363Dlq9tHRtVvnAiale36e+23m+d6MCD91ivtpUFVRFGV9VBQryl1OEASo10+HzLFehuuWBt7fsqLI5Z5aFcHZ7Bdh29H1d1Rub7pUwYmZCfzrkw/jZxf3Y7aWxu7MMoLAQst3UGokseg5WJyu49iZZUx8Po1sFvj5z1kH+9Zbpu3QTtYcd5va/vznFHPRKIWopAZLT96xMb5k+7UicZOTTNE+cYLC5IEHKDgLhc6WTcUihXitxnMODQEPPkixeeWKiRK7Lvffs4fHLZf5CgIK6fFxII0q8NmV1V5T1YkjKNYTcH0b6WgbASy0PQdLzTjanoNoJIDle0C7jUTCw1LVgWUxW1lclIOAol2Ecne7qXTavObmeK2VCu+l46wIe9uBH0+i7CfhBsDEOHAwOQuc+ABYWIBbb2G+tguHx67hsHUeeHulR9F9910Xku8nDmdmOI8LC1wkSKX4mp0FPvqIY9nKdGppnxWLDbZ9LMbtm4OvL3aw0yJcURTlbkNFsaLchTSbM6ttkkqlH6HZnN7Q/un050Mp0U/DcdZozKrcmYRUwVSxgO99/ADevLwXXmBhd2YZ42nTU8gPgPKSjZlqHjgbx1KCYrhSobDLZCg8e9WD7t27vZ464R6z09PGUMtx+H53VBcYPBJ37hyv6Z57+otniWxmMhSfjQaF6KOPGnMuqR+u1+mcXSpxLqTcdjTXxMHlM8DrM1Sm8/OA76M4XUWr2kbUchHAgoUAAQAvsBBgxbRrxb7a8lxEow7abZOyDZi0bd83QrkXjYapv15e5sKCHGNxkfOaTLIm+9i+JRSmP1gNyV907kUhaePoEQ/jj+wB3PG+xbG9xKEsLEiEf3TUjFvqrV13a1P243FTLz4IrVZn+62NstMiXFEU5W5DRbGi3AW47hJKpVdXo8G12kcb2j8eP4jh4V9YEcHPIxbT0MNtyVa6toZUwavnD+L0wghy8SbqbhRB0Jkub1tAIboMWBauFnO49g5FVjRKobBvH4UnYMyCpMZ2/350uCNvRyR5cpIp3G+9RXG6b5/p8dsdGQUGj8StJ2SqVRPZHB2lcBTxKVHQd97hNuJALT2TLYsZxrWFKna1L6Nw5SOjqH26Pnu1BiJuHVG/ibYbR8SxELECOFYAC4CP0H1acQFzXd5aWQRIpViXOzRkRG43xSLw4Yccv/RrrlYp3ufmGGWWiHckAiTmLjFCnMziIg5irp7G8YkZPHPwgpngUHHs7J++hXNPTKLZpPitVDrn9NQpLmiI8Vh4zmXMu3ZxXreq1vbwYd6zc+fMs9kP1+Wzcviwab+1UXZahCuKotxt3HRRbFlWFMDvAXgEwBcAHAMQBfB3gyD4X27i0BTltsX3W1haemNVBC8tvQlgjTBPF5HIMAqFF1ZbJSUSk1oXfDuzHb1rVlTB7KkiTrsFFBtJ7M+VMFdLo+V3qacV++Z8po0rtRiCOsWTiJiw2BIjKqmxnZpiLe+NOAsPshbQbFKkT0wYgb4Wg0Ti1hMyxSIFYyrFufA8Hlfm4+hRjvP0aaZSz85yjPfcw+ueiM7jkz89g88uxOGm44jsG2WYttEAPA+OnUDcdRH1WvA9C3U/ieFUe2XxIoJGM4LAXokYWxZaLXNP5uf5M5Xi7XNdI5Sljlhqnaen+cpkmGb+yCNmm9lZLnLUahSzVy97+PmVNPa7Y5hP7Uch2cTxiRn81rGPkYm18Ob0XjS9COKOCyuyCx99tIzT07sw/1YdbjSJxUVG1+NxjvXqVSPIUymeR3oD5/Odc7p379bV2o6P9zZq68XFi5w7uZ+bYadFuKIoyt3GTRfFANIA/tuV368BuApg/00bjaLchgSBj2r1g1Bd8Kvw/dr6O65g20nk80+vpkRnMp+HZdnbOGJlx9iuxqYrquDcm8D8jI/RVA2jqTpS0TZKjQT8gBFiABRpkQjceAZB3UGzyS/1y8uMQIZTk3vV2O7fbyK2G2k7s5G1gO2IxK0nZKQnsOPwZ612/XwUCoxiV6usjQ0C4Nd+DfiN3wDG/+z7+FdODfOZL+KifRCTdsm4cTUaKKSXkYq5CNqA51vwVnoFO7aHZMRFvRVBo2UjEfOxvGyh1ggQT1io1eh/Zdu8R47DKPXZs7zuUolj9X2+f+0ab/HRo2ZBQeqM9+3jPFy4wIjz+c88zHgpZFNDODY2j+N7ruLQUBEnr+7GH330IOZrKbi+jVIjjmvVDNrVFmILAfanq4jtScKyKICXlrhQ4PsU25Iu7XkcS71unqHDhzmPW11r223UNkBr5U2z0yJcURTlbuNWEMU1AL8C4GQQBDOWZf0/Afw/bu6QFOXWp14/vyKCX0Sp9BLa7bkN7G0jm31sVQTn80/BtjXP7o5juxubPvssmi+5cE+1EfNKSA+3MJKqY7GeRLmRQCFRN8WmmQwa8fyqCKxWqd9GRztTlHvV2IYNngZtO7PRtYD1BGw4OgpQkH35y2tH4tYTMpJS3GpR6PWaDyGdpqFWNsvxjoOOU8/GpnFm34M4cW0YAHAgX0YkmQTqdbQaHpa9JJaDDFpBBI7lodF28OncKOJowm+3UA8SqDRseAAsy0XE8xANbHheDKUSBWcux3G++y7nwbJM/+SlJYrPWIwCtdHoPRdBsNJKKhKg0YzgamsImUoNtQtRvHr+AJZbcRQbSYymami6Nk4tjOLacgYZu4p9kSLyqRYmJs0533mHYjOV4sKE45gxBYF5buJxvi9zupW1tt1Gbeu0Vr7hlO2dFOGKoih3GzddFAdB0ALwFzd7HIpyq9NuL6BYfGk1GtxonN3Q/qnU/SER/Cyi0aHtGahy67DdjU0nJxH/WguRDyqoLzSB6WkcijSxaAMz1SGg6iOfCGBnMsDYGHwvvhodbTbppBxOVV6rxrabtcyuNrsW0EvAXr7MfsNzc50GVPE4z7u8vHY0bi0hUyhQCM/MUNx1z0eY61JiVxynJve38Zv5U6i6cbw/uwsfzY5jODqOoF3BlVoB17xReHDgWB6ydh22baHmxtD0LTiBjwhc1IMkXDhIWXWMO2Vg0UE1XkAsHcfevbzmK1d4H4aHKTBF5GazjBwDFNAff8xrkmh32BW6UgGabQuuF8e1eh5XLo6h5XFCD+ZL+MqBixhL1/Hu1d0AgD25JdjNJq418rAvJpFYifg6DoPhUmctRmSDsNW1tmGjNqn/BvjeY4+ttlbekvr3nRbhiqIodxM3XRQritIbz6uhXP7JqgheXn4XQDDw/rHYxKoILhReQDy+d/sGq9x67FBj08O/fD9G3yji3Kt1uENNFBpVHMMMYNlYcPOYtsaQSsThuHEsLWG1F+6+faw/7U6dXqvGNsxaqbCbXQsIC9hKhXWyZ89SrPv+Su0t+DOV4rZ/+IdrZ56vJ2RKJVO7K/PRXbNbKDBFuSMl9lO6eE019+K9q7vQ9CLwfBstz8bZ+jiWm3vR8izkrAr2WjNoIwo/sNF2o8h4i1i2M2jaKXhWFDHLQy7awkiihoTvot1owfEiCKIW/BgjxtXqSqQ3xsWDVIpjazQoelst/r2wwFTpQqHTFVrmruVHEMBHEg20bBvLrSi8wMblSg5vXd6LB0bnsVBLouFGsC9bht1aAhJjWKincOGCifbH4xTfi4tYdcwW2m3e46Eh3rd6neOPx7e+1lZS9GdmOhdvHIdGaFsliIVwD+xTp0xZQDbLa9pKEa4oinI3cUeJYsuy3unz0f07OhBF2QS+72J5+Z3VlOhy+WdgIsVgOE4WQ0PPrwrhVOp+Nce6m9mhxqbj48B9jxdwZr6Ai1YBk7kFTHgeEtUYLlSGMF+Jr9afWhbTouNxthySnr/CIDW2YcKpsB99RMF57RqdqxcXga99be2xd68FiIC9ehX4wQ94LM+jR7NtBXRrtgDLshEEjCK/8gqPtVbm+VpC5tlnKb6XlhiNvny5s2YX4LaWRbGzmhIbj+NEaRLfO/UQTuNeFBtJFJJ1RGwPn9ZHsNROwrZ8NOwUmk4bEbcBN7DhwEUsBown6lhCFOVWFPFIG790z2ewbWB2OY2L8wm4rSba1QbcRGzV1Lrd5txkMsDnP09TsmqVKe+lEiPdV67w+mZnaYB16ZIx6qrVgAA2htIuRlDFtVYMccdHxG6j5Tm4UB5C27fheg5SURd2k7Xo+SEb0+0I5ucZpa7VjDN4EHABQ+qbEwm+xGirWjU9llutra217ZWiPzzM81y+zPPOzm5db2RhcpKvrTSTVxRFudu5o0SxotxOBEGAWu1UqC74FXheeeD9LSuKXO5LqyI4m/0ibFv/SSsr7GBjUxNhTQKJfThwAChEgAIoSubnKZaSSTonRyIUMt2ieCM1tgC3W14G/tk/4zmKRf5dqfAczSbF26FDvffvtRYwNMT9ykUPvgc48BGzPVgAHMtHxAmAiI1WO46FBRuOQ3F0771rR+fWEjLT08D/8D8AP/sZI63hmt16ncJvZIRR2fLKfyKmrHvwvWtfxolrGSRGARsezhWHMF9LYqFOsyrAQjlIw7MjGLHn4cFBxPYQycVwYHgZnr+AEzNx5ONNjKQaaHkOis0EloMs0ihhV6KJ5VgSZSe6KkA9j+ONRk2a9MgIFyEqFY7tzBkj9MVUrdXidSUSQHooBq+WQrtmIWq1kIz6cFccyxdqKVgACk4ZsFiLbhfySK2IW0mplxpieT58n/c+EqFoTySMs7nnUZzb9tbV2m53uf4gjI+rCFYURdkqtuQbtGVZ5wEM0MRilW8HQfD1rTh3mCAIHu31/koE+fhWn09RNkqzeQXF4o9WU6Jbrcsb2j+TeSRUF/wVOE4ftaAoO9jYdNBaxy9+EXjySX6+kRrbXunE8TgjkaUS3282KYY8j4KkXmfq8/w88PjjwOc+13vs3WsBr74KfPhWDXbbQsICsk4NsB1YFhCxXDi+C/g26paLRjuJpaUILlwYPPO8l5BZXja3a3ycglNqdlMp45x85Qrw3e9SYL360ShOtw+jYVdwdmYYC+0cGm4Ebd9ZEcQBbMtCAKDejqDlRHEgdhVlZxjldhoXyw7y8QYsBGh4DoqNBOZqaSzUUkjH2ihEm4DrwK+3EARRWBZFreNwrJImHYvxb9+n2JeostT4BgGfAan7jUaBSCoGP1pAUPFguR6sZhPRwIbt+Wi4NuzAQzPuAAXWoiOZhNMwkXNZOAF4v6NRjqHRoDAvFvleNMp7G41SuD/11NbV2m53ub6iKIqys2xVWOksgD6ekz25skXnVZRbGtcto1R6dVUE12ofb2j/ROLwqggeGnoesdjY+jspCrDjjU03Uuu4d6W8fb0a2337jBu1pBOLUCwWKRLbbQpJiUAvLfHY7TYF08IC8NZbHEeviHF4LWB2Fjj5SgnXrtjwvAhSEReJhA2sViFEgMABXBcJr4YmHNSXLWQyDi5d2nybn1dfZer0F74A7Np1/QKARMqnpjhnf/qnjMaenNuDUrWF5UYUth3AtgMEMMO1ggBBEKCJCBaDHNLBMlwbqAYWivU84pEMGu0Iqu0Y3r82Dj+w0XAjGM0tAQ0LCALYlg/L6hSk2Szn9aOPeA+WlphWLS2QpGojCMx+lsX7I+nOmUwKVtqFX28DdgCrBQAWkk4bzSCOilPA+C4bdpohc6kvz+f5jJRKfL6KRfNMWBbnSmqMZTzJJBdkvvnNrRGmO1SuryiKouwgWyKKgyB4YSuOoyi3O77fxNLSG6sieGnpLQA9rHP7EImMoFB4YdUcK5nU0IKySW5CY9NBax0HqbG9fJmR4HabwjVs7DQzYyLEw8MUHkKoTS9yOQq2chl4//3rRXH3WsC5c8D598uw3CwitgM7YgOW37mTZQHRKCy0EXNbaHsOGg0HpdLm2vx0C6xIpH+6+IEDwMsvA//H/8H9Ls/G0WpGYVs+IkELrksh68BbseQLEKxI5HqQwLQ3wTFbFtqwELEAHzZaroNLpRwCy0Y62mZ/6ZVwbyIORBsm4SCX40f1OsVtuWxaIAUrPoAihsN/A8aoq1ZbieQmImi0IwjSMQRVH7btI57yAT8KOxpBuQUU0p315Xv2MLK+uMhIdbPJ4w4Pc0FBosiNhqnNzuV4vq1ih8r1FUVRlB1ECxAV5QYIAh/Ly++HzLF+DN+vDby/bSeRzz+zGg3OZB6GZQ3YW0RR1uMmNTYdpNZxLQH9xhvAf/PfMAppWaYNj+dR7CSTprZUMsSlBjcWo4Cur7RIzmZ5ebOz10fqutcCPn29iFa5ATtIwnYSa3u9RyKw2j7ge3CbLoDIptr8bERgzc1RPBeLFPvtNgDLRiQaoNWOwQssAD6sFTHsIFj5y4IHG/UggZjVRt6pou67sL0Aru0gE3P5eSsKP7BQbzlItttoRVNoILFqsmXbHGOxyPslruDNZmdEOPwKu3a3WtxfhGs0unL/Wg7acJBIA04KyK60XFpe5n6+31lfvm8fo+bFonF5DpuxRSJ8Vmybtd5jY1ubwryD5fqKoijKDqGiWFE2SL1+LmSO9RLa7fkN7O0gl3tsVQTnck/CtreoYaaidHMbNDbtJaAXFhjdu+ceCipJnY7FGC2sVhkptKwVU6yyEcUAU2wlkgmYyPH0NM/Vby0gPn8ZMa8NxynARoC2ZyOIGFHXgWUhsGwEfgC3FWBkhIJ+o47AgwosaW8kPYFtmxHYWAyIxRy0bcBrBAgCCwE8ABYCy4FtAa5vgUnVFiL2iky2AjT9CDJODakUUGtHUW8DDTeCuaUYYtYoao08WnNR1OtGFEsfXtc1ixTSK1jGlUjw93bbzJ30m240uGjRbnPBot02KdDSbmloiFFf3+f56nUTBf70U/PYSgsveZRl4aRW4xgmJtjmamxsa1OYd7BcX1EURdkhbglRbFnW/w2mbdIjKz9/17Ksr6z8/pMgCP6XHR+YogBoteZRKr20mhLdaExtaP9U6oFQXfCziETy2zRSRenBbdbYVNKJ223g+ecpGrtrbD/8kKmzYqQkwkiEpbgSA/xMRNvVq52iqnst4PBoBYdSFbxn7QN8wLF9NNwIklH3unEGAdAKImj7NkbTbRw8GMWf/RnHLlMsqbP33cegfa8pHlRgSW11LMbtq1W+H+6dbNuA56/UFVuMGTPczY1sO1gV8s2AfYtHnVk8MFbFVGUU9fYwyo04Zto5RCMWPC8KsCsSUikz167Lc4UFr2BZxtwqHC0WPI/3Sq5bfgJsgQVQOC8t8Vy2zXu1fz8XOyIRPraRCBdO5uZ4ru6Fk9FRmrRJBHkrU5h3uFxfURRF2QFuCVEM4JcAPNv13pdWXoKKYmVH8LwayuUfr0aDl5dPbmj/WGzPqgguFF5APL5newaqKINyGzU2PXeO7XMsi3XF3WZTgBFcEilttymkwtHWbJZipVzm5a6UAq+5FjC+28Yj45fxs2uTaLdjaPsO2r4NtCNIRNyOiLE4PUcsH3vG2pifBz75xPSr9TxGdU+cAN58E3jvPeDv/J3r+9UOIrCqVRMxlXZN4rYs7su2DVirCd8cqGP5aPsOVpQxfNho2gk0gijafgTD1iIetj7ApNfAeHoYldL9qFh70Q5iK3PlrKaj5/PGcVqQsQaBcZy2LI4JMH87Du+RRJdbLV7L3BwF7O7djPy3WiZiHImwTtiyGPHdswf48pfpIn74MBc3pqdNLXE/czJhK1OYb0K5vqIoirLN3BKiOAiC5272GJS7F993Uan8fFUELy29jiBoDby/4+QwNPT8qhBOpY7C6plvqSg3mVu8senUFPDHf0xTLBFN4iw8MkKjrEKBNaXJpImcirGTGCyJS7XUoV69yn3+3t8D7r9/jbWAw4fx7LFX8fOzH+Evq19Bq+nAsXx4gYWlZhxRh+5RDddB3Y0iAhcjuRqGdqVx7hzTdMfHKdbEMVt65J4/TxH1X/wXwHPPmVMOIrAkTTgITIumdptiudXi75EI4NgBfCtAEBgHatsKVmqN+XvEAVw4SNptjFhl+FYEF2pjcDIJjA0HuDQHtHwL2SEbY2M8nyw2yOKCtFbKZHjusLGWbfN3iQ5Ho7xXMl4Rxp5nDLCkN/OBA6wBHhnpbL118SLv4blzwFe/yjk7d85E2NPp/uZkAM975Qqfh88+4zOwmX8G4TWlfJ4u6qdO8bMdKtdXFEVRtolbQhQryk4SBAFqtU9DdcGvwPOWBt7fsmLI578UMsd6FLat/5QU5UY4cQL43veAt9+mSJK2TNKmaXGRr2PHGDkcG2OKrZhsFYv8XESaRIbrdYqhJ58EfvmXKWo+/ZQ/rxPH4+OYfHwM3/zsp2icz+NnpQcxW0uh7TmwEGC5xehwEFiIwEMuVkcy5eD0hSSGhxn1fP99jl9qZ8N9fU+eBP75P6egCkeM1/NDa7UY8W61mEZ89ChF57VrvFYRmiKEfVjwAwtRy0PccdFwI7CsAAmnDde30PIdOLaD6WAfZlp7EK9FkIo4WPbi8B0HmTSF8NISj+04Jo1dUpSlNzDAORYxLMLY88zfkn4tUWLH4T185BE6iTebFMJf/GKnYZbQq9/vIBH2YpGLEXNzjHCPjNC9+8yZtVPau5maMn2Jw6nxMjdzcxTdt1i5vqIoirIB9Ju8clfQbF5Gsfij1brgVmsjrbItZDKPrIrgfP4rcJzUto1VUe42pqYoiE+coHA5eJCRwXzeiK1ymQIKoMj9/OcpRq5eNaIwCExqtet2tm2qVID/8r80RlFDQxSY14mjZ5/F8TNn8Pvt/w3fzf0iXl16BJcreczXU1hqxmHBQwQu9sVncXBXE+esw5idpRi/dImHGB6mQLJDRvJDQ8DZs+zt+7/9b7w2Oed6fmhnz3IOhobMosDsLLdZXKQABwALzF0OPJ7YsgA/kKRqCw03Ch+AbQG+F8ANYrBsGw0vinLJXu3tHIsxXTlschYExszMtimIfZ+iUO6R45h6Y8BEiyWiK9H7/fuBr38deOAB4P/8P3nsZ55Zuza3V7/ftSLsMzM0JltYoDiORJg677pceDlzhq/f+q3rU9rDyGKNtM2S+1KvU/hKqvfu3UYo36Ll+oqiKMoaqChW7khct4xS6ZXVaHCt9umG9k8k7lntFzw09DxisdFtGqmiKBKFGxujgGg2KWjLZUbbxGwJMHWtjzxCcSjR4eVl43osqdSRCEVLtQr85V8aUZZMUsD99KcUV6++Cvz2bwMvvIBVhTqJ7+Efnf4evnHtu/jTxlfxR9NfxiWrgF32HD4/cgX5iRSmRz+Pqxfi2B2j6F5cpFjMZMx4JPU4EqHgbzaBDz64vj3QWn5oTz1FYVwqcY4AppKLIBYx2m7biEYAz/dhIwACCz5sOBZdqX2s1PwGFiLwEbF8RGMWrJi92lZJory2zTTjIODfc3OMupbLPKdESXM5CkQxCnMckz4tdd+VCq87leLcP/YY8B//x4zyigBvNrnA0a8uuFe/334RdnHqvnLFpJzv2cM5LhRMarPsF16gCBNerBkbM32khXCKdD5PATw6esuW6yuKoihroKJYuSPw/SbK5ddXRXCl8jYAf939hGh0FENDL6yaYyWTahOqbCG3gcHVzULcpotFig7ACD6JDEvEOJ9nve7sLCOujQZFiJg7ST2xGGpZFoVkbaV1uEQ3KxXT47hUotg7fRp4552VVNeQQh0/dQrWz5LIxpp4ND2NyV01YHQ/cPAgvKUC/HMU4FLf63kUY6kUxyEmVSLEk0mes1d7oLX80P7sz4A//3MTFS0UGDUGKCYXFigAm14EPgIAPuJWC5ZtwwvYq7jtOQgCwIEP2wrQQgyu7yDS4ny4Lsc3MsLjzc1x8QHg2K9c4eeWZVpipdOMjM/OGoMtwKSwS7R4ZISvPXsoZsfHmcZeLPK409MmKt2rjhy43iyrX4T94kVG7V2X+46McK7kOJFI75TsbroXa7oJH+fyZaab/8Zv9H3UFUVRlFsYFcXKbUkQ+Fhefm9VBJfLP4bvD9g0EoBtpzA09MxqSnQ6/TlYlr3+joqyEfoVI67Xp+cu4tw5Ts3oqInChQXfwgIFk9Tnui4jxbZN4ZtKAb/wCxRp09OMGkurpjfeuD6C2WrxM4mAyvunTgHf+Q4joUyppUKd/WgOp6+0UFxO4ejDVWDUhDCdKoX4/Dx/ijhn1JbvSRRVHKljMV7fWu2Bevmh9YqKTkwwGv3eezxHswkEsJFIuChElpHyq7hSH0I7iCPpNAErQMuPwIMF2A7siA0/sFGrce4l7Tmb5fjm5yn202mOOZWioC8UKAABLlxEo3xJCrttmzriPXsoSvN5znPYdOrcOV7TwoJZQAgCXsvVqxSa164xVX5ione/3+4I+6VLZtFD1p7CrZnC9ErJFnot1vRjreMoiqIotwcqipXbhnp9alUEF4svwXUXNrC3g1zu8VURnMs9CduOrb+bomyWtYoRRQ0MUtR4h9NsUkTGuv45iuC7cIHiTKKI8Tjfv+ceEzGMRDqFZLEIfP/7FEcA05klimtZ5lyS4iutg+p14PXX+Zmk1J5bHsN8DBi9F4gc7FRWlkXRKK2SIhHTmzcapZhsNDgOaVt08CAjqxttD9QvKtpqUYhVqxSMY2PAPfdEcO+YhTdfjeDqeRsRz0fTj8L1ndUBerDhedaqk7SM3bY5f6kU57xYNO7OIyPG8CwsTGXhIdyiKZ2mO/M99zCVPJXiOpCYTk1NAe++a8y8xse5Xb1u+kqXy8Zk7fHH+/f7DUfYv/997rN7N6Pc3a7U1Wpn+6ZMpvcCRa/Fmn70Su1WFEVRbi9UFCu3LK3WHEqll1aFcKNxfkP7p1LHVkXw0NCziERy2zNQRelm0GLE9Yoa7wLicWPE1E2hwFdYyFy6RMHz1FPs/xtO2RVOnTKGWrGYSeOVnr7RKD8T8SX1rpZFwR1Oqe0n2gGTMixR0nAnNkkfFnOqcpkCTQy4IhFe15tvDp5V36vu+JNPOHd79wJHjpioaLU6hGIcaDk+bNuH567UF9tANGZ11P3Koyn9jqWVlNQXC/v2MW1dIrvZLEWlRMerVeP+LY99oUBDraNHGf1vtTj+H/6QddK7dzMqfOmScdIWs7RIhGO5ehV45RVznH5zND7Olk5jYxxTWBCLE7W0ypI0bXGKPncOeOIJs/1a970XW9kHWVFuKbT8R7lLUFGs3DJ4XhWl0o9XRXC1+t6G9o/F9q6K4ELhq4jH92zTSBVlHTZSjLhWUeNNZie+Cw3SWkcila5L8bSfJb14553rxXS1ypTedpuRQBHEUtvqOGbbSMT03pWa5NFR1rhKKmw/0V6tmtZR+Tx/l37BEi0GTIS41aLwdl3gww+5jyDp1tKq6PHHga98hXPd6x584xt8/513gG99i5995SudxywWGXkNAhtt34YTATwfgGVSpUWEui7H226bhYiFBb4uXTKtlOR3idZLhDkeN+JZhPbRo4wKHz7Mvz/6iD2o5+cZOf/0U0Z09+zh3C4v8zjZbKdrdzzOfRYWuP2hQ2s/T73uV9iJOtwqq9Vi3XS1CvzgBxyzJG2stVjTi16p3YpyW6PlP8pdhopi5abh+y4qlbdXRfDS0usIgvbA+ztOHoXC86tCOJm8D1Y4VKMoN4M7oBhxJ78L9Wut053mWiiwvrRQ4LQ++ijXErrFdLFIIeM4FH2A6Zlr252i2LJMTXG7bVKrw6mw/UR7sciIYz5PISRp0iJepU2UHFdE2Ntvc9tr11gzm8/zs3qdqcTRKJ2y773XiCwRrt33YHiYAu+eezoFsVxzq2XmQKLZEjGXlPFolGN0XX6WzzMi/cYb/H33bo4vm2WUutXi+ZPJzrT2WIyfSyTccXid0ej1VQRLS6bH9Pnz/CkitFIxkeIgMDXict/On1/7eeq+X5UKBfHMTGekHuC4pWb6wgXgu981SRuDLNYIrts/tVtRbku0/Ee5C1FRrOwYQRCgVvtkVQSXSq/A8yoD729ZMeTzX14VwZnMcdi2PsLKLcZtXoy4E9+FuqOfDz5oTKSWlym8xDVaIrwSzXzmGb5ETH/0EffbtYvCaXmZ2zsOxZ9EMKVeNhyFFCS6mUxSdIsZV7PZX7SLwBTBuH8/FxOkvljOZdtGGC8vm9TpeJznuXyZx4vHKcgaDRqGnTvH8SSTPP+uXdffg8OH+6f4yjXIXMiiQBCYORUkYu44PNbMDK/7+HGamKXTFI9/8Rfc7rHHTPp398KFRPTfeIOp4SdPcs0nXEVw4QKj8fE4o7fNJgV1Mmmi5mLYlUiYGmUxRFtr/aj7fpXLPIdkGywvm7loNnnOI0fYWiqctLFeH+QwFy+axZpb4J+wotwYWv6j3KWoolC2lUZjGqXSj1aE8I/Qas1sYG8LmcwXVkVwPv9lOE5q28aqKFvCbVyMuN3fhdaKQEt/3w8/pIgJ1+PW6xRGIyMUjeUyjzU7y+NcvGhSb4OAYjosAMMiUASRINskEkzlTaevT4Xt5fzsOKYm1fd5nHzepP/KtTUa5pGwbR5zbIxR3itXzG1PJrlvNkvhJpFmqfGVtObwPbhyhZ/1SpCR98RIq902f0v7JYm+SpTYtimIJSJ/5QpF4n338drERVueCRGa3cg9/fhj/r53b+dzInMnQlyi4bEYI9PSWktE8dISPxseHmz9SO7X66/zGVla4vwWi6aOPFz7PDTEeunupI1+fZCFcJ/isKu2otzW3CHlP4qyUVQUK1tKu11CqfTKajS4Xj+1of2TySOhfsHPIxod2aaRKso2cRsXI27nd6H1ItCxGMVYu01BEo2aaGEqRZEWiXDbf/yPKaYqFQqoXM7UEruuEaKAiQIDJnIq0VoRtZZl0pJ7pcL2cn4WR2upSU0mWe+6bx+vaX6eNbiS/ispxakU64avXTP1rYAR+yLSbZvHTCS4SHDhAueoWDS10leumChvd4pvNMpHKhYz4lei2I7DcUl6taRY+z5F9sQEBSDAdO8zZziOcpkCchA8j2ONRmmKFkbaO83MmNTrdpvnHh7m/RRkTENDfA2yfiT36/JlitxSicJYIvuy2CCLF2fPcq66kzb6OX7HYsagq1CgIBZXbUW5rbkDyn8UZbOoKFZuCM9rYGnp9VURXKn8HIC/7n5CNDqGQuGFFYfoF5BMHtq2sSrKjnCbFiNu53ehQSLQL71EETM2Bjz5ZGcfYUlpPn+er9lZiruhIUYWxaxJooLtdqdrskRHxfBKUprFITqbpblVocCx9kqFPX6c4/z+97mNtBlKpRgtDTs/y3xWKjxPKmXEdzbL49Tr/CkCcGmJolNEvYjd4WGK4o8+oggWUdhq8fiZDEVsd4qv4/DY4RT0sEiW9OpwRDqdZir7o4+a65Bo6Gefccy+P5j4K5V4jvHx6/8JSHuny5d5zZGIiWY3Gp1JFuUyBfnoKMctqefrcfw40/t/9CPjZC2LE9ITOZvlGGdWEpjGxq4X3b36IC8u8rO9ezlXf/2vqyBW7hBu8/IfRbkRVBQrGyIIfCwvn1wVweXyT+D7A0bEANh2GkNDz64K4XT6IVhWjyI/RblduU2LEbf6u1C4bviv/gr44IP+Eehm0xg/uS6jr488Yj6fmaGgvnyZor3Z5BiWligMRfCImEokOmt+pcYXMOJYIsjZLPDlL9Osamqqdypsd9q3CO6JCZ7T8yhAs1mzj4hvGZNEOcWASiLI4vrsuhSSMi4x6bp61QjgYtFsL0ZalQqF48wMf3/wQc5HocBzFovcrtXi+0NDJkK+vGwip44D3H8/o7rhlGjJDmg0gPff51w88sj6az2Li7y+4eHe2xw6xGi51I6nUrwvzSbvq+fx/Xab9dp791KUbmT9aG7OzMXYWGdKttwXudaFBc7JyMj1olue2XKZCxOC53HeX321cztFuW25jct/FOVGUVGsrEkQBGg0plZFcLH4Elx3cQNHcJDLPbkqgnO5J2DbA/7HVlFuV27DYsSt+i7ULSArFfbSLZeBhx4ytbFhxMm5UKD4mp83rsDFIvDWW4wQe56J7kpdqufxHL7PqOnQEH+XHrfh9GBplSSR02iUkeZ0mpFvWZ84epQi/uWXOe7336dokppamaP5eQqsep3i6MoV8/nUFKOK0mZJUqYlYizX0WxynK1Wpyu01P2WSqYHciRiaqRF5LuuMY96/32O4fBhk+LbbvN3SVlut41LdiRiIsWJhBHPveqE77uP9d5idnXoUG+TLYCPdj5vrqcXhQLw+c9TPF+9ynl2HPM8SXurTIbvX7mysfUjyRoIAnOcfmPJ53mvRJx3i+5+qf/iJq5GvModw21c/qMoN4qKYuU6Wq1ZFIsvrQrhZvPChvZPpx9arQseGnoGkUhu/Z0U5U7iFihG3GiP4a34LvTii8C3v83zVquM7jWbFGH1OoViuQwcO0aRKEhUV9JbazWKj3SaacOXLlG8SVshwBg0tdtGSDUaFFm2zcitRJ4TCSP6EwnW6kobJOm1e++9pkb4D//Q9PkVN+xcjvXCvk8naHFZvniR9b4SdZ6dpYCWGlaAY1xYMDXQIyOdEWIRytEotxdRLFFccd72PBMVl+NK5DNsXBUE/Hn4sGlzdO+9vO6PPjL1zeH7LYsLJ05cf38AEzE+e5bbfPJJ/7rvRgN4+GGO57PP+lcRTEwAX/oSU5ylvljaYqVS5jrPneMz8Nxzg68fnTvHaxsf5z0sl69fjBHElM2yeJ/D/07UiLcHO9HAXLk53KblP4qyFagoVuC6yyiXf7wqgqvV9ze0fzy+b9Uhemjoq4jHJ9bfSVHudLqLEcVuOZvlF4ijR/kNf4u/QW+2x/CNfBeamgK+8x3gT/6k0wl6fp7bJxIUkeJuLO+JSAk7OUv7IM+jsL5wgeImk6FoabXMOCSaKkKq2eR72WxnHamkhM/OUth8+cscz8mTHOvkJEXsZ59R9Emtbb3OMQAU6ouLvNbdu1k/fOgQr+HMGaZ2BwEFYaNhRK6ka8/P8/1Wy/QjLpd5bIl4y5yHxa0IaxG64sgdBCYdW/r5Fgq89vvuYyuleJxC9+WXgXffpXCTNkSSWi3H3LfPpAN33x9Bzum6pq5bxiPXPzJCoft3/g7nV9zB+z3m0uc5FuOcJJMUxCL0q1UzBxtpQy+LIHv3cgxyXfl8Z8TY93kfWi0+Jw8+2HkcNeINsZMNzJWbw21a/qMoW4GK4rsQ32+jUnl7VQQvLb2OIHAH3j8SGcLQ0POrQjiZvBfWRr6tKMptwJYEQyYn+dqhyMqN9Bje7Heh6Wme84c/pIBNpShgXZcpr0HA86fTrA0FjJuyiC5J7S2VKIYSCZMyu7TEbSS9F6B4kwi1pO+KMZVEVgETxYzFGAEUESkGUBMTFLvnzvGaJMo8PEyxdGElSUbSnV3XRHuXl7lPs8m5FvMlEeOOYwR7u03ROTvLFOpikWMSMzGJkIsLsyCCWhDDMHFNFkErUW+JlLsu64PlEZucBP7JP6GmiUbNAsX4OOc8Hu90fO6+PwDHLNHXI0coviXtvdUyUXxpUZXPD1ZF8PbbnMv9+/l5vW7MwWyb4n10lL+Xy4OLTsl8iMcZ+Zbrmp7msyZR+FqNz9bQEOvKwwEvNeINsRMNzJVbg9uw/EdRtgIVxXcBQRCgVvt4VQSXSq/A85YH3t+y4sjnv7JaF5zNHodlOds4YkW5eWxLMGR8fNu/JW9FmudGvwsdOsRzvv56p/ANm1otLFB4NRoUm/k8hUm4bljciOfn+X37nnsoyK5eNWnTIjZFJEpLJUHMtEQUS/RURDbQGYUGTLq0tCjyPAr6RIKisDviK+eNRDj22VkjCOV6JT1baoTbbQphx+EjIK2K5HySOi412pEIjyGfS1ovYCLH4X1E/NVqHG88fr0BWiZjHsF77jFzEYuZOmQRob3ujzxf8/M8xmOP8X1peVQsmh7MzSafh3/yT4Df//21qwiuXKGITySAp5/mwkG12rtW2XU3JjrDmQ9HjvB5vXCB1yCiOxajGC4UOI777+8UxWrEu4LmkN9d3ALlP4pyM1BRfIfSaFxCsfijFRH8I7RaVzewt4Vs9tHVuuB8/stwnOS2jVVRbhVu52DIVqR5bvS70MmT3E7SX4FOoWrbHI+0G7p6laIsleqsGwYosKemjDFWPN4ZJZV2SoARyd0JKmEjrXqd15xKmbF5nonGXrjAuliJOsfjFJWjoxSF3TXBYUEqJlCNhqmFljTmVIqiOJnk55UKNYO4QCcSZpwyV3Idkj5sWZzrsEEYwHOJi3R33a0sCEhKedgATcTdnj1M+w4zMkJBKDW3Uh8cvj/VKo8BUDSm00xH/vRTLnpIv2XH4XiuXgV++lPgD/6AadTf/Gb/KgKpxd63j8eXRZJuNio6e2U+FAq9Rfe1a7wv3VmgasS7guaQ333cpPIfRbmZqCi+Q2i3iyiVXlmNBtfrpze0fzJ5b6hf8POIRvv00VCUO5TbORiylWmeg34XymSAP/ojnnPPHookp08Cye7dFIfLy4zMShqwRGxFNGazTOPN5ThGScUVM6holPMu4tB1TS2yODPLGJaXeTxJl45ETM9bmavllYQZEeDxOLeZn+c+YefqcCsnSc8GOqPPtt0pdKXeVlLAx8YoqDMZ7pPLcVz5PN+X8Usq9eXLxoRLIrkinONxI4glDTse5zbdvXzXEneHDlEUh2tuw9fkunSdLpcpSicnOXcff8x90mmT3hym3QbefJOff/ObwDe+cX0VwdWrwL/9t509pddio6KzV+ZDWHSvlwWqRrzQHPK7mR0u/1GUm42K4tsUz2tgaelnqyK4UnkHgD/w/tHo+EpN8AsoFF5AInFw/Z0U5Q7mdg6GbHWa5yDfhd5805wzFjPitBeSHl2tMgJZq/G9a9coOCQC/fzzwJNPMvp46hQdh6emGImMRnmMfN70Mq5WTZpytyGTiGlxfW42jZAWMSzR3HDkMOziHE5VDhOOYAMmkixO1mESCXO+fft4nZcumbrbUonXLLXJMo56HfjJT0xfZGmtlM9fL24bDeNC3WzynoTTgNcSd4XC9TW3rst9Ll0yzt+FAjVPoUDTroUF3sNejs7SMzqX6/y30l1F8Oab2ys6bzQLVI14oTnkyo6U/yjKrYCK4tuEIPCwvHxyVQSXyz+B7zcG3t+20xgaem41GpxOP6TmWIqywu0eDNmuNM+1vguFzxk2ygr30A2TyXDb4WFGQCUi3C8bTwR5JgP85V+aelkRRPL93LZNlBUwTtSRCMXk0pKp3ZVx7drF83oexxKOPEtqs6RDiwAOR4DDIll+lwhtd7RcapJlvvftM1Hs3buZgizpveG04WqVCzTlsomISx2wIG7XrZYRxbt3X58GvJ64m5gwddSzs/wpx9q/n9t/9pkZl6RMj472fDRW09T37KGo7vdvZSdE541kgd5KRrw3LVinOeSKotwlqCi+RQmCAPX6mVBd8Etw3eLA+1tWBLnck6t1wbnc47DtAf9PTVHuMm73YMhWpHluuK9xdRGRRRf1CpCOtTCSGcNiIt63H6znMTKbz1MYP/KIaRvU61wiyCXl+JVXKLrn5vi3iFjACFghFqOYbrdNNFnEeiZjUrCrVeNYLW7R0iu3u543LJDDdIvmsDFWr23LZbZ9uu8+XnelQrEGdBqbpdMUq5cvm0h0q8U5EH0itc3yisfZH7g7DVjE3UcfMZV4165OEyuAvxcK3CaRAJ54Avj1XzcC9F/8CzpFJ5OM9KdSvRc/fJ+fi2u0ZAL0+reyU6LzRrJAb7YR703vgqQ55Iqi3CWoKL6FaLWuoVh8aTUa3Gxe3ND+6fTnViPB+fwziESy2zRSRbmzuN2DITfaY3hDX7pXdjj87mWMnj+Oc3MH4S6ew6FIAYvuPZipjgCIdvSDFQEKMML41FPA7/7uYF/mJyeB//Q/pVD78Y8ZxZR+xlJTK+2N5Ht4o8HzZTIUbxItFjFcLPJnOk3RXSpRyIXFsIhjeU/e7xbG0j9Y+uw2GqaWWD4X8bq4CPzVX3Fs8ThdmqW10twc3ZglvXdpidcqAj+V4nGWl42JmLhxex73e/rp3mnAU1MUhNIzWPo3Sy/io0cplC9e5PGfeop1wOHjiHgVp+p+9eNStz06yvld79/KTorOzWSB3kwj3lvC+E9zyBVFuUtQUXwTcd1llMuvrYrgavWDDe0fj+9f7RU8NPRVxOO7t2mkinJnc7sHQ260x3D3l+5ikc7Sr7/OtNOvfx144QV0fEsfLxZxX3wEZ6IjuFjKYdI+i2NBFfDvxUJlN6YryVVH4nKZonN0lIJro+JBUmAbDdOPNx7nsdNp0zv48GGKusuXzbbJpEmLdhzTPmjXLs6D1OGKKA5HefsJ4W5EYEoqN2Bcput1U5t86RL/3rWL92xujmOVPsv793PbqSlek21zjBLpBjiHvm8WclIpRpR/8ReB3/7t6+f1xReBb30LOH+ewrjd5v0QIzHHoZHW0BCfiX7iTsTrSy9R1MuChOD7PG61yvGIy/V6/1Zuh+4vN8OI95Yx/ruVcsgVRVG2ERXFO4jvt1GpvLUqgpeW3kAQuOvvuEIkUsDQ0FdXo8HJ5BGtC1aULWCngiHbWRe42R7D4S/dlQrF08ICxdOlSzzmqVPAz384j79ZeQmT58wOz1ZaOHOiiRMzE0AyixH3KiaKFxDAQiUzAQ9xLC9TEB45wnTczQob6bU7MdHZa7dep/FTrca5FcMt6R8skVTX5XXV66bOF6BoHhvj9tIbOExYENu2aaUk4hcw/YTzeSPGy2V+JgstzSZrqO+/n/emVjPzvLjIzxcXOR4xqhod5fmKRTo1S4p0Os1tMhmaZP2H/yHw+OOd456aAr77Xbo7X7rE8YnJWbh2ut026ei7dtH0q1fUUcRrtcoa76srXf6iUV5/rcaFgIkJjqlQGPzfyu3Q/WWnjXhvKeO/m51DriiKsgOoKN5GgiBAtfrhal1wufwqPG954P0tK46hoadX64Kz2S/AsvrkrCmKsmm2OxiyE3WBm+0xLF+6Z2bYZifcdzaToeA5cwb47kyApcRh/NY9X8QXJvnfoclCEb957BMUGwm8fXkv5mqHYLstWIEPt9ZCKxZHPs/64d/7vZVo8ybp1Wv3/HngrbcYbZV64HBbI3GOllRfEcfdTtnZLI/bapn2Sb3aBEm0tvuzdpsp2KkUBavnGVdsEeAiFpNJRui757nRYLp0JEKDq127uEhRq/G8iYSpqR4a4j0bHaUw++gj0y4JMAH9H/6Qx7RtE02XVPCwcZcYkZ09C/zJnwAPPtj7eRTxWqmwD7E4Ysdipob44EFTU76Rfyu3S/eXnTDiveWM/26HcL6iKMoNoqJ4i2k0Lq6K4GLxR2i3r21gbwvZ7BdXI8G53JfgOMn1d1MU5YbZrmDITtYFbqbH8NGja/edzeeBS+dd1CsuXi8dBoZHkC++h8mCMf7ryFeJRIBmA47XQjziIpuNYPdummvdCN113++/T+MnibICJqorBlwSAZXfpQY3XOMs5HK8bhGh0pd4LcI1yJ7Hsfi+6RecSPCzWAz4a3+Nn5040Xue63WKXs9jq6qFBWNM1myaumc5Tz5PAfT2253PUD7P5+31103tca1GQSxmY5JgJNcZj3POajWmRycSwH/wH/QWpZOTwO//PvAHf8CWSrkcFxSkhljmf7OBQ+3+cosa/90O4XxFUZQbQEXxDdJuF1EqvbyaEl2vf7ah/ZPJ+1b7BQ8NPYdo9Aa/OSqKsim2IxhyM+oCN9pjOBIxKdO9+s7aNpCOtBALWognLJwujuG1CwcxWShiqljAv37vYZyYmcBwsoZ7hhfhWD5iy0U4MQfZL9yDhdie1VTeG7m+cN33+fMUgwsLpp630TApwSJopWWR1PeGWzfV67yvYXM1ieyKeOwVLQ4j6dnhlkky1w8+SMEorYzy+f79fVstE8WVv4OACwnptDEKS6f5/vIyj5PNMi09/AxJb+BEgts2m1wACILOllHhOZJUcM+jkdaf/Amfj2y2dzbD5CTwO7/D8Zw+bWqlNXC4Ndyyxn+3SzhfURRlE6go3iCeV0e5/FOUSowGVyrvAFgnnBAiGt21KoILhReQSBzYvsEqirIhtjoYcjPrAgftMTxI31nH8uEHwFiyiiuNPE7Nj+Cty3vwP/38i/jZpf3wfAt1N4K5WhqpaBsjgYtDyUXkk23kD27N9YXrvufmWLMbjXIOJQraC9+n6IvHO43UajUeY2zMmERVKtxOXKTXE8XttulPHIsBIyM0y3rqKeAf/AP2IJ6e5nHWmudGw7Rd8n3jXt1omDroaNS8Ly7Up04Be/eaOf3gA56r2WT09sMPO8V2uIVSuN+yCGNZVKhUOMdA/2wGDRxuH7e88Z+G8xVFuQNRUbwOQeChUjkRqgv+CYJg8OVYx8lgaOi51brgdPpBNcdSlFuYrQqG3HJ1gSHCX7qLRQrEWIxCS6KkiYSJVHmBjZgFxNDCaKqGT+dH8P/92VM4eXU3Zmtp7M4sIwgstHwHpUYSi56NxXYWx0oJTBzcmuuTuu8TJ1hDLPelXl9fvIbdp22bfzcaFH6WxeuPRo0gzud578NmWmG62zTZNn9Ppzl/kr7da5579fcVd2qJ3sbj/L3RMAsYuVzn/atWecxqlec9cAD45BMKpMOHjTiWawinTcs1hIWx1F7HYvyZSNAUbK1sBg0cbg/aBUlRFGXnUVHcg0bjIhYW/gzF4osolV6C65YG3teyIsjlnlqNBmezj8O2o+vvqCjKLcWNBkO66wJFxHgeRUehYGowd6wucIXwl+5mk+dtNBgtDQJjDpVMUozVvBiGkj4K3jwW2rtwtjQMz7fhBRZ2Z5Yxnq6tHtv3A5QXfcw0h4GZHBIHeK1bcX3PPss07LDDtG2vn+osKc6JBF+VioneBgGjqrbNqKxcv/wMH6O7ZZMIbc8zwiUWM9cZnudYrH9/Xxm/55l+x+KGLfeieyyyTbHI5ygSYbRwepr3NJ2+fh8RwHIdlmVSxuX98LUBg2UzaOBwa9EuSIqiKDuPiuIezM19D2fP/l8G3j6dfnhVBOfzzyASyWzj6BRFuR2QCF+rZWpJxcTJthkxHBlha6RCYQfrAmG+dL/9Ng2rlpYowERISZRSIpyZTASjwzbSTeDybAIVN4ZdmSoabgRB0Jn5YjcbKCR9IFHAwlIMFy5s3fVlMjyWCDwRr+tFigEjPKX+V/a7do3CNZEwhlS5HEWnpEevJZKBzqir45jrlHn+6CPWFks7pHS6s140kTDX4Dh8rSXO222TOh6+djH2ajZ5fNlPtukes7wnbtRyDZEII8Jhdjqb4W5HuyApiqLsLCqKe1AofG3Nz+PxAygUfmGlLviriMV27dDIFEW5XYjH6Rh86hT/lvY7jkOhXCrRRXhxka16drIucHaWgvfqVUY1xYQpmex0Jq5UTEpsfM8wPp26DxcrQ7AsC7vHy7hYGUbLXwl9iqtVuw1kMsjvSmJ6gcefnaWBUyJBcXj//RsTVeGWVmfOdJpESY/gMCJSwynOAIWEiGIRgPU6a39zOb43NMQ641qNl+K6RkyG057D7Z4iEZOWLVHjeJzjnp3lHFy4YERxu81nYWjIpEJbFveTcUu7I5laodHgdpLuHY48x2I8bqVianzDhI8TXlSQa5O/xVE6zE5nM9ztaBckRVGUnUVFcQ/S6YcQjY6j3Z4FAEQiwygUvrpaF5xM3qN1wYqirIllMQp57RoFxr59naJKzJ1mZkxa6zPPbG9dYFhc/uxnjF7bNgVYu82ocDJpRJmItEoF+Ol7WbRqD6Lq+0jZdcxcdVDxLTQCG8NBHbbb4g6ZDDA2BjudRKRMZ+JymeJ/ZAR4+WUK20H7M3e3tALMPEpLIaCzPVK/VkrhqKjU+4qpVjTKCG4yyej94iJrrKUNUrf4FkEsx2m1TErz6Cjn7N/9O47bdSmAm01TyxyPc/7jcUZlDx7ks7C0xPmSdOhWi8fyfVMjnMlwLKmUcbF2XY53716e48wZU49qWaY1VThaLNcTXkBIp3n9ktofZiezGRQ1M1MURdlJVBT3wLIs7N/P9OlC4WvIZB6BZfUoBFMURenDRx8ZASN1r2Fs2wia6WlG3razLjAsLq9dM+7CIyMUgGLMJMIomaSQknZBy8uAbUdhWT7cCHAFE/D8AC3fwdVmAXuGVlyk8nkgmUSlwmi4iLp0ml/mXff63rr9+jP3aml1+bIRmmHH6W4h3P23RJdt24jKbJaLFZUKxWi1ys8vXjRRV9+nMAZM/W04uppMct4kWrxrF+/ryy+bcf+1v8ZzfPwxzbDKZRNpTiQoZI8dY5r9e++ZNlLhNO9ike9JNoFEbkW8Sm3pY49RRBWLpgWTpE+Lw3WvubJtivqDBzmWXuy4y7GiZmaKoig7hIriPhw48H+92UNQFOU2RZynYzGKrmvX+H4+f3202PdNhK+fGLlRusXlPffwnI5DYbVnD4X53BzH12qZ1GJJH5aoqO/b8Jw4kI0g5rdQX45gLkjCjo9gfDwK2+Z+c3NGZEr08fhxCrdB+zP3amnlOEzvrVQ6xV2/lGkhbCAGmHThWs2kIKdSHNu1a6Y2uFerp7BRlZh25XK8zvvu4zbd4y4UgC9/GZiYYB13qWQiwLUaz+l5Jsosx4tEKGZFDEn98cgIBWx3belzz1F4J5PGPCzc87Y7HVz+jkb5XDz++PW9qmU/dTm+eaiZmaIoyvaiolhRFGWLEefp/fuNEF5YoPCUumLPoxhKJBhd3LWrf9rvjdItLi9c6HRCtm0a+cRijDCKCPN9vie9eHftMuZbyzUH2WwS+REK7KUq0Fq5vnKZL0n13L+fgl/E1iCOxv1aWhUKxo05HAXtJ4bDSFq4uDzbNq/TskwUNRbjOYpFI3hlnuRc3YLStpnm+tWv8vXii/1bcU1O8vgXLvAaL1zgeSIRpsLG4xS4Fy+y5rtQ4GtuzkTeR0f5XF27xoyEcG1payWL/cEH+fP8eR4nXIvcPV+WxUWZ55/vLYgBdTlWFEVR7mxUFCuKomwx4jwdizEymEhQ/MzPGwfqWIxCanTUGDxtR61mL3Ep/XqlzlQYH6d4D4vheLzTPMqyKLBclwK5UGBUMpHg7+HeupkMxfYTT/QWW/0cjWdnge9/H/jgAzOf3b1ao1G+6nUjaNdCoqNSGyw1wLZt6nWl9jeT4TWJIVk0ahyvwynU8l46zRTwb36T4jXciqsXInSrVS4iJBIUpH/jb3AOpqauryPdt4+LDwAXGpJJHr+7tvS117j98DD/vvdeCtrLl01kWhYH4nFet+dx+2KRx1aXY0VRFOVuQ0WxoijKFiM1n/U6/w6LoF69ij/91IjOraa7X7KMJ5Vi5FFaRAEm8tlomLZAUlcci7H2OB6nSBRRnEjwGlIppg6Lq3YyCRw5Ajz5ZP/oY7ej8fKyiWp/8AHnRUS4tK+qVjmGVIrzmM2aVkrhXsK90p4B0/Io3H5IRK/ncQzT0xSTkp68tETxKBFjcaVOpXh+z+MxTp3iXIXTldfqT51OM3XdcXg+WRRYq45U7mm/2tLuZy+dBh54gK9eY7l0iccaGuK1q8uxoiiKcjeiolhRFGWLOXyYwuLcOeMADFCgdLv6bnetZjhqLaTTxmCrXDaiVToqiQkUYGpvpf621TL1xZ5HESxthq5cMc7Je/YAjzxyvSDuFma+z/0/+IDzJVFtOWezyeNK+6pCgceXqPTysmk9FBbEYTdqQWqK43HjuC1RaEn1DgJe08WLjMAmEjS/mpuj0AzXJksKd6NB87DlZYrL8+f5frm8dn/qWIyO0/F471ZV/epI10pf7vfsyX0PP3/y7D32GPDv//s0AlOXY0VRFOVuREWxoijKFjM+zqjpmTMUV2uJie2u1eyOHArSdmh6mqJNaoG7I66WxWNkMjxOo0FhLBFiSSd2HFM/fP48f5+YMOcrFvl+t0is17ltpULBLC7TzSY/u3KFArtSoYCsVEwPX6nNFXEtQlhqoIPARL+7iURMi6NajX8nEkYsNxocq6SDOw7reCVyLe2alpZM9PzSJd7P+Xm+XygYkzIZ28ICa3zFDGt+nqnLG21V1Y/NPnuPP86XuhwriqIodyMqihVFUbaBZ5+lMBGH5QMHbk6t5uHDFF8nT1JIipgEjMOyRG5bLQpCwPSyjUYpmMWgKZnkTxGmIyMUpMePA3/7b/M6v/UtRk4lUjkzwyikiEwxG2s0aBZVKpmaZxFxkYiJZlcqZsz1uqntjcdNbW8iwZcYhCUS3H552US+wy9pk9Vqcf+hIdNiKZk0vX4dh+L/4EF+Lq2b5DjtNo8Rj/M6goBCt9nkS8YtCw2+z2t1XR4vm6XT9EZaVa3HjTx76nKsKIqi3I2oKFYURdkGJieB3/xN/n769OC1mlsZqZuaYo3u2bM8309/ymintAGSFOl0mucLR4nFjCsW66x1lshwvc5XKsV61a99DfjlX+Y24UhloUBBPDPD84yOmhrmYpHCt1aj+C0W+RIhKdHsmRn+LRFlaRe1uNjZNsrzzPhEHEsNsfRgdl1zfSJMRVC7LqPb2SzbJi0vM/JdKPA85TLvj8ydGG2JSHccfibnajYpPMOO4zKucHT9i1/cWKuq9djss6coiqIodysqihVFUbaJ48cZgex2Eu5VqykC9vRps50YUW0mpfbECfYmPn2aEcxkkj+bTVOHm06zFU8mwzRqcVoWpEduvU4BJ5FkEXcSFfV9ClhBIpWvvw68+y6jq9Eozyduz+UyI66ZDMWa1BpfuGBEcaFgejcvLDCVulYzQlgEphxTnKUBE0GORil4xTQM6KxBlpppiUwfO8botaSOAxTikhItUeLuFlBiPNZdz+x53D9s5gUYIzPHMfXe67Wq2siCyUaePUVRFEW521FRrCjKHcOtWA+5lpOwjC0sYItFE9Wr17nPRlNqp6Z4vBMnWKP7/POMWH78MaPGrRbFYK3GOthEguJMWhEFAaOw0pqp1TImU+FWRFK722gAf/VXjGzK+KJRisFLl7hvMmnEsaQNT0xQ+F68yL+rVYq3atUYQoVbWk1PU9i32xxrPG4ix5EIxWirZcYWj3P8vs/zynbSbqrR4HkPHuR5Dh7k3ydOmLlYWuIiQqPRmYYNdIricNRYou3hz+V9wAhxuQfFYqcBVnerqrAr90YWTAZ59hRFURRFUVGsKModwFZHWbeDfrWa3QL26NHe9Z9rpdR2i5433uBcjI2ZbScmKMyuXqUQk/rbdpsRxYkJRmPFWEtMoSS6Gm5x5Dgc49AQ8OUvMz1YxnfpEvDmmzx/s2kipOJeHYlQcI6PA5//PAXw9LRpcdRLJEpLq0aDx0+lGAmdm6Nrdatl5kycpCVKnMtRlFer/Fzqg6WuV/ooy/mmpvh7PM65/uADCm9Jyw6L2zCWxeP1+jzs4C1p6eK6vbzMV7crdybDZ/kv/oJzeSMLJlonrCiKoihro6JYUZTbmq2Osu40IubDAjbMWim1vRYD2m1Gg8tlRojDBAEjoY5DYem6FL7Dw8BDD7GO9soV/h2JmNTfIGDUNBLhvlJ/OznJqKMIynff5TFcl9fzyCMUgO22aeG0tERxu7hIgT4yYnomp9MmDbqbapX7ttvAPfdwjBcucEximpVIcN9Gg/dfegYnErwOEaMi/vfv5zORTneaTx0+bOqcxXhMFgrEmEtSq8Pp2uEosojg8LaAqdOWNPR6nf2YxQVcotytFt+bm+PiwmYXTBRFURRFWR8VxYqi3DA3Kz1zK6KsN5PZWSPmjx5de9vulNrp6c7FgEyGQuraNV5zLEaBeuyYaY0k6b/xOCOoQKeDcnfv4qEh3lOAbZGkbVG1yn1GR40gPnAA+PnPebzPfY7zPD1toqTRKEWf1CNfvMjz7N/P49k2hevwMIV3N8UiBWI8TiH57rs8vohoSZvOZo2g9zyeQ+p3RUBLZDmV4nGvXes0n/rqV4EXXwTeesuYiWWzHLcI8zC9Isfh98MCWURzuE3W7CyPK4ZcrRav1fc5roce2viCiaIoiqIog6OiWFGUTbPRtOWtFs83EmW9FTh3jvM2Otop5nsh8zo/D/zkJ8A771DsJ5MUqvPzpm+u51FonjrFqOmXvkTBJ6m7khINmB6/nne923OtRiGXz1Oshg2ypAZXEOOtSoUCHeA5UymKzqUlY5AViXAM1SrToWMxjlP2zWY7r911uV2pRHEp6caSauw4PHazyeMmkxTh7bYRpokEj/uFL/B5iUZ53H7mUx9+aAR8Lmei683m9b2Pw5FgobvXs22bRYkgMMJaHLL37TP3Rua93TbtqsKu3N10L5hoqrSiKIqibAwVxYqibIqNpC3n81tf83sjUdZbRTSIwBL34fWIxbj9W28xRdpxGFEM9/+ViKQIwnPnGM197jmKqmiUacvhVkUSoQy7Pc/P8yViTkR3IkFBfOxYp0iTGt3wtaTTpnZZzpPLddbXFgocZ6lkTLg++OD6FkISTfY8HiedptiWv5NJbiN10rbN93ftYgS83eZ9/0/+E7aO6l6gyWQotiVlOZfj+9LeKZHg76kU5zq8sCDR8HDddRgRxSKU5b4D/HeQy/G9Uon/fpaXzfEdh+NMpVi/3Yvwgsm5c1v3fKtBl6IoinK3oKJYUZQNs5G05atXKShmZ7e25nezUdatFA03SjzemUa7HpL2OzPD2l+AwjDc/7fVMmm+0SgF1tmzFIdSy1ur8f7E43xvbMxEO8Xt+ec/53biVB2LMZ16dJQR4u6opeeZxY5w+nOvKKq8H25rFI1S2N5/P2uGu1sIXbhgegTn8/wsGjW9lWMx09pJFgT27qWQHB7mosixY8Cjj/J8Yj7VL9uhXufxRNSXy/xbxHzYXTp8Ld11xPK+9ESWFGrZRuqgZ2Z4bY2GmQ+Z03IZ+OQT3pt+i0eyYCLp7jfC7WBcpyiKoihbiYpiRVE2zKBpy5UK8LOf8e8vfGFra343G2XdCtGwVRw+TKFx7pwRHv1wXQqUvXspltptCt50ulOgxmKMKtbrpi1RqcSewZkMRZeISRGP1SrNnmyb97RYZPTyF3+R57xwAXj44c4a4l60WhR5Mp5qleOIxyl4Gw0j1lstisK5OYrtw4d5jffcA3z967y2cBT3W98CTp7kvlLznEzy+I0Gfwd47YuLnIc9e4zwLRT4/IUXRF58Efj2tzn/1SrnVtyqz541btkigqU2WfotNxqd0WHZBjBiWFLWAV5LImFaPAnz8+bvRILXkErxOsU8bWmJNeLixN1r7rNZnmMjdEeDKxXg5ZdvX+M6RVEURdkMKooVRdkQG0lbFnfj8XFGKrtF343U/G4myroZ0bCdjI8z8nbmDBcH1rr2ixcphvbsoTiRqOLo6PXb5vOcF+nhKxFiibpWKsDlyzxGNEoxd/Ys75Wc4/hxCp+TJ4E//3PjCD09bWp5CwUjkqtVHl9aOgF8Rmo1s125bKLPkva8f7+pTxbDq+VltkkS3nyT709O8hhS8ywCdnmZf8fjFHciVGs1ppo3GsBTT7FeGKBI/s53gD/5ExMxz2Z5jiBgbfXEBHsvi4kZQOEtLtyeR0G/uGgcqeNxsyAhLtJCIsHj2DbnvFjkXEkLqViMn6dSvH+OY+5xPM5zlEpcoOgWxbJgcvgwX4PQKxpcr3M+KhXgyBHgySdvL+M6RVEURdksKooVRdkQg6YtS99V+eLf3Xs2zGZqfjcTZd2IaBC2u67y2WcpikVoHDjQW4jMzVGoPvoo8PHHFEypVKfwEpJJI5ZnZzsdmiV9Op9nhFaOUS5TFB0+DPx7/54xnMrnmUr92mvGwRkwNbtDQyaSeOQIzyMCX4ylHMcISnFWTiSu7xEsdcnd0XzJChgeZjQXoICvVCgwZXGkXDa1vfU6zbJyOQrcaJT7SS38D39IgZlKUYy6LlPSFxf5OnaMUetKxSyoRCIU4FKDncnwPJISHY3yPccxkd9YjO/n86bGWvoep1L8vFTiopH8Hb6PYiCWSHTWV4f/LcmCSXckvB/9/ACmpoDz53ne+XneJ3EuB2594zpFURRF2SwqihVF2RCDpi1LlFDSWnv1nhU2U/O7mSjroKIB2Lm6yslJ4Dd/k7+fPs3FgW6TqVQK2L2bglWclcV4qlQyPXrD9ySbNdFMSaOW2ttwbXAsxnvVarFu9cgR4Fd+xcxTqUSBJ1F/yzL39PJlHnNkhLW7v/ZrHL8I/G63a9/nuIOgs0ew0C+aH84KmJzktV64YMy/4nFeQxCY58xxKESlXvqjj4B//s95LefO8VjpNMchCwviri2R6HvuoSv0p5/y7337eD7pJ5xOmwWBQsEI9kaDUW9Jrx4bo1j2ff77OXSI11ku816OjPCedDM0xHMtL/M8uRz/lgWm7gUTiYSvRT8/gGqVn6XTHKvMQTgdXrhVjesURVEUZbOoKFYUZUMMmrYsUUKAoqNX79kwm6n53WiUdRDRAGzMWXsr6iqPH6cAeu01Cg0R4QDn2/Mohn76U/48eZI1psvLJmVZjKqGhoxorVZNpDKXowgaG6O4CwsZEabSDkgWJkRAXblCAyzXNYsdvk+x1G7z/LEY8OCDRhiePk1hWK9TWEsadz/36rWi+d1ZAVJXK9kIpRLvRzRq+iGPj1Ooj4+b5+C11/j7+LhZQAhH2m3bjGlhgWL1oYd4jnqdP/fuNW7alQrn8uGH+Szs3WuyCubnmWo+M3P9osrRoxSTf/7nbDUl6dndSLutdJr7Viqc70uXeO/DvZV/67cGW6Tp5wcg9zWd5nUXi5yDXunat6pxnaIoiqJsFhXFiqJsiEHTlsWcqF5npLNfj1VhMzW/g0RZNyoaNuKsDWxdXeXkJF+Srv3BB+xHLGZV2az5bGGB45C61USCgrNe52tkhJ8tLfFnu21EXLPJ9OCREUYsu026ZGFidhb4X/9XCvFkkhHkdNoI0XBd8bVrXHh47TXgG9/oFPg/+xnH1G6zVrmfe/Va0fx+WQHpNF9zc7zfcszuNPdIhOnJQWDqpiWtuxf5PAXt/Dxw771cEJid5bhTqesFrqSay1jD9Eu/n5piZP7MGc5lPt8p0CVqHQTcZ2iIYwoCCv9evZXXYy0/gHCqe/ccdKdrA7emcZ2iKIqibBYVxYqibIhB05YlihgEnYZMvbiRmt9+UdbNioawENxqc7BBGB9nFPDcOYrNsTHg85835litFqOT164xQhpumeS6FLxLS7x+gO9JLbDjGMOmcO2s1I2KYdRf/RUXBl59lefZvZvnFyG9b1/nmLvTacMC/7HHgD/+Yz4ve/bw2dlMNL9fVkC1SqFbr/P66nVj3BWmWOT2lmVSuPv1FZZ6aUlVjsWABx4AfuM3WNe8kfpyaf3UzeQk8Lf/NufszBlGf9NpXoNkBoSj6mNjPO/hwxyHpNNvJEq7lh9Ad6p79xx0//u9FY3rFEVRFGWzqChWFGXDDJK2fO0aBcjIiDE56sdman7DdEdZN2qKJfXDJ0/2F4I7WVfZK8X1/HmKP2nBlErRMVocph3HROd93zg8i9vxnj1G2HTXziYSFDhTUyY1fmaG4joe5+JGtwlVtwFTr3Ta8XEKuEOHTDr6ZqP5/bIClpY4Nqlf75WaDZha42TSRNglDbyXWZnjmHmUBZtHH93a+/y1rwHvvAN897umL7Lv9+4JPTXFRZrnn2ft9mZYyw9AnilJdZeSBzFpC3Mji1iKoiiKciuiolhRlA0zaNry00/z78uX+aV+q2p++9ErKreeUA7XD58/f+NC8EbpleIq0dBwC6ZkkvM5NWVEXSxGIVMsctvhYb5cl/dBRHF37eyFCxTTlQqv68gRirL33zeR/l5Cul/qdTdbFc3vdZxymWMeG+O4e6VmA539gsU5ut02PY+78TxekzzLm12wWY+/+Tf5zL3+Op+7sTGeV7IrXJf3eHqa15ZIsEXVZlzQ1/IDkFrixUUzJzIH3WnmN7qIpSiKoii3GiqKFUXZFIMKnVLpxqOEm2EQ92igs374gQduTAhuRfumXimuYoLU3YIpl+PxxYm62eS8ttv83LZ5Xa0WjwF01q7m80zblbpWgDW0k5MUYd3ptN1COjwX66XT3mg0v99x3n0X+Iu/oKh/5JH++0kk9PJl04vZssy9Dc+LuGQDXFz4whdufMFmresJLzBducJ732rxdekSf0aj/Lf0gx9s3gV9PT+AQ4coimdmzBwMDZn7vNWLWIqiKIpyq6CiWFGUTTOo0Nmqmt9BGcQ9+r33WLt75oypHy4WNycE5+eBf/WvtqZ9U68U124TpDBBYLaXuuFmk+83GhSBsRivsd2m2JU+u80mRX+txshpPs+IONA7nRbobcC0kXTafjW2G0WOc/gw78vbb69t/JZO8zkMAs5DOKK8sNA5LzIno6PAU09t/YJNN/0WmOQ+AhTw4kS+WRf09fwACgVz/y9eNAZp165t/yKWoiiKotxMbrootizrXgC/AeAXAdwLYBeAIoA3APy3QRC8fBOHpyjKAKwndLYqSjgI67lHz80xuvjWWxSNQcBWOpUKhWGvWtO1hGAySTFz+fLWtG/qleLabYIkSLujRoPnHBlhKm4QGCOpcplCSmqRh4dNeyERXdKKKRaj67XUUEs67cICxyVzEot1GjC99x5/v3gR+P73gSefZHumnWAj/apljiyLQu/AAQo86XlcrXL+PI+p2L/+6zsn/rr/jZw7B/zlX/L+HTnSv/Rgoy7o6/kBSNuuUon/Lvbv5/O3nYtYiqIoinKzuemiGMD/C8DfAvAxgD8HsAjgKIBfBfCrlmX9wyAI/uAmjk9RlC1iq6KEa9GvDyvAtNCPP+YX/uVlikmJoF65wvRo6Q8crjXt5cR78SJTWufngatXt659U68U10KBP69eNYZaiQQF1NKScZW+fJnCrtWi8AsCCsFmk9tZFrd1XWOklEoZc65SCfjsM1NDXShw27k50wvZto078qefAq+8wjlwHP585x3u98ADwO/8DvDcc72vcysXSAbtV12vA1/6Es83N2fS+XM5btdsUgQeOgT89m8DL7yw/rm3eqFH/o18/DHv5b59vZ+ZzbqgD+oH8Ku/Cnz1q1wo2s5FLEVRFEW5FbgVRPFfAvhvgiB4N/ymZVnPAvgrAP/MsqzvBEEwc1NGpyjKbcNafViLRQqNmRmK2j17KGZsm6JoeJhCuFo1AhEwtaZhN+KpKYoqaZ/TS4ADmxMu3ZHPQoEGYFJXfPEiBbHncYziMO26FPnSBsuyzGf5PK+t2WSNqmUxXXzfPi4GZLPGZTga5RwtL3P80tLJ83jt4bTrmRke37KY/us4HOPsLM9z6hTw9/8+8B/9R+b6Bqn13mgUcqP9qvP561OVpaZ80EjodlyH0P0c9+oNLaZpm3FB38o2ZoqiKIpyJ3DTRXEQBP+/Pu+/alnWKwB+AcCXAHxvB4elKMptyFp9WLtbGi0tUQC22xSTuZyJDIsLc7gGd3mZAvCTTxhJPHqUx7h4kcJkLfoJl35RRol8vvwyxyKCNxLhtsvLjHqK6M1kKGpdl6IpFuNnjQYFq6Q8N5tGWMl1JhJcIKhUjMmTiGfbpuP2yAg/r9WMAZTr8ljJJMWTuGID/OzKFV7vf//f8xjPPTdYrfdGUs3DbFTo3Ug6/3ZeB2Ce40SC6ewLC50p/alUZ6uwzbig72RJg6IoiqLc6tx0UbwOKx6qcG/qKBRFuS3o14e1V0ujRIKiWMSlkM9TAOZyjB5WKhShrRb/fuopCrBcjq7HvQR4N93tm5aX148yPvEEU5MldblQ4JhLJYpx3+f7AI/neYzoJpMUN60Wr03EtESTZZ/FRS4Q7NvHc54/b9rx+D73Taf5isX4s1plCjfA4ySTpr66+3oPHOCCwYULwLe+xb/XqvXebI1smI0Kvc2k869Xs74V19Fssub5wgWzuCEmYK0Wn4Fwq7C12mGtx06UNCiKoijKrc4tK4otyzoI4AUANQCv3eThKIpyG9CvD2uvlkaxGEWxmEx11w/7Po2GCgXgo48YhXz6aeAf/AOKiNde6y3A+yHC5YMPKNjWizJGoxRU99xDASpGWCJu5Ro9jy9xJ85mua8ItVrNtGxyXX4m4njPHlM7DFBkTU9z+yDgPo0Gjy+CuVrl/uKGXa3ymMPD18/Fnj1MWf/oI+Df/Jv+td6SHiwR7PffH7xGNky3GL7//q0XfGvVrAObr/UNMz9PYT0/z/GPjna24upuFZbPMxrfrx2WoiiKoihrc0uKYsuy4gC+DSAO4B8FQVAccL93+nx0/1aNTVGUW5d+fVh7tTSSVNRsltsWi73rh69do0D88peB3/1dI7L6CfB+iHP0T37CY64VZXz9dZP6/PzzFHlSUypO0LWaSWlutzluiX7L+Gzb1ANLqrUsBiQSdDWemOD20o6nUuG5fJ9jmJvjNcp1SqTZtk398tISRfPu3Z3XHIkwtXtuDvjZzzgH4VrvYtGktUt6sGWZ8x87Bjz++Ppzu1X1vetFmNeqWe9mM7W+wqVLnHugs3+yEG4VNj/P+fvc59Zvh6UoiqIoSm+2RBRblnUewMEN7PLtIAi+3udYDoD/HcCXAfwfAP4/NzxARVHuCvq15+nV0qhcpiAeHzdis1/9cK++rP0EeC+kfVM8zqjoelHGcH1oJMKXGCsBvLZ0mu/7vhG+3WnM0ShTnBsNimA5TizG6xwa6tx+YoJCeXHRmHVJZFhqsRsNirwg4PU0m5xXWVRIJq+/pkaDnx88aOZJnMAlrV3SgyUK/vHHwL/8l7yGtepyX3wR+Pa3OV/VKqP7udz1kfe1nJQHFdVr1az3upebqfWdnWWKetggLdwbO0w+T7dwiRRrGrSiKIqibI6tihSfBdDYwPZXer25Ioi/BeBvAvgjAF8PgiAY9KBBEDza57jvADi+gfEpinKb0qs9T6FA0VUqUfBUKhRQExPA5z/P7aRXba/64V5OvBvpj3vxIs/veRRrcs5+iNlVtWr6IgthgZ/PmyhuEHQ6TwP8vdHgNQ8PmwhzEPAcvcTW0BBNnOp1CmmAP8fGKKZnZkwLJ2nxZFnGkbpbFEv7J4lSA9c7gXenB0u6+McfA9/9bu+63Kkp4DvfAf7kTzi/kjo+P8/rO3SIAv/jj4F/9+9oWrZ/P+9DWPCOjABvvjmYaVazyWenXObz0u0E3c1man1FeE9OXp8i3SuFWu7Pvn2Dn0NRFEVRlE62RBQHQTBAN8e1sSwrAuDfgIL43wD4nSAIvLX3UhRF6aRfex7fp2g8e5ZCZmKis562UKAA7VU/3I9B++POzTG1uFajcFsvyhiLUehUKky/HRkxAiws8IeHeW1SN+x5FErxuHHVbrdNLXK9zs8jEQrGXmKuUDDiOh7nvE1MGEGWyxlnbmnjFItxe3GnFvHrulxk2LuXx5BIfbcTeDdBQBE4MtK7Llfcn3/4Q4rTVIpRYHG9FhOq8XHO/dISU9Y9j2nPInhPnuRnAGu31zLNKpUo1j/5hPdF2lF1O0GHabV4vzdS6ytmccPDnDegM4tB2oDVanxGRkf53IXdvxVFURRF2Ri3RE2xZVkxMDL8awD+NYDfDYLAv7mjUhTldqVXe549eygklpYoXh5+mNFPwXX71w/3YyP9cQ8fBn76006n635I5LVUoghLpzsFWCLBV7lM8ZhIcJtWq7NdU7hlUyrFSGirxfcvXmQ6czjCKHNgWUZkZjKdEUpxpG42jbO1iG4R4iKKr1zheR9+mMLt7bc55m4n8DC+z/s0NESR+sEHnXW54v78+uvGIXv/fjNGiaBevEjxLX2obZup2Lt2Gcfsl17i8cbGeJ+6FysknX1xkdvKnMt5Xfd6J2ip0ZaU+cOHN1brG65Vn5zkOSWLQequYzHOz+goz7Nrl5psKYqiKMqNcNNF8Yqp1v8J4FcA/CGAv6eCWFGUG6VXe55z54B33wUuX6bQWljoLWC764fXYtD+uHNzTNNdz5hrZgb49FNu5/sUualUZyuedJoiqFLhK52m03IuR+F5+TK3dxyOI59nJDmXo6iuVinuXnwReOghRiXDc/D00xRiJ0929scVxsa4uNBoGLEptc3SL/nKFW5z9Cjwd/+uSUX+9NPrncDDlMsmAprPX1+XK7W/8bgR3+HjiAmVuGVLxFki2cWiEfW2zQWAdpvX2ytqXSzyNTtLwXvvvZxfOU/YCVruUSrFuuBkkte/kVrf7lp1yQ4Qh27pM10ocA5kIUZNthRFURRl89x0UQzgfwIF8TyAywD+sSUFcYZXgiB4ZYfHpSjKHUC4D+szz1DwrSdgw4J4kJ63g/THzWTWN+aSWtsrVyh8RkaMm/TwMF/lshF2jkPRLEIUMNsnkxRn+Ty3TaV4/oMrlog//zkXBSoVitzuOfjxjyn++qXu5vPmb0ktdhyKw3ab2x89Cvz9vw889xwjxWfOUIiXy/w8jIhLqfWWcYbrcsPuz3v28FxhR3FB0rTbbfO3OIpLpF7adIl52Pz89fXbAKPNxSLnJxbjPWg0Omt9EwmK8DNn+L60+tq/n2Oemhp8kaVfrbpE6MNMTXH8GxXeiqIoiqJ0ciuIYlnfHgXwj9fY7pXtH4qiKHc6gwhYYHNtfsICvJvxcdYV+z6jufv3X2/SJLW2QUCh2ssZWxyaZ2aYNvvYY9zWcShwbZvC7b77TP1xL0Oo55/n4sChQ8Cv/zrH1i3i33iDczA0RCHYnbrrOJzDa9coHCMRisexMeDBB4Gvf52CWOb9N3+TQvvVV42DdXeNbHetd7guN+z+LCnbYUdxQczFRFBLr+VYzIhoadMVjfI44SiyUK2aVO9sltunUhwfwM/OnuUYWi1G9xsNjj2X4zkkZfy3fmttF+0wG6lVFyM4RVEURVE2z00XxUEQPHezx6Aoyt3HWgJWjJwGcSQeROiIwP70U0YU5+ZMLevYGIVpLMb3i0VTOywu1adPM3osqdeZDH8eOAD8V/8V95fU8Hqdfz/yyNpjikQYbY3FKIifeOL6+Xn8cYpQyzIir1tgf+5zwDvvcHz338/WR08+SVHczfHjwO/9Hq/zo4+M0AsL7YMHjSDursv99FMjdsOGY93p3ZLKLX2aXdfUKcuxwy7e3VFkQaLJqZQ5nuNQuCcSjOpXKlxYcRxul0hwAeALX6CQFqMuoLeLdi82Uqu+kVR/RVEURVF6c9NFsaIoyq2EGDmdOEHBupYjMbC+0OkW2Lt2mZTjTz8FLl3iOVMpRoNFrEo08vx5Cq9wczoRptks3xeB32yybnkQMy9g/ZZB4YhlItE/Yum6wC/9EvDNb64v0B5/nEJOIt67dvVvbXTxYmd68LlzxoQqnebCgdQOh+uBpVZY2kZJe6nRUXOOsKgW47LuVGyJJksbL2lVVa2a/UUIp9N8Px6nk7WMR+ajl4v2Wgxaq66CWFEURVFuHBXFiqIoISRlemyst+AQR2JgfaHTT2AXizR2mp1l1HRxkWJL6o6PH2ca7okTJn03lWKdsOdRoHkeI5UffGCivGHn4kFYr2XQdkUsw2Lb89h6aJD04G4TqkOHOHfdvXwTCR6v2TTCf/duU6cMGFG9sMD7ERaygqRUh2umP/mE9y6T4fW323Twtm0Txe4W1wcOcO7CLtqDMGiqv6IoiqIoN4aKYkVRlBXCRk5Hj6697SBCp5/A7nYUvnSJ4iwaZa0xQME7M0PxNjp6fXrwxYvc9yc/Ycry5OT1onGtfsiDtgzajojlZsV2LxOqcH1vuO66Xjdu2Pv2ddYpC4cOceEiCExfZmFmhvNYKhljsbALeBCYiLVtd7aS6j6P1KKHXbQ3wlqp/oqiKIqi3DgqihVFUVYIGzmtJSiB9YXOIAJbHIV376bobLdZm7u8TJGXTvduEwSY/sMLCyZa3c+5uBfdqclrsR0Ry82K7V4mVMePm16+1SpbQUWjXIyQRYVwT2qA5xJX6VyOolfEeavF1PZr13ifczmal+3ezX19n4Zh1Sp/F4Ot7hTtMOulqiuKoiiKcvNQUawoirJCs2lSYAdhLaEjAjuTYc/aXiZVgtQRz8xQZJ0/T5E1Otr7vNLL9/BhCrJwtHpQ5+LpaX6WSLAOeRCBu9URy82I7X5R5lyO7zWbjLYfOsS08unptaPRzz9PY7CFBSPOP/mE8zoxwVepZPoVS4p2Ps+/Gw0uZMTjna2kulkvVV1RFEVRlJuHimJFUZQVtrIm99w5iqtSiSJUHJLFWfrQoc4ocCzGaGa1agyluunu5Ts5yWhmOFq9XmrypUv8GY0yovqDH1zfaiqT2dka1o2K7X5R5rEx4IEHOqPMU1ODR6NnZ+mk/a1v8dq/8hWK35kZprOHU7SDwJh4RaOsi+6Vog0MnqquKIqiKMrNQUWxoijKCltVk3viBMXm5cusM5U+wlKPurjI17FjFLcAPysUKEwvX6b4DdfI9uvlWyxeH63uJxqbTeNibVkUyp5nWk299x6NwcbGeO2D9Ga+WQwaZd5INHp8nGnSqRSNt/J5vi8tmCRFu1bjAkUmw/sWiTBCLPeym42kqiuKoiiKsvOoKFYURVlhK2pyxXH6wgWTJj08bIyyJNorjsmJBCOXIrCffho4e5Yp1NGoEWD9evn2i1Z3i8Fz5yjUy2XgyJHr06qnp5lGPTdHl+sHH+S4N9ubeacYNMo86Hb9Uui7zdE8j79/8AEj7qXS9Qsp/Vy0FUVRFEW5tVBRrCiKEmLQmtx+Qkccp/fto1j97LPOPrq2bX5fWKB4zuWMwH70UUZ4FxaAz33OtF/qVY88SFquiMGPP6aB175914v9YpER5XqdUVJJI5ftNtqb+XZmvRR6MUcTSiUuPLju1rWsUhRFURRlZ1FRrCiKEuJGevN2O05XKr376Mrvly5RgI+PA089RYEdjlYvLPQXUtUq8OGH66d59xpXN+fP81yxGF8SXd6zh+PZSG/m252NptD7Pu/dAw/wPm9FyypFURRFUXYWFcWKoihdbLZdUHdLp0Khfx9dqREGGI0OC+y1otXFIlO0z50zEejPPgP+xb/oX/e7VqupapU1zHNzTOV2XUZJp6eBn/6UhmBiCjZIb+bbnc2k0D/xBPCNb2xtyypFURRFUXYOFcWKotyx3IhI2Uy7oF71qP1MmsRtemgI+KVf6qzT7RetrlSMwAX43oED/P3tt/vX/a7VauqzzyiAZZtolCZcnsdrb7c7TcHW6s18p7DZFPqtblmlKIqiKMrOoKJYUZQ7jqkpU9srUd7NuihvROj0q0ftZdLkOBzb2FjveuDuaPXUFNOtl5Y4nsOHeQ1Sn7xW3W+/cUnUuVrl57kcBXGtxvHt2kW36rAp2Fq9me8UbiSFXlEURVGU2w8VxYqi3FGcOEH3Z6mhFTHTy0V5796tTXddrx41bNLkuqzlfeCB/iZZ4Wj1f/ffsSfxvn10hg6bPQFr1/32G9f584w+R6N8z7IogtttCuBUykSXxRRM3LJ79Wa+k9hsCr2iKIqiKLcfKooVRbljkHZIJ04wAnv0aO+015/8hD159+/ne1vVj3crWjr1Q8Z4/Pja5k+96n57jatapdD1fQrs5WUK4kaDxw8L4nyeKdazs/zsy1/uL+TvJDaTQq8oiqIoyu2HimJFUe4YJGV6bKy3II1E2IN3cZG9gKemgIcf7h9J3kw/XqlHff11Y24Vi5l2SpvpXbuWUVava+xV99tdJ+s4TJPOZhkZrteZmm1ZfC+fN8e0bYrkuTkuJAwq5O8UtFZYURRFUe5sVBQrinJHsF7bIYCfffwxxaDnMT12//7OlOat6McbjTLiKtFFSUVOpfjZnj0bq0ddyyirF73qfrvrZKemOB+WRSEtEfN0GhgZ4eKB4Pucs2aTKeeDCPnbNbp6u45bURRFUZTNo6JYUZQ7gkGiqdKPN5Oh6Gs0KAxFFN9oP95wPbNlUUxVqxSUCwv8fWICeOgh4Ld/e/Bjh42yus26JAIdptXqXfcbrpN9+WXgzTcp/jIZCnZxxi6VeIxw66h2mxH4X/iFtce9lSZnO8ntOm5FURRFUW4cFcWKotwRrBdNlRraRoNCp1ymAPS867fdTD/e7nrm55+nqBIR22ox/bjZ5O8b4fBhHuv99xnJbjQ4dklrHhkxvYRdl6Lu8OHedb9SJ/vYY8A//afAhx8yhXx0lOPq1Toql6NQfuopto/qx0ZMzjaTmr5d3K7jVhRFURRla1BRrCjKHUG/tkNCsUihl0pRTHoehY/jXL9tv7rctehXzxx2nJ6cpHjeaBR6etq0YyoWKYIdhyK2VGKNtPQSrtcHM/B68EHguedMKrmMs1frqKUlpk0/8UT/Yw5qcnajqelbzVaNW9OuFUVRFOX2RUWxoih3BOu1Q/I8Rj4dx9TIDg2ZPr/dbKQf7yD1zMJaUehewmp5maKtUuFYpYdwPk9x7/uMel+5QoE8PAx85SuD1f12m28dOMB5E4EsgrBSWd8UbBCTsxtJTd8ubnTcmnatKIqiKLc/KooVRbkjWK8dkuNQRLZaFJGJBIVLdz2u0K8utxc36g69lrC6dg2YmQEOHgTuv59GYQsLjB6nUp11v80m06gHNfDKZDhnFy8Cly+z5nrPHi4ItFocS6GwvinYVi0K7DSbGfe77wK7dvG5OXeOf1++rGnXiqIoinI7o6JYUZQt4VZIH+0X+QQo7hIJCsxUiuLv4MHex1mvLrebG3GHXqueVYSjuD5PTPAaetX9Hj7MSPG+fdx2LbpFeL3O8bTbnJ+xMc7X4cMUi888s7bI3oqWUTeDjYy7UmEa+auvcvEgGuWztrQE7N5N0Ts2Zra/VdPFFUVRFEW5HhXFiqLcELdS+mh326E33jAiU+pvHYei+Nix/qnTFy8OVpcrrFfP3I1EoefngR/8oH89azJJkdpoUCBLzW+vut9CgXXHrru22OwlwlMpCu4rV3isZBJ4+mmaag1y/VvRMupmMOi4Z2YYob92jfdueJj3ZGGB+5dKNEE7dozzCNy66eKKoiiKolyPimJFUTbNrejaG247dOqUEerZLAX69DSjexId7WWqNDd3fQ3tWpHw9eqZw4Sj0JcurV3PClAIex4F2IULRsiHDbyE9cTmeqZSR46Y6z91irXJ27koMEhq+nYyyLilt/XMDNts7d5N4XvhAqPFBw8yijwzw+0Tic7FllspXVxRFEVRlN6oKFYUZVPcam7D3aL1V36Fr24hOz1thHx3JLlXDe2gkfC16pnDSBR6YoJCaq16VqmDTiQYmZyfZ4R4s3XQ22WGtdlFgUFS07eTQcYtva2TSTP3lmWczCMRI4K7Fy6AWytdXFEURVGU3qgoVhRlU9wqbsMbTd8eH+8fSe6uod1IJHytembg+ij0vn3ABx+sXc9aKFB4lUoUxrUax9FLFK8nNrfTDGs9k7MwG01N307WG3e4t3U6bczZolHjZC7k81xw6bVwcaukiyuKoiiK0hsVxYqibJhbxW14s+nbk5N8rZUSvdFI+De/aeqZ338f+OQTE7WNx9laKRyFrlTWr2dNp9mTeHGRwiwWYyp1L9YTm9tthrXRRYFBWkbtBGuNu1jkffN9PlMTE0yXrlaNk7lg21zA6LVwcaukiyuKoiiK0hsVxYqibJhbwW14K9K3x8f7j2czkfBnnuF5fJ9OztPT/DwaZXT63nuBRx+lO/S5c4PV4R46RFF85kxnZLL7OtcTm9tthrWeydmg7Z12mrXGPT3NhZNolIJYzNliMRPB930KYsD0wA4vXNxK6eKKoiiKovRGRbGiKBvmVnAb3s707c1Ewl99FTh5kj1rpV9wqUTH4sVFRoYrFeDqVeDtt2nYFIl0pnwDvV2ljx6lKZfjAGfPUkhvVGzuhBnWWiZng7Z3uhmsNe6xMaZNHz/eaXImEfxy2bzvebwv4cWLWyldXFEURVGU3qgoVhRlw9xst+HtTt/eaCQ8kQDefZdmTPfeyzHNzbEe1bL4eRAYsTU7yz7J9To/F+Ekpk7Sf1hScn2fIvvIEYq0zYjNnTLDGiQ1/Vak17irVeAv/oLu09ls5/YSwRfX6WyW921oiPfyVk0XVxRFURTlelQUK4qyYW622/B2p29LJNz3mUIbjtr2MrlaXGRUeNcuCqtwG590mue3bb7fbrPPbTJJAea6wIcf8v12mwsIqRTP12jwGEEA3HMP8Gu/BjzxxObE5k6bYa2Vmn4r0z3uq1d5D7rnrFBgOjXAhYyzZ/mstVpcICkWKZA/97lbK11cURRFUZTrUVGsKMqGudluw9udvj0/z5rl2VmK13DUdmSEUUJJmZV053ab0V/ARHzT6c72POJQXCwC99/P986cManVlsXtHYdCvNGgsBLh/8YbwIMPUhhvhtvVDOtmstacTUzw95Mnzf0rl9kHO/zMnTy5/S3JFEVRFEXZPCqKFUXZFDdTYG1n+vaJE6wtvXaNonj3bhottVqMBi8u8nXsGEXR/DxFUC7HiHC4jc/oaOexux2KDxwAfv5zCuADByikJHU6FqMgHh2l43GxeOOtrW5XM6ybySBzlkzyObEs3svhYd47xwE++4zb9HJBVxRFURTl1kBFsaIom+JmCqztSt8WR+tTpyhsLIuCWKK9vs9IoNSRJhLAlSvcZniYkeHpaQrbVMq4ErdaFMm+b6LVnsffg4A/H3yQ19RtsiXp2tns1rS2ul3NsG4ma81ZocB73v7/t3fvMXJe5R3Hf493s+tr1lvv2nEgxrsBO5dKiR2S0GCyuSgoobQFYtQ/ylVAhQAFUKNSUkGAChVEbwlqSwslabm0TRWSqOVSWiAxaepUyhIlJYmX9TWujb3rWxx7s+u1T/94ZjTryczszO7MnDPzfj/SaLwz72xO3rxy5vc+5zznlN+8KHdzqFIXdAAAEBehGMCcxQpYjZq+PbOj9bp1HmTyAbinx0NuPiCPjXmV98yZQnMlyQPtmTMeaicmvLo8MeGhKR+Au7p8DeqJE2dPA1+ypPSaZam+W1u1ajOsmMqds61bCzeA6t0FHQAANAehGMC8xApYtU7fvuQS6fHHy4+vuKN1Z+fZjZT27i00wDp1yo+XPPTn/1nT0/7+ggVeUT5yxAPx9LRXkyWvGofgDZyOHvVgvGRJ6T2Ii9V7a6tWbYYV08xzdvCg9OCDjeuCDgAAmoNQDKAumh2wqp2+PTjogfSBB87eE7ivz6vBQ0N+TKmO1qtX+xTp3bv9vfx634ULvdP0ypXSzTd7AP7e9zwYr1rloTi/HVNXl683NvOAvHixT7VeuNB/5/HjviZ1ZkOucua6tRUV4cZodBd0AADQHIRiIHEEmvJmm77d3e3n7+c/92pePjRPTPg5HR0tNEAq19G6t9cf+S7T+fW+x45JS5f677z88rOr1qdOFaZQL1rkleH8FOply3zMixZ5pVjy92YLunPZ2mrHjsKU8Eo3BDA3je6CDgAAmoNQDCQqhUDTCoG83PRtM+mhh/y1/v7ClOi84gZIV1xRuaN18XrfF1/047u7z65aP/20V4nza4vzwfecczwQ9/X5Z44cKXx+0SIP9ZdeWv7fs9atrYaHvWlYfkp4pRsCdESem0Z2QQcAAM1DKAYSFDvQpBDIa1U8ffueewpNs6ppgLRq1fw6Wuer1vfc49OtJa8M56uCXV0eficn/b/pwoW+r/H55/sU6r17/f16bG2V76I9PFzdDQE6Is9No7qgAwCA5iIUA4mJHWhiB/J6KG6aVUm+AdL+/b7XbG/v3DtaDw5KN93ke9MeO+aV5YMHfTum6WmvHC9Y8PL9h48e9f+OExP12dpqZhdtOiI3TqO6oAMAgOYiFAOJiRloYgfyeplrA6QrryxsxSTNrWrb3e1TZCXpoov8uXg98sz9hw8c8Cr1LbdIL7ww/62t5nJDgI7Ic1drF/RqKv0AAKC5CMVAQmIHmnapMM61AVJfX3UdrStVbUtNqS23//DMKbWbNvl/w/mu46YjcnNV2wW9lko/AABoLkIxkJCYgSZ2IK+n+TRAmq2j9WxV2/lOqZ3v1lZ0RG6++V4zAAAgLkIxkJCYgaadKozzbYBUrqN1tVXbmFNq6Ygcx3yvGQAAEA+hGEhIzEDTThXGejVAmmvVttYptUuXSo8/Xp8gRUfkuOZb6QcAAM1HKAYSEjPQtFuFMXYDpGqm1K5dKz35pHTfffXb+oqOyAAAALUhFAMJiRloWrnCWGrKagoNkCpNqd27t3FbX8W+IQAAANBKCMVAYmIFmlasMO7YUeiYXa7S+r73xW+AVDylttFbX6VwQwAAAKBVEIqBxMQMNK1UYRwerr7S+p73pNUAqRlbX9ERGQAAoDqEYiBBsQJNq1QY51ppTWHdbDO3vqIjMgAAwOwIxUCiYgWaFCuMxedg69bGV1obJcbWV3REBgAAKI9QDCQuRqBJpcJYas3wqVPS9u3SsWPS9ddX/vx8K62N0E5bXwEAALQDQjGAsmJWGMutGT5wwKdGL1ggPfWUdMkl0urVpX9HvSqt9dRuW18BAAC0OkIxgORUWjPc0eFV3+PHpf37/bWFC32tcymNrLTOpZLeyltfAQAAtCNCMYDkVOrO3NHhj8WL/fnQIWn37vKhuBGV1mq2giq3hrkVt75KQeyp/AAAoH0RigEkZbbuzL29HoiPHpXOP1/at8+D6YkT0pIlZx/biEprLVtBbdhQ+ne00tZXsc3nBgQAAEA1CMUAkjJbd+YlS6QVK6TDh30K9eLF0smTHlCLQ3G9K61z3QqqWKtsfRVbPW5AAAAAzIZQDCAp1XRnXrvWQ/H+/dKZM9506/TpwvuNqrRWmtYt1bYVVIpbX6WkXjcgAAAAZkMoBpCUaroz9/Z612lJ2rXL1xU//7wH40ZVWmeb1j1TtVtBpbL1VYrqeQMCAACgEkIxgKRU25159Wp/79AhrxKed5433mpUpXW2ad0z1boVVMytr1LUiBsQAAAA5RCKASSllu7Mx49Ll14qveEN0tVXN7bSWs207pkauRVUu2vkDQgAAIBihGIAyam1O/Ob39z4qbPVTOueqRFbQWUFNyAAAEAzEYoBJCfF7szVTuuWGrMVVJZwAwIAADRT9FBsZhdI+qSkKyS9SlKvpEOStkv6uqRvhhBOxRshgBhS685cy7Tuem8FlTXcgAAAAM0UPRRLulDS70h6XNKDkg5LWiHpFnkofpeZ3RRCmI42QgBRpNadudZp3fXaCipruAEBAACaKYVQ/Jik3hDCmZkvmtk5kn4o6TpJb5N0X/OHBiAFqXRnTnFad7viBgQAAGiW6KE4hDBV5vVTZvagPBS/ppljAoByUpvW3a64AQEAAJoleigux8w6JL0p9+NTMccCADOlNq27XXEDAgAANEMyodjM+iR9RJJJ6pd0k6RXS/q2pH+r8nc8Ueati+oxRqAaBKWCdj8XqUzrbmfcgAAAAI2WTCiW1Cfpzhk/B0l/IumOEEKIMySgejt2SI884lM98xWtzk6f8rluna+RzEpFi3OBeuMGBAAAaJS6hGIz2yXfTqla3wohvGPmCyGE5/xXWYekV0h6q6TPSdpkZr8eQjg82y8NIVxRZnxPSNpYw/iAmgwPS/ff7yHwyJHC2seJCa9ujY76Y/NmacOG2KNtLM4FAAAAWkm9KsXbJb1Uw/H7yr0RQjgtaY+ku8zsgKR/lIfjj8xrhECD7NjhIXB4WOrv93WOpbrk5rvo9vS0b5WUcwEAAIBWU5dQHEK4sR6/p4Tv556va9DvB+YtP024v790wOvsLLw+MuJNg9o1CHIuAAAA0GoWxB7ALF6Re56OOgqgjIMHC9OE16ypfOyaNX7ctm3+uXaTPxcHDkgdHdLu3dLevdKJEy8/tt3PBQAAAFpH9EZbZna1pKdDCCeLXl8q6a7cj99t+sCAKuzc6Y2k+vrOniZcSr7R1Pi4f67dmgY9+qj02GPS2Jj04ovSmTPSggXS4sXSihXS2rW+r6zU/ucCAAAArSN6KJb0SUnXmdkj8rXEJyVdIOkWScslPSbpj6ONDqhgctLXyXZ1VXd8V5cfPznZ2HE12/Cw9MADXh2enPRKcUeHNDUlHT0qHT7sj0sukVav9s+067kAAABAa0khFH9V0glJV8rXDi+WdETSE5Luk/T1EALTp5Gk7m6vek5MVHf81JS0bJl/rl3km2uNjkrnnOOV4b6+wvtnzkjHjkn79/vPCxd6xbgdzwUAAABaT/RQHEL4rpgejRY1MOABcOfOwl685UxP+3ThgQF/tIt8c61XvtKrw/v2FaZOS/6cnzZ96JBXk5cta89zAQAAgNaTeqMtIGkrV0rr1nno27On8rF79vhx69e3zxramY3G1q/3tcMLF3pluFhPj/TSSx6GR0ba71wAAACgNUWvFAOt7tJLfWuhZ57xwLd+vQfAvPzevGNj0saN0rXXxhtrvRU3Glu71tcO56dK9/ScXTFeuNC7U58+Ld1wQ3udi0oOHvRzNTnp08UHBrgZAAAAkC2W0uUAAA1rSURBVApCMTBHO3YUpg4fPerrip991sPxypU+nbiry0Njb68H4s2b22tf3uJGY7293kxL8qnSe/f6GuOODg/CR454KHz1q9vvXJQy8xoZHy9Mse/r8xkGQ0Ptfw4AAABSRygG5mB42JtL5acO9/VJF17o62kPHPCq8Esvefi78kqvHl97bfsFoFKNxlav9orw7t0eBE+e9DXGXV3S8uV+w+Ctb5U2bIg27KYodY10dfm52rnTG5ONjvrNgXY/FwAAACkjFAM1yndbHh6W+vs98OYbbF12ma+nfe45n0Z87rkeAK+6Ku6YG6Vco7HeXn+cOOGB8PRpf337dumaa6RNm+KNuRkqXSNSYUr98LD/3NPTfjdMAAAAWgWhGKhRfjpsf3/pINPTI119tQejEyd8OnUzQ3Ez16/mG42NjnrIKz4fS5b4Q/LzsWpVNpprzXaNdHYWXh8Z8TXphGIAAIA4CMVADYq7LVeyZo20dau0bZt/rtFBMNb61aEhD8X5queaNaWrou3YaKyUlK8RAAAAvByhGKhBcbflSvKBdHzcP9fIwBNz/ergoHTrrf7nkREPefl//tRUezcaKyXVawQAAAClEYqBGhR3W55NV5cfPznZuDGlsH5140ZvorVli1c985XqZct8+na7NhorJcVrBAAAAOURioEalOq2XMnUlAfD7u7GjSmV9auDg/7I+p68KV4jAAAAKI9QDNSgXLflUqanvWI6MOCPRkhx/erKldkKwcVSu0YAAABQ2YLYAwBaSb7bcm+vT0muZM8eP66R3Zbns34VjZHaNQIAAIDKCMVAjYaGPPSMjfl63unps9+fnvbXx8b8uEZ2W2b9appSukYAAABQGdOngRql1G2Z9atpSukaAQAAQGWEYmAOUum2zPrVdKVyjQAAAKAyQjEwRyl0W86vXx0d9fWplQIW61ebL4VrBAAAAJURioF5it1teWjIQ3F+H+I1a0rvUzw25tVL1q82X+xrBAAAAOURioEWx/pVAAAAYO4IxUAbYP0qAAAAMDeEYqBNsH4VAAAAqB2hGGgzrF8FAAAAqrcg9gAAAAAAAIiFUAwAAAAAyCxCMQAAAAAgswjFAAAAAIDMIhQDAAAAADKLUAwAAAAAyCxCMQAAAAAgswjFAAAAAIDMIhQDAAAAADKLUAwAAAAAyCxCMQAAAAAgswjFAAAAAIDMIhQDAAAAADKLUAwAAAAAyCxCMQAAAAAgswjFAAAAAIDMIhQDAAAAADKLUAwAAAAAyCxCMQAAAAAgswjFAAAAAIDMIhQDAAAAADKLUAwAAAAAyCxCMQAAAAAgswjFAAAAAIDMIhQDAAAAADKLUAwAAAAAyCxCMQAAAAAgswjFAAAAAIDM6ow9AAD1c/CgtHOnNDkpdXdLAwPSypWxRwUAAACki1AMtIEdO6RHHpFGRqTxcWl6WurslPr6pHXrpKEhaXAw9igBAACA9BCKgRY3PCzdf78H4iNHPAh3dUkTE141Hh31x+bN0oYNsUcLAAAApIVQDLSwHTs8EA8PS/390vr1XiHOm56W9uzx9yWpp4eKMQAAADATjbaAFpafMt3f72G3s+g2V2env97f78dt2RJnnAAAAECqCMVAizp4sDBles2ayseuWePHbdvmnwMAAADgCMVAi9q505tq9fW9vEJcLN90a3zcPwcAAADAEYqBFjU56WuGu7qqO76ry4+fnGzsuAAAAIBWQigGWlR3t1eAp6aqO35qyo/v7m7suAAAAIBWQigGWtTAQGFK9PR05WOnpwtTrQcGmjM+AAAAoBUQioEWtXKltG6d1Nvr2y5VsmePH7d+vX8OAAAAgCMUAy1saMiD8diY71lcXDGenvbXx8b8uGuvjTNOAAAAIFWz9KwFkLLBQenWW/3PIyPS1q0+Rbqry9cQj497hXjjRmnzZj8eAAAAQAGhGGhxGzdKy5dLW7b4PsT5NcbLlvn64fXrvUJMIAYAAABezkIIscfQcGZ2aNGiRb9y8cUXxx4K0FD5LZdCkMwKHaoBAACAdvbss89qYmLicAhhRa2fzUoo3inpXEm7Ig3hotzzc5H++WgtXC+oFtcKasH1gmpxraAWXC+oVqOvlbWSXggh1LzXSiZCcWxm9oQkhRCuiD0WpI/rBdXiWkEtuF5QLa4V1ILrBdVK+Vqh+zQAAAAAILMIxQAAAACAzCIUAwAAAAAyi1AMAAAAAMgsQjEAAAAAILPoPg0AAAAAyCwqxQAAAACAzCIUAwAAAAAyi1AMAAAAAMgsQjEAAAAAILMIxQAAAACAzCIUAwAAAAAyi1AMAAAAAMgsQnEEZvYaM/uEmf3YzJ43sykzO2BmD5nZ9bHHh3SY2Tlm9lEzu8fMnsxdK8HM3h97bIjHzF5pZl83s31mNmlmu8zsL8ysN/bYkBYz22xmXzazn5rZC7m/P74Ze1xIi5mtMLP3m9kDZjZqZhNmdszMHjWz95kZ3xdxFjP7opn9KPc9dsLMDpvZz8zsTjNbEXt8SJuZvTP3/6NkvtNaCCH2GDLHzP5J0m9LekbSo5IOS1ov6TcldUj6aAjh7ngjRCrMbLmkI7kfD0iaknSBpA+EEL4Wa1yIx8wulPSYpJWSHpL0nKSrJF0vaZuk14cQDsUbIVJiZk9KukzSi5L2SrpI0rdCCO+IOS6kxcw+KOmvJe2X9BNJeyStkvQ2ST2S7pf09sCXRuSY2ZSkYfl32YOSlkh6naTXSton6XUhhOfjjRCpMrMLJD0tzzxLlch32s7YA8ioH0j6YgjhZzNfNLMhSf8h6Utm9i8hhP1RRoeUnJT0JklPhhD2m9lnJN0Zd0iI7K/kgfi2EMKX8y+a2Z9J+rikz0v6YKSxIT0fl4fhUUlD8sADFBuR35j/bgjhTP5FM7tD0v9IulUekO+PMzwk6NwQwkvFL5rZ5yXdIemTkj7U9FEhaWZmku6RdEjSdyTdHndEBUyHiSCEcG9xIM69/oikhyV1Sbqm2eNCekIIUyGE73ODBJJkZoOS3ihpl6S/LHr7TkknJL3TzJY0eWhIVAjhJyGEX1DhQyUhhB+HEP51ZiDOvf5LSV/J/Xhd0weGZJUKxDn35Z5f06yxoKXcJukGSe+Vf2dJBqE4Padyz9NRRwEgRTfknn9Y4svrcUn/JWmxfAobANQD30tQi9/IPT8VdRRIjpldLOkLku4KIWyJPZ5iTJ9OiJm9StKN8imzyV0sAKJbn3seKfP+L+SV5HWSftSUEQFoW2bWKelduR9/EHMsSJOZ3S5fF9ojX0+8SR6IvxBzXEhL7u+Sb8j7FdwReTglEYoTYWbdkr4lqVvS74cQjszyEQDZ05N7Plbm/fzryxs/FAAZ8AVJvyrpeyGEf489GCTpdnlTtrwfSHpPCGEs0niQpk9L2iBpUwhhIvZgSmH69BzltkAJNTzKboFhZh3yuyevl/TPkv6kWf8eaLx6XivALCz3zPpRAPNiZrdJ+j15h/t3Rh4OEhVCOC+EYJLOkzdjG5T0MzPbGHdkSIWZXSWvDv9pCOG/Y4+nHCrFc7ddUrkmA6XsK/ViLhB/U9Lb5c0J3kFDlLZTl2sFUKES3FPm/XOLjgOAmpnZhyXdJd9u58YQwuHIQ0LiQggHJD1gZsPyJT7/IJ9lgAybMW16RNKnIg+nIkLxHIUQbpzv78hdKN+WB+JvS3pXCOH0fH8v0lKPawXI2ZZ7Xlfm/Xy3z3JrjgGgIjP7mKQ/l/S/8kB8MO6I0EpCCLvN7BlJl5tZXwhhPPaYENVSFb6zvOQ7Mr3MV83sq/IGXB9r1sCKEYojMbMueWX4t+R3095b3E0WAIrk95h9o5ktKNpPdJl8CcaEpK0xBgegtZnZJ+TriJ+UdBOBBnN0fu6ZQg8mJf1dmfc2ytcZPyq/6R91ajWhOIJcU63vSHqT/EL5XQIxgNmEELab2Q/lHaY/LOnLM97+rKQlkv4mhJDU3n8A0mdmn5L0OUlPSHojU6ZRjpldJOlobh/rma8vkPRHklZKeoymscg11Xp/qffM7DPyUPz3IYSvNXNcpRCK4/iKPBCPS/o/SZ8uMZ3g4RDCw00eFxJkZn8g6aLcj5fnnt9rZptyf340hb9M0DQfkvSYpLvN7EZJz0q6WtL18mnTfxhxbEiMmb1F0ltyP56Xe/41M7s39+fxEMLtTR4WEmNm75YH4tOSfirpthLfS3aFEO5t8tCQppslfcnMtsj7phySd6Aekjfa+qWkD8QbHlA7QnEcA7nnPnmL8nIebvxQ0AJulv+PZqZrco88QnFG5KrFr5V/gb1ZfoNtv6S7JX2W6g6KXC7p3UWvDeYekrRbvqUKsi3/vaRD0sfKHPOIpHubMRgk7z8l/a18yc5l8m0AT8hvzH5D0t38vwitxmh0DAAAAADIKvYpBgAAAABkFqEYAAAAAJBZhGIAAAAAQGYRigEAAAAAmUUoBgAAAABkFqEYAAAAAJBZhGIAAAAAQGYRigEAAAAAmUUoBgAAAABkFqEYAAAAAJBZhGIAAAAAQGYRigEAAAAAmUUoBgAAAABkFqEYAAAAAJBZhGIAAAAAQGYRigEAAAAAmUUoBgAAAABk1v8DfISRyu0jPYYAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"image/png": {
"height": 357,
"width": 482
},
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_data(X, y)\n",
"\n",
"limits = np.array([np.min(X[:,0]), np.max(X[:,0])])\n",
"boundary = -(lr.coef_[0][0] * limits + lr.intercept_[0]) / lr.coef_[0][1]\n",
"plt.plot(limits, boundary, \"y-\", linewidth=2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"### Réseau de neurones à une seule couche\n",
"\n",
"La formulation du modèle de régression logistique peut également s'interpréter comme la construction d'un réseau de neurones à une seule couche (les entrées) avec un seul neurone de sortie, et l'utilisation de la sigmoïde comme fonction d'activation ainsi que de la cross-entropy comme terme d'attache aux données. \n",
"\n",
"Essayez de constuire un tel reseau avec Keras, et sa classe ``sequential``, en consultant la page d'instruction: \n",
"https://keras.io/api/models/sequential/\n",
"\n",
"L'optimisation est implémentée en autonomie par Keras, avec la plupart des algorithmes du machine learning disponibles et à choisir. Dans ce exemple, on utilise l'algorithme de descente de gradient stochastique ``ADAM``."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Définition du réseau de neurones\n",
"model = tf.keras.Sequential()\n",
"model.add( ... )\n",
"\n",
"opt = tf.keras.optimizers.Adam(learning_rate=0.01)\n",
"model.compile(optimizer=opt, loss= ... , metrics=['accuracy'])\n",
"\n",
"# Verfiez le structure du reseau\n",
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAIrCAYAAAC9JmyKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAABYlAAAWJQFJUiTwAACB7klEQVR4nO3dd3wcxf3/8dfn1CXbsoVxwTYWJhQDCWATmoHQAyR0QjPGJgECJIEASQgk+WJKCmnwA0JCQjEEAgRCb3YgmBLTbGOqacEN3MBylWS1m98fsyudTnfSnXSy1tb7+fA+9m53Znb2blf+7NzsrDnnEBERERGRaIj1dAVERERERKSFAnQRERERkQhRgC4iIiIiEiEK0EVEREREIkQBuoiIiIhIhChAFxERERGJEAXoIiIiIiIRogBdRERERCRCFKCLiIiIiESIAnQRERERkQhRgC4iIiIiEiEK0EVEREREIkQBuoiIiIhIhChAFxERERGJEAXoIt3MzKaYmTOz6T1dlygx72wze9nMVpnZWjN7w8x+bGaFnSyz2MyON7NbzOwtM1tnZnVmttDM7jOz/dvJOyn4njKZ5qUpo9DMzjOz/wb7VGtmH5jZ781s887sU7bMrMDMlgf1bDKzERtiu7JhmdkQM/t/ZvY/M1tvZsvM7DEzO6iL5cbM7Awze8bMPjezhuBYftXMfmZmfTvIv5eZ/dPMFgfn3lIze9DMvtZOnkIzO8fMbjOz2UHeejNbE7z/tZkN7cp+iWxszDnX03UQ2aSZ2RRgIvC8c27/nq1NNJhZAfAwcESwqB5oAkqC968DBzrn1mVZ7r+BgxMW1QGNQFnCsv/nnPthirwnAf+vg00MDuYPOueOT8rfH3gC2DtYVA/UAP2D98uBg5xz73S0H11hZkfjP9vQZc65X3fnNmXDMrOvAP8BNgsWrQH64BvdHP47/00nyi0FHgMOTFi8BugLWPB+Af7c/CRF/kuAXwdpHbAK6AfkBe8vdc5dkyLfEGBJwqKmYLv9E7a7GjjWOfdctvslsjFSC7qI9ISr8cH5emASUIoPoo8EqoCvAjd3otwC4CPgJ8Bo51yxc64P8CXg/iDNBWZ2XnJG59x9zrkh6Sbg8ITkU1Js+zZ8cF4NTAD6OOcGANsD04FBwONmVpIiby5NDOZ/S3ovm4Dg+HkUH5y/AezknCsHBgB/wAe0vzazQztR/C/wwbkDLgP6B2UXA6fgA+6RwC0p6nUU8Jtg+1OAoc65iqBePw+S/cbMjkjOi/87cB1wHDAMKAzyFuP/TrwPlAP3BxfCIps+55wmTZq6ccL/Z+WA6T1dlyhMwBD8f8gOOD/F+qODdXHgK1mWPQ7IS7POgGeDsj/pRL2vC/IuA/KT1u0SrHPAuSny9gM+D9b/uBs/283wvxrU4gOa/wXb3KOnv3dNOfuOfxh8p2uBYSnWPxSsn9WJshcEeW9Ns35SwnE+IGndG8HyV9Lk/Wuw/t1O1GvrhO1O6OnvQJOmDTGpBV0kwszsODN7OugLWmdmn5rZ3WY2pp08g8zsd2b2jplVB/1TF5nZDDO70sxGpshztJk9GfRjbTCzqqDv9D1B149cOh4owv9k/dfklc65R4AP8QH1qdkU7Jz7r3OuKc06B9wZvN3KzCoyLdfM8hPqcrdzrjEpyWHBfB0tLdeJ214D3Bq8PT3T7XbCKUAh8LhzbjXwj2B5h63oZlZmZj8KjpOq4Lj5xMweNbPxQbek5DxmZieZ2RNBX+M6M/vMzF4wswvNbLOEtJVhH/526rB/kGZ+inXzg3X7m9kwM7spqF+dmc1JSDfUzM4N6vSRmdUEfZnfMLMrOmqBzXSfzGy/oD51ifuZorxRZhYP0m7X3rYzND6Y/8M591mK9b8L5mPMbPssyw67cL2RZv2shNel4Yugf/guwdvr0uT9YzDfwczGZlMp59z/gJXB2y2yySuy0erpKwRNmjb1iU60oOO7n91BS6tRI/4/qPB9E6lbakcCi5PyVeFbo8Nl5yTl+WXCOofv+1mb8H5piu1MDtd34vN4IMj7aDtpbgjSvJbj7+KbCfu1eRb5jkrIt3OK9X8O1s1pp4xJCWUM7qZj7fWg/GOD99sH76uAonby7QDMS6hfQ9Lx5oDKpDzlwL8T1seDPE0JyyYlpK/s6JgB9g/SzE+xbn6w7mxafo2oxl8UzUlI9wCt651cp4+B4Wm2n+0+fRAs+0E7+3RVkOalFPsyJcvvty8t5/JxadLE8F1RHHBeluW/T2Yt6EsJ7mELlu+R8PnskiZvfnBcOeCSLOu1XUL5J3bHuaNJU9QmtaCLRNNP8C2tDt8vdIDz/ZmH4/tSx4AbzWy/pHyXA0PxQch+tPTlLAG+jO/7vTRMbGaVwE+Dt7/GB639nHMl+Na0E/A3PubSDsH83XbSvBfMR5uZtZMuW18L5suAL7LIF7ZAv+mcezPF+rBVOK+dMvITXu+YxbYzYmY7ALvhg7MnAZxz7wOz8f2Aj0yTrwJ4Gh9AzwOOAcqC460fsC9wO/5iL9Hd+Btya4ELgIogT3isXUlLq2cu/QF/Q+E451yZ8/cYnJCw/iN8n+cdgZKgTsX44P91fHeJdPc3ZLtP4a8iZ6QqzMxitBw7t2W+i2mNpuWmyZTnj3Mujr9wgJZzLVPhrz9nmNlPzawcmkdZOQm4Fn+s/8g5l/hLSOLrdOdAjJb73jo8/s2PJjM02G74N2gh/iZWkU1fT18haNK0qU9k2YKOv1lydZDn1ynW5wEvButfSFr3XrD8pAy3dWKQfm6W+zSZzreghy2z7bU6Hk1Li1nfHH0Pw/D9dh3wmyzyhf26HfDDNGkuCdbXkKalGv8Tf7hPp3XDcXZNUPYtScsvCpY/libfb4P1n5OiT3OaPEfQ0sJ8WIZ5Kjs6ZsisBX0lnfwFAqjAj6bjgK1ysE+D8KP1OFL/snIoLf3F+6TYlylZ1j+j84KWfuj/yrL8PODGhG04/AVf+AvCy8A3U+QbnJA+ZR9x4CsJaZ5ppw63JG0/nN4AtunqeaJJ08YyqQVdJHoOxbdc1uODp1ac72N9VfB232CIstCaYJ7pmMFh+vJgiLWMOOcmO+fMOdeZ1u1wyMPadtLUJLzu04lttBL0Ib87KGsh/teCTIX9uhtp6dOdbGowLwF+kGL7A4FvJyxqdyzpbJlZHnBa8PbupNX3EgSdZjYoRfYJwfz3LnWf5lTCfvRTnXNPZ1XZrrvTObesMxmdc1XAjODtXkmrs94n59xyWlp0v50iSdiyfr9LGDLUOVcZnD+TMqp4i8ThQjM5f7I6d4K/LT8ELqblF5NyWlq++wJtxvMPvo/wl6UfBb8cJLsk4XV7x/9q/C9cib9UzMFf0H/U/h6IbDoUoItET3gD6JvOuXRdBF6g5T/QxBtGnwzm15jZn8zsgA6G9XsV3z95KPCy+QcHbdXZimfJdZwkZ27Ad2+pB051/gbKTIVdFJ4KArI2nHNz8EPfAfzSzC4ys83NrMjM9gWm4S+6whtY49nuQAcOwd88txh4Pqlui4Hn8F1sWt10G3RxCi/wniRze3YiT6683FECM9vd/ENv3jf/sKrmh0zhW6Gh7c2Gnd2ncMjB8ZbwgK3gZtRjgre3khu57O7VtnB/sf9ffDeiu4Gd8UH+NsClwCjgNjNLdYF7RTD/CvCQme1k/qFZI83s/+GPvYYgTdrj3zl3sfNDm1bgLw5OwXfRetHMft/lnRTZSChAF4mesIUqbWumc249sCIpPfhuDo/iW3zPwz/MZE0wMsePk0ewCC4AJuB/xv4Kvm/uJ2a2xMzusHae/tcF1cG8vRb7xHVZPawomZn9CjgHHxyPd879N4u8Yb9uSD32eaIzgFfwn/0f8F0p1uMvpnbB9/UPA5RVmdYhQ+FFxL3O90FOdndSutDghNcLs9hemC+bPLnyeXsrzexH+O/hDPzNhcX41thlwbQ+SFqWlLWz+zQVWITvCpXYz398sO0PsjnmOpB4LrR34R2eP9meO3cCu+NvEp3knHvLOVftnPvY+QcffTdI9xMz2ykxo3PuIeBn+Avvo4C38RfE84Hz8Y0B/wySr8qkMs65Nc65e/HDp64BLjazY7PcJ5GNkgJ0kegqyjaDc67OOXc0/uf73+IDFZfw/kMz2zkpz5P4/sFn4/8DXYxvVT0dmG5mbYZC7KLFwby94dLCdevoQoBuZj/Dt/w54Czn3ANZFhEGtFXA4+0lDLpP7AechQ/aPsHfrPsg/uEvd+EDNvA3MuZEcCNf2Cp8UWJrcUKrcXiD4i7mn0LZnD1X9diAUg6jCWBmO+IvUg3fl3pH/D0BFa7lgVPhMZCTfQ8uiMLPN/Fm0fD17bnYTmBxwutMzp8l7aRpJbgYPSR4e22qNM65v+MbBmL4EZGS1/8K/0vE7fibWBfiuxRdhL/ZOOxildXxH3S9eih4m6orkcgmRwG6SPSELYQj0yUws2JaHvPdpkXROfeKc+4S59xe+J+HT8H/Z7k5KZ4C6Jxb7Zz7m3PuJOfcMHxgE47ocJaZfaPTe9NWOEJLeyM5hKNPzHXOdaorjJldiB+1BuAC51xWgVJSv+57nHP1HeVxzjU4525xzh3mnNvaObeNc+5459x0YJ8gWQ2+dTFXTqT91tRkia3oSxNepz3eUgj7gGeTp3kUmOD4TaU8i/JSOR7//9pU59wPnHPvubbj4g9OkQ86t0+h22jp5z/UzL4MjMVfTNzZbs7shMMgQprzJ+j/HY63/l6qNGmMTng9r510nwTzylQrnXOvOee+7ZzbyTk30jk3zjkXBvy7B/MOuymlEP6iuHUn8opsdBSgi0TP7GC+jZkNS5NmP1qG7ZudJg0AwU/U9+JbyAHGmlnyz/vJed5zzp2Nb4GHluEJc+G5YL5vO4Fa2JL3bGc2YGbn0PJglEudczd0opiwXzd03L0lE2GL6j+dcw3tpsxOGHBfg78YSzedEqQbH9w0i3NuPi1BeqpHsKcTHhfZ5FmV8Hp4mjRfzaK8VMJy30i1Mjju90y1js7tEwDOuYX48dPz8L88ha28TznnMm7FzmA7a4GZwdtD0iTbg5YLnWzOn8SuUVu2ky68gFmbRdkAx+HrtZbODZUY3hvTpS5vIhsLBegi0TMN39+yAPhx8sqgZfcXwdsXnXOJ45oXJqdPEI76YPh+0h2lT8yTdXebdjyIH7awP3Bm8kozO5KWB5Pck23hZjYRuCl4e2XQd7YzwsD3PefczHZTdlynb+GfNtoA5OxGNzPbGt8/F3z/81XpJuARfP//wcDXE4r5ezC/uJ0LwmRhq/ChZnZYuykDwSgm84O3RyevD57G2eZ4yFJ48++X06z/GelHEMl6n5KEvzh9m5anfebq5tBE4UhC44MneCb7UTCf5Zz7IMX6dOYkvD4rVYLg3Ay7qbyaacFmtjn+AhLgxsQRbYL1+W1ztVq/DS033L6Y6XZFNmobajxHTZp660TLOOj/BQZ2MBUEecJxteP4oKJPsHwYvp+4w/98vl/Stj4EfoVviSwMlhn+p+U3g3yvJaS/AN9f+lRgaMLy/sBltDy18Iik7Uymk+OgB/nDMbtr8Dep5gXLj8A/QMgBd6fJO50048rjuzg0But/24XvrJyWp6n+JMM8J+B/pRhO8JRFfF/+X9AyVvalafJWhp8nCU+qzGCbVwZ5Pskw/f1B+n8mLNsM+DQsB3+DX3js9MGPTX4vCU/fDI6pJ4M81fihJfsH6wrxAfIfgGPSfO8rg+3kB8v3xLd6V9HxOOj7t7N/4bjjLjh+S4PlmwO/C5aHx9fkpLyd2qeE/AX4bjLh9pcRnM/t7MuUThybJQn5ZwE7BMv70jKmvQMOzfY4w/8tCP+2/BoYlHAcTML3P3f4LjCFSXkHB3nGEDwLAH9hfzT+75LD/w0qTrHdm4Drgb0T1+P/Dk2i5enIa0jxFFi6+PdIk6YoTj1eAU2aNvWJlgA9k2n/IE8ecEfC8kZ88BIGzE2keIw3LY/4DvOsoCU4dPj+6l9JSP/DpO2vo+0j3m9OsZ0u/YeID2aeSNjGenxQFL5/jTQPYqH9AP2ThDKWdjDt3U79zkr4DIdmuE+Tab0/qxPeNwFXtJO3MiHtpAy3Z/hAyQG/yzDPyQn1G5Cw/Mv4kUjCOtSnOA4qk8rqn/BdhPtYRctDbdrsC76rzf+SPqd1wesF+D7/nQ7Qg3T/Sig/Tuvz5lZazsfJKfJmvU9J+X+XkO737aQL92VKJ8+fnWm50HDBsRbWMQ78tDPHGX641fdo/b2vSXq/FNi1g7LDz70xYdkr+CcVd/Q3MvzMk4+/JcA+HZ17nfk8NWmK4qQuLiIR5Jxrcs5NxLfKTsMH3n3w/0ndA+zunLspRdaj8a1Y/8W3OvXBB1tvAb8BdnTOvZWQ/h/4YPQ+YC6+C0a4nUeBo51z3yXHnO+DfSR++MNXaHlS5xz8rwf7ON/fNluJf9MGdzC1171nYjD/t8u8D/Gj+GEq38G3vhfhA+jbgK865y5vJ2/YVcHhW0Uz8TVabtR7MMM8T+A/6yLgpHChc+5t/E2HP8f3ca7FjzjzCfAwvv/6p4kFOd9t5kD8Z/UMPqgKj53n8Rd/jyblWYlvJf0r/viM4S8ib8C3vLbaRiedhB/SMjyeDX8+THTOfae9jJ3ZpySJ38NtaVN1kXPuTWAnfKvzJ/jvcwX++z3EdbJbV3Csj8Xv5wv4/S/FB+mz8Q9I+7Jz7o0U2T/HB8ov4IP4sqBOz+Dvv9jbOZduiMzf4L+zafiLl8Jgu8vw/egvArZ3zr2UJn94/nSpK5pIlIQ/w4qISA8xs5/iL6z+5Zw7oafrI50TDOt5NfCqcy7dzaiSY2b2Pv6+lSOdc+0OhyqysVALuohIz/savvX8qp6uiHROcPN2eJNrrp8dIGmY2WB8cD5bwblsShSgi4j0oCCw2xt4JOi6IBsZMzPg//BdjpbRidGHpNP2C+ZX9mgtRHJMXVxEREQ6wcz2xI9wMwDoFyz+jnOu2/qfi0jvoBZ0ERGRzinGP7inBP+Uz7MVnItILqgFXUREREQkQtSCLiIiIiISIQrQRUREREQiRAG6iIiIiEiEKEAX6QZmNt/MnJnt38Vy9g/KmZ+TiolsQMGx68yssqfrIiKyMVGALpskM+tjZuuC4OAnWeR7Pchzb3fWTzJnZt8ys/+Y2QozqzGzuWZ2tZn17WR5+WZ2uJndYGYzzWy1mdWb2RIze9TMjmkn7/4JQWeHU5oyYmZ2hpk9Y2afm1mDma0ys1fN7Ged3a802xplZvGgPidmmCcv+CycmXXqkfEiXWVmu5nZvWa22MzWm9lCM7vFzL7UxXLLzewXwd/6NcH5t9zMppnZ6WaWNi7q6rlrZgeY2T/NbJGZ1ZlZtZm9F/wt2ror+yWbIOecJk2b5ATcgX864zsZph8dpHfA4V3c9vygnP27WM7+QTnze/rz7KHv8K8J30kDsDbh/f+ALTpR5t8SynBAPbAmadn9QEGKvHsDSzuYGoMyZqXIXwo8m7St1UA84f18YFQOP8Png3IfzzD94Ql1Gd3FbYflVPb0saRp45mAicH57oJzY1XCsbQOOLCT5X4JWJhQVlNw/iWej9OA4hR5u3TuAr9Oyrsu+NsTvq8FvtHTn72m6ExqQZdN2R3BfEczG5NB+tOD+VL8H2npQWZ2LnAW/j/AHwN9nHN9gXHAAmAU8M9OFF0ALAauAnYFipxz/YBhwJ+CNCcAv0zO6Jyb4Zwbkm4CvhzUF2BKim3/AjgQ/x/yZUB/51w5fjztU/CByEjglk7sVzrhefB1MxuUQfrwPHjdOTc3h/UQ6ZCZfQV/EZ0P3A0Mds71xz+l9d9AGfAvM9u8E8X/HRgBrABOBEqC828AcHmQ5hAg1a+unT53zexQ4KfB23uArZxzfYK8ewNvBa/vMrPyTuyXbIp6+gpBk6bumgDDB3IOuLaDtDFaWlZ+l4Ntz0ct6F3Z7yL8I9Md8McU63elpeXqyCzL3h0flKdbf3tQbjX+P/Bsyv4hLa3yA1OsD4/HW9Pkn0RLi9qAHH2WfYN9ccAFHaTtB9QEab+Xg22rBV1TVhPwcHDMvA7kJa3rk/B3+g9ZlluZcDxOSJNmSrB+Top1nT53afk198PkfQrWb5WQ95ie/g40RWNSC7psspxzDt9iAnCKmeW3k/wAfMsKBC2OQT/2b5nZ3Wb2TtDXsNbMPjazv5rZNt1Y/YwF/RofNLOlQV/qpWb2kJkd2E6evkE/zFlmtjbItzjok/07M9spRZ6vmdkDZvZpkH61mX1kZg+b2Xfb67vZCQcDgwj+I05e6Zx7A3gmeDs+m4Kdc6855+raSTIlmJfiuz1lY2Iwf9w590WK9YOD+Rtp8s9KeF2a5bZTcs6tBR4K3p7eXlrgW/inYtbjH2GPmVWY2UQz+5eZvR8cL2Hf2T+a2Ra5qGd7gn7xB5jZ/wuO2WUJx2y7x3pCGSPM7A/Bubw2mN4zs1vN7IA0ecrM7EdmNsPMqoK+0J+Yv1dhvJkVJKSdFPTbn95OHSYHaaYkLa+0hPsWzGzP4FxbYmZNZnZdQtqdgnP3RfP9suvM358x3czONLO8Dj6HjPbJzP4vqNPMDso7I0i3qKt/A8ysP3BE8PaPzrmmxPXOuXXAX4K3p5iZZVH8kITXHZ1/ZSnWdeXcDfO+lbxPAM65eUBVO9uW3qinrxA0aerOCdiGlpaJtP37aGnhmJWw7PsJeR2+n3Jdwvt1wMFpypvPBmhBB65OqE8cWEnrPpG/TpGnHHg3IU0T/j+HpoRlv0nKc3bSZ1Ed7H/isuKkPJMS1lVmud+/D/K91U6ai4M0y3N8zOyUUO+vZpHvKwn5jk6T5n0ya4VbSvCk5xzt0yEJdduxnXRhf/V/pfguwmk1Lf3sHbAc+Eqa8nLSgp70nThgfYrj77J28h9Pyy8DDt/fN/F+hjbnF7ADMC8hTUNwfrlU+5Xw3U1vpx6TgzRTkpZXJpR5Ii39r1fhL5auS0j7RULaRlr3z3bAE0B+mu1nvE/AcFr+Jny5nX16MUhzdYp9mZTl9/zNhLybpUkzNiHNDlmUPSQhX0ct6Pfl8tzFX1Q4MmtBz3ifNG3ak1rQZZPmnPsIeDl4OyFVGjMrA44L3t6RsGoFcAO+j2B/5/spF+NbVe/Gt3T8I8i/wZnZycDPgrc3AoOccwOAzfH1BvipmZ2WlPUC/H/Un+P/QyxyzlXg921bfF/J/yVsp5SWVuzbgC2dc2XO96HcDH9T4T209L3OhR2C+bvtpHkvmG9uZgNzuO2vBfMG/H+omZoYzD8HnkyT5m/B/Awz+2nY39TMCs3sJOBa/H/SP3LOueyq3a5ngU+D1+nOg0pg3+Bt4nnwGfAbYAzQ1/l+t0XAbsBU/PH2jyxbM7NVj79x90h8oFUSHH+D8X2Dm4CrzWyP5Ixmthf+14AS4Dl8F6dS5+9nGAQcC/wnKU8F8DQ+2JwHHAOUBedXP/zndDs+QM61W4FH8P2U++NbY69LWP8C/t6MkfiL4v74rh8T8MHhEcCFyYVmu0/OuU/x3y/AGakqan5ElX3wx+ztndnZJOF5v9Q5tyJNmvcSXu+QJk0bzrmlwOPB22vN7HgzKwTfcm9mv8Cfw2vwF1LJunLu3hKs2wa408xGBnljwfH5cLgN59x7iIBa0DVt+hPwXVpazcpTrJ9AS7/hzTMs0/A3LDlgYor18+nGFvRg+x8F6+5Jk/cfYV4glrD8yWD5JRnWYXdafjFo0/rTTr5JdL4F/Q066GcK7JxQftoWviy32wdYFJR5bxb58vHBkSOhtTNFujz8xVRii+UqWloqXwa+mYt9SbHtcBSJRYnHQ8L6X9DSIt5mBJs0ZRbR8mvM11Ks79T334l9C+t+e4p1rwbrns9iv34b5PkcGJZhnvB4n95Omsl03IL+UqrvJ8M67BuUMS9H+3Rse8cE8KvkfaZrLehhkNtmBKSkdGGr/w+yLH9z/AVOWL8mWn6BaMB3BUs5clFXz93g+KhNyLuOll9kP8H/IpizX800bfyTWtClN7gP/5N4Mb6PbbKwX+6TzrnPMynQOefwPyWDH1VkQ9sFP2QY+G4uqVwRzEfig+zQmmA+NMNthekL8C3mGXHOTXHOWTDNzzRfIPxVoradNDUJr/tkWX46f8H/tL+GllEXMnEYLf1M70iXyPn+pz/E/2cctr6W0/JMir74IKI7hPUajh+NIlnYsv4P51xDJgU635f/38HbnjgPQo+lqoOZbU/Lsf+TTPeLls/i9865z3JQv2z8wTnXqV+jnHMv4oPGyhT3BnRmnx7D36y9Of7XtmZBf/Pwb+dtCXWYn3DeT8luDzI676Hl3M/qvA/+vn8TuCtYFMOff+AD8PBXwVR5u3TuBp/FMfgLJPD7Whi8LgUqEt6LKECXTZ9zbhXwaPC21c/7ZjaMlmDlzuS8ZjbczK4JbkxbFdywFd7MdW2QrNtvkkshHDbyc+dcym4gzrkP8N0TEtNDS/eL883s7+Yf2tPeAzY+CqZC4GUzu9DMtu/mLg1h2bns5tH+Bs1+ir/h1AFnZXlREXZvedv5G1jTbWMI8F98l6G78b8C9MH/9H0pfujI28zs11nvQAecc+8DrwVvk8+DvYI6QOrzYHszu9HM3jL/cJd4wnlwQZCsW88DMysJjr3p5h8s05BQh/AzT67DnsG8yjn3aobbqaTlhsJ0XZW608sdJTCzE8zfnL3Q/I3riQ/H6h8k2yIhfSWd2CfnXCMtF3bJ3Vy+jh+adA3wQKZldqBbz3sz2xP/t+x4/Pm2Df782xl/3B8MPGtmR6bI2+lz18wKzOwWfBejj/G/jA7Af36n4FvvLwP+nXjjsfRyPd2Er0nThphoefhKnNY3dl0SLF8BFCbl+RqtbyQLf9IMH0gTPuDiuRTbm0/3dnH5abD8jQ7yvxKkuzxp+c1J+9WED3KuBIamKGc3fB/mxDwr8P2CjyLHP82ygbu40NINygEXZpl3AP4XGgdc1EHaaUG6W9KsD7tbNQE7dcN5cG5Q/lp8/+Nw+Z+D5W+nyHMyrR+o0oTvYhCeB+HNmrenyJuTLi74X3s+SDr+1uG7XizFt0o6gh+3EvKF5/cbWWxrj4RtlGeRbxK56eKSthsZvivVg0mfw/pg/8PvI+xy8bWu7lOQN7zRvgE/Jnm4/P5g+c05PD67rYsLvp99eJyclibNrcH6BSQNxdqVcxd/r5DDdwdrM8Qr/t6fsPvLubn6PDVt3JNa0KW3mAYswbfQJLYehq/vcc7VhwuDVoy78C0kzwD74W9M6+9aHkpzUZi8uyvfjqLOZHLOfRc/MsaVwHR8X8hd8H15PzKzQ5LSz8T/R30avqXpE/xPsifgb2h7oqPh3bK0OJi31yqbuG5JZzdkZhOAm4K3k51z17aXPoWT8d9DI75lLd12dsCPpgItv7604pz7O/7CJ0ZSl4IcuRf/XfchuDE6uFHuxGB9q+455h8G8zd896b78Bdqxc65AQnnQbgv3XkeXIcPYj7Bt35WOOf6OOcGBXXYM02+ztSpJ89nXIph+BKche8XXoP/5WKEc67YObd5wvcRnjuJ+9HpfXL+Rvvn8RcHE6D5htOjgiS3pcnaGR2e92ZWQsuvBNmc96cBA4EvnHN3pUkTHstb4p+1EG6zq+du+CvTTS7FEK/OuQ9p6TJ5dPu7Ib2FAnTpFYL/9MLgKfxPZiywY7Asud/wXvi+ulX4IfNedM6tT0ozmJ4T9mPcsoN0w5PSN3POveucu9w5dwD+P7wjgbfxfSPvSP6p1TlX65y72zk30Tm3Nf4n3fDGw8OBczq7MymEIxns2E6acASHz13qMcc7ZGbfwo8+EcO31l/RQZZUJgXzqc65Ze2kSxxTfV476T4J5pWdqEu7nHMraemvHV6cHom/2Eo8R0KH44P594BTnXOzXNt+3N16HgQXEGHQMt4592CwH5nUYWkw7+g8SZUH/P0bmQr7JRe3k6Y8i/JSCe+huco5d73zI600Cy6SU41o1Nl9CoVPxwy7uZyG7/L2nsuw61CGwvN+iJmlu98lceSWbEY8Cc+/TM49aH3+dfrcDfYj7JveI+e9bJwUoEtvEgbh2wR9EcMbnOY6515PShsGth8652pI7eBcVzALs4N5mZntniqBmW2L7+OYmD4l51y9c+5xWgKAobT0SU6XZ55z7jJ8yyq0DE+YC88F8x1T3OwWOjSYP9uZDQT9TO/G3xz2F+fcjzpRRuJNiFM6SJ544197AWMYQK3Ntj4ZCs+Dg4J7MMLzYJpzLrlFMjwP3nIpblwM7kPo8CFBXTSQll+K3kiTJt25+EowrwjO+Q45f+9BGNAe0U7SZKuC+fB20nw1i/JSCctO9zmMI8UFQhf2KfQAfv92CIayDAP1XLaegx/BJrwATPedhuf9EmBuFmWHx28m5x60Pv+6cu5G5byXjYwCdOk1nHPv0BKofhvfNQFSj7qxOphvY2Zt/sMzs0PxTx/tKXPwNxuBv7kolcnBfD4tNweGLZLpJI6eUJRB+sQ8nepuk8az+P7FMVq6EjUzs51p+Q88bbeSdMzsYHwf2gL8939eJ+s5MZgntkynMyfh9Vlp6nUkfmxu8MMDdoen8SNzxPA/vR8eLG/vPNgpzU3BZwFb57yGra2h5abBLyevNLOhwA9SZXStb4z9bRY34IVPIL44uIjJxNvBfFjw61xyPfel6yPdhN9Hqs8hn/QjOkHn9gmA4NfDsFvIH/Dd4RoSyswJ59xqWm5ivciSnkxq/pkT4S91/3DOOTL3ZjAfnOom0EB4XjogsdFmToo0raQ7d4NfexYGb7+dqiugmQ3HjwTVKq/0cj3dCV6Tpg05AefTciNPOG8zJjC+y0d1kOafBDdO4h928m18K0f4RL/pKfLPpxtvEg3WnUTLjV83EDx5Dz9M2PUJ68Yn5XshWB/2qw+X74h/YIvD9wXND5Yfgx9Z4ixgZEL60mBZOJbveUnbmZRQh8pO7Ht4Q2MTfmizomD5Xvifgx3wUpq8U9r53MbRcmPjPXR+zOkYLWOm35RhnqkJ+/Rr/MOlwHcjmYTvw+rwP4UXpsgffp6Tu3hc/THpPFhF0pNgg3Tb0fJk2hvwD+wCf8Pdj/FBWngeTGmnvll//0nlzAjKeQvYJeHzPwj/MKnmp2um+b7DJ3M+C+yWsG4g/kL97qQ8m9FyU/Qn+P7WhQnf1f74/vzDk/KFY66/TXDjMv4i8FvBd1uV6rMi4SbRDj6HcNzx1fhuP3nB8u2Bp2j9hNX9c7FPCfkTn5TrgAfTpKtMSDOpE9/1zrTclHwnMDBYviUt589KUjyzgnb+5tD6JtEVQdo+wbpB+PMxPB/+kctzFz/KS1ivR/DnlQXHxv7AO7TciKsniWrCOacAXVPvmvD/ISeOSDG1nbTn0/o/pFW0/Ef/Br7VrscC9GD91Qn1a8IHAE0Jy36dIs+cFHkSH6BRDRyUkP6YpM+hJsgTT1jW5vHi7f1nmcX+/zWhjHpaj6rzP2CLNPmmpPvcaLkIcbQe/SLVdFI7dTskoZzdM9yfofh+s4mf55qk90uBXdPkz1WAvnPSNtOOxEFLMB9OVfj+1g7fGh8eg1PaqW+nvv+EcvYIjruwvHUJ71fgg9W0AS4+CF+fkL8m6VhKdZx8mZYLsPD4W5n0WVR2UM+1tFzATk33WZF5gF6B/+UssU7haFKN+HNuPmn+9nRmn5Lyv56QLuVDeehigB6UMZGWv7VxWh4mFH73B6bJN6m9/cB3w0ssK9X59yqpH2jX6XMXf4Pt/UlpaxL2MfwuJnblPNG0aU3q4iK9ivM3EyaOA9xmzOeEtNfjR7r4L/6PaT7wPnA5sDcR6CvonPs5vhXxEXwrYh98wPIocLBz7tIU2c7E78Nz+J9eS4Ll7+OflLeTcy6xX/d/8DcU3oFvGazBP5RjBX6Em4nAkc6PmZxTzrmz8b8UPIf/jzn8Dn6Jb0ld3E72dBL/7g3E32CYbippk7vFxGD+vnPutXbSNXO+j/dY/ANPXsAHu6X4/+hnA1fhW17fSM4bdOUIJd8zkRXn3Ju0/OQP7Z8HFwFn4y9K6/DfwZxgH75B9zzuPrkOr+J/OXkYH1AW4LtA3YzvbvFmurxB/nvxN/rdiG9xBx/4zcXfAHl6ijxv439V+jkwE38RW4xvfX4YP371p0l5XgX2wXd3WoX/rD7E/9pwBF38rJxzVfgRa/6csO3aoD5fcx08GKgz+5TkwWC+BN9i3y2cc3fgv+9/4rtjleAvLG7Dn/f/6WS5z+P3/xr8Mbw2KHsF/m/MOcA+zne1Sc7b6XPXOdfonPsWfgSiR/GfXz4+QP8I3xCxa7DfIkAwdrGIiESbmZ2M75Izyzm3W0/XR3ofM/s3/t6Pa5xz2TxpV0SypBZ0EZGNw9eCeWeGghTpEjP7Ev7XOkfLsIsi0k0UoIuIbBz2wz8Rs6PRYkRyysz64G8SNuBx59zHHWQRkS5SFxcRERFpw8x+iO9zPQQ/jOp6YKxzLpsHBIlIJ+T3dAVEegMzexB/Y2mmZjjnjuuu+oj0BDN7HRiRRZb7nHMXdFd9pEP98Q/QqcEPdflTBeciG4YCdJENo4LsHole0V0VEelBm5PdeVDeXRWRjjnnJtPywDMR2YBy0sXFzE7A38C0C3583b74Bz+c1omyhgNX4p+qtRl+OKKHgSucfyKXiIiIiMgmK1ct6D/HB+br8GOobt+ZQsxsa/zPaIPw4zq/D+yOfxz1YWY2zjm3Iic1FhERERGJoFyN4nIhsC3+UbrndqGcm/DB+fnOuWOccz91zh0IXIt/NO4vu1xTEREREZEIy/koLma2P/6JXFl1cTGzUfhHd88HtnbOxRPW9cV3dTFgkHOuOodVFhERERGJjCiNg35gMJ+WGJwDOOfW4h+3Xop/zLGIiIiIyCYpSqO4bBfMP0yz/iPgUHxXmmfbK8jMZqVZtRO+n/z8TtRPRERERCRTlcAa59xW2WaMUoAeDqe1Os36cHn/Lmwjr6SkpGL06NEawk5EREREus3cuXOpra3tVN4oBegdsWDeYad559zYlAWYzRo9evSYWbPSNbCLiIiIiHTd2LFjmT179vzO5I1SH/SwhTzdgyn6JaUTEREREdnkRClA/yCYb5tm/TbBPF0fdRERERGRjV6UAvTngvmhZtaqXsEwi+OAWuCVDV0xEREREZENZYMH6GZWYGbbB08Nbeac+x8wDX/H6/eSsl0BlAF3agx0EREREdmU5eQmUTM7BjgmeDskmO9lZlOC1184534UvB4GzAUW4IPxROcBM4DrzeygIN0ewAH4ri0/y0V9RURERESiKlejuOwCTExaNiqYwAfjP6IDzrn/mdluwJXAYcAR+CeIXg9c4ZyrylF9RUREREQiKScBunNuMjA5w7TzaRkyMdX6RcAZuaiXiIiIiMjGJko3iYqIiIiI9HoK0EVEREREIkQBuoiIiIhIhChAFxERERGJEAXoIiIiIiIRogBdRERERCRCFKCLiIiIiESIAnQRERERkQhRgC4iIiIiEiEK0EVEREREIkQBuoiIiIhIhChAFxERERGJEAXoIiIiIiIRogBdRERERCRCFKCLiIiIiESIAnQRERERkQhRgC4iIiIiEiEK0EVEREREIkQBuoiIiIhIhChAFxERERGJEAXoIiIiIiIRogBdRERERCRCFKCLiIiIiESIAnQRERERkQhRgC4iIiIiEiEK0EVEREREIkQBuoiIiIhIhChAFxERERGJEAXoIiIiIiIRogBdRERERCRCFKCLiIiIiESIAnQRERERkQhRgC4iIiIiEiEK0EVEREREIkQBuoiIiIhIhOT3dAVERERERLISj0NjLTSsD+bB1Lg+4XXC+pIBsOOxPV3rjClAF+lO9TVQvRyqV4AB+SVQUBzMgymvEMx6uqYiIrnhnA+O6tYG0xqIN0J+MRSUJvwNDOYx/Zi/UYnH/fcZb4CmBog3+dfxxuB9Y8LrYH1TfccBdMr16xPmNQlp10NTXXb13mJXBegim7T6ali3DNZ97oPvdcuh+nM/X7es5XX151C/LoMCrSVYbxPAF6cO6vOL275O9Z9fQWnb9Xk67budc23/05Kel1cAsQKI5UMsTxfGyeJNCUH12tYBdv26tsvSpa1bB64p8+3mFeX2b1zCepdfjGs04o3On4cuDB4bW87RpkZf3+aAM95y7iZOTUFQ6pqC140t+eNN4BpalxtvhKZguYt33/eWCRdvZ58b2+5r8/42tgTZ4eue3pdm2Z2/tq6WvG6qSXfQ/9S9WeJVcOIfn+Yr38Q/WIknbeJVcfLrxqQTPlzW5P9z7PCPauIf5RLIL+r+/0Sd8//5JAba1ct9AN4q4A6WNVTnugJBy0BNjstNI5af8D2UZPidtPOfYsoLi6CM/OL0rWPOpWlxaUxxfGV4fGZ0rCaXlfgfbQblpjvOk495ib4wWM8Lg/ZUrwt8MJ8yTYG/4E35OsgXvrYY2QYUOdVUlzqQTlyW879tWdStqQ5Y3bzIxSHeaMQbYjQ1WPPreIPRFMzjDTHijebXB69b0rQsw+lCrHNiQGEwbfyKhucz6qKerkXmFKBvDFwQwKVsuViXQWvGWh+ANtW3DiIicxXcHkvdkpJBq4qLFdJYHadxTT2Na+px69fC+tXBtMZ/NutX+3ljNj+VFWeeNJYHxeVQ1M+/b2oIvoeEKZ5FS1PONATT2u7fVF6B78YDQStTUzDfGI6/zshHf1o3Jg6oD6beLou/bR3JK0i4eC/BuRjx2nqaauuJr28kXtdIvK6Jprp4q+DaB9aGa1K3F8mxPoN6ugZZ0f8iG8KqRRn8NJgQSKdavskGMx1xvr9ZYy3UtiyNN0FjbR6NNXk01MZorM2joSZ87+eN62MZtpyUBVN3WpP0Pg8oCSYRkU1V2BiQbMNdyFqew5p7NCX8n9Dq19l0yxPWJefPenlPs4TqWAbLSf8ZbYTy+vTp6SpkRQH6hnDjbv4GhxzzPQSs1U99rX7+a0z4ObDRiOU5YvmOWEGcWIEjryBOrDBGrChGrDCPvOI8YkX5xIrysYL8pJ9/E36qTfVTcMqfgxNeW55vLc7g5o94zXoaVq+ncW0DDevirYPu2hgNNXk01W1MPclERCQrZsTKyoj16UOsTxl5ZX2C18H7Pn2IlfVpnaZPQpqyPuT1KSNWVoYVFPT03ohkTQH6hlDUt1WA7uK0CpxT9ZlrtawxRrwxn3hjHk2NeUFADvG67mtVt9JCYmWlbf8opvojWZr4h7L1H0krLMSCK3DnHPE1a2hYuozG5ctoWLqUxs+X0bBsKY1Ll9G4bBkNy5YRX1MPlOZkP/LKCskvL6SgTz5WVBj0iy5qmfKC93n5bOytA5HknO/S0vwLkPm+uGZBy4w+c5HewPLz2wbXyYF1GGyX9SFWWoJpdBfpxRSgbwDzn+pDU02R725c73CNrguluWDqXq6mhqaaGpo+/6JrBRUUkFdWhpWW0LRyFa62tuM8mYjFyN98c/KHDKZg8BDyBw+mYMhg8gcP8fMhQ8gfNIhY4aZxc4uIiIj0HgrQN4D66mKaVmc5XmeGrLSUvOZWh/Q/B8ZKSnF1dcSr19G0bh3xddXEq6uJr1tHfN06mqqDZevWEa+u9i2fudDQQNOqVbBqVeb7VFBA/uDBPvge5IPtVsH34MHkDxyI5evwFRERkU2PIpwNIFZWRtPqluGjyMsLAuoUXUhS/fSX+LNf4s+BpaXdEqS6eJx4TS3x6nUtAXxyUJ8Y6KcK8oM8NLYebs5KSigYMqTd4DtvwAD9tCkiIiK9lgL0DWDEzX+B/PzmwNqKi5v7ZUeRxWLk9Skjr08ZDB7c6XKcc7j6eh/UV1eTV15OrG/fSO+7iIiISE9TgL4BFG2zTU9XoUeYGVZURKyoCCoqero6IiIiIhsF9SMQEREREYkQBegiIiIiIhGiAF1EREREJEIUoIuIiIiIRIgCdBERERGRCFGALiIiIiISIQrQRUREREQiRAG6iIiIiEiEKEAXEREREYkQBegiIiIiIhGiAF1EREREJEIUoIuIiIiIRIgCdBERERGRCFGALiIiIiISIQrQRUREREQiRAG6iIiIiEiEKEAXEREREYkQBegiIiIiIhGiAF1EREREJEIUoIuIiIiIRIgCdBERERGRCFGALiIiIiISIQrQRUREREQiRAG6iIiIiEiE5CxAN7PhZnabmS02szozm29m15nZgCzL+YaZTTOzT82s1sw+MbP7zWyvXNVVRERERCSqchKgm9nWwCzgDOA14FrgE+AC4GUz2yzDcq4BHgfGAE8D/w+YDRwN/NfMTstFfUVEREREoio/R+XcBAwCznfO3RAuNLM/AhcCvwTOaa8AMxsC/AhYBnzFObc8Yd0BwH+AK4G7clRnEREREZHI6XILupmNAg4F5gN/Slp9OVANTDCzsg6KGhnU59XE4BzAOfccsBbYvKv1FRERERGJslx0cTkwmE9zzsUTVzjn1gL/BUqBPTso5yOgHtjdzAYmrjCz/YC+wDM5qK+IiIiISGTloovLdsH8wzTrP8K3sG8LPJuuEOdclZldAvwReM/MHgZWAFsDRwH/Br6bSYXMbFaaVdtnkl9EREREpKfkIkAvD+ar06wPl/fvqCDn3HVmNh+4DTgrYdXHwJTkri8iIiIiIpuaDTEOugVz12FCs58ADwBT8C3nZcBY/Igwd5vZbzPZoHNubKoJeL8zOyAiIiIisqHkIkAPW8jL06zvl5QuJTPbH7gGeNQ5d5Fz7hPnXI1zbjZwLPAZcHFwU6qIiIiIyCYpFwH6B8F82zTrtwnm6fqoh74ZzJ9LXuGcq8GPrx4Dds22giIiIiIiG4tcBOhhQH2ombUqz8z6AuOAWuCVDsopCubphlIMl9d3ppIiIiIiIhuDLgfozrn/AdOASuB7SauvwPcjv9M5Vw1gZgVmtn3w9NFELwbzs81sWOIKMzscH+ivB2Z0tc4iIiIiIlGVqyeJnocPnK83s4OAucAewAH4ri0/S0g7LFi/AB/Uhx7Aj3N+MDDXzB4ClgKj8d1fDPipc25FjuosIiIiIhI5OQnQnXP/M7PdgCuBw4AjgCXA9cAVzrmqDMqIm9kR+Fb4k/E3hpYCVcCTwPXOuWm5qK+IiIiISFTlqgUd59wi4IwM0s2nZejF5HUNwHXBJCIiIiLS62yIcdBFRERERCRDCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCIkv6crICIiItEQj8epqqpi7dq11NXV4Zzr6SqJRIKZUVRURN++famoqCAW6942bgXoIiIiQjweZ9GiRdTU1PR0VUQixznH+vXrWb9+PdXV1YwYMaJbg3QF6CIiIkJVVRU1NTXk5+czZMgQysrKur2VUGRjEY/Hqa6uZunSpdTU1FBVVcXAgQO7bXs680RERIS1a9cCMGTIEPr27avgXCRBLBajb9++DBkyBGg5X7pte91auoiIiGwU6urqACgrK+vhmohEV3h+hOdLd1GALiIiIs03hKrlXCQ9MwPo9huodRaKiIiIiGQgDNC7mwJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIhIgvnz52NmTJo0qaerIr2UAnQRERERkQhRgC4iIiIiEiEK0EVEREREIiRnAbqZDTez28xssZnVmdl8M7vOzAZ0oqx9zexfZrYkKGuJmU0zsyNyVV8RERGRbCxZsoTvfe97VFZWUlhYyOabb85xxx3HrFmz2qStr6/n+uuvZ8yYMQwYMIDS0lIqKys5+uijeeaZZ1qlffHFFznyyCMZPnw4RUVFDBkyhD333JMrrrhiQ+2aREx+Lgoxs62BGcAg4BHgfWB34ALgMDMb55xbkWFZPweuAr4AHgeWAAOBXYH9gSdzUWcRERGRTM2bN4999tmHxYsXc+CBB3LKKaewaNEi7r//fp544gn+9a9/8c1vfrM5/aRJk7jnnnvYaaedOP300ykpKWHx4sW89NJLPP300xx88MEAPP3003zjG9+gX79+HHXUUQwbNoyqqirmzp3LTTfdxOWXX95Tuyw9KCcBOnATPjg/3zl3Q7jQzP4IXAj8Ejino0LM7Fv44PwZ4Djn3Nqk9QU5qq+IiIhkofKnT/R0FTI2/zffyHmZ55xzDosXL+bqq6/mZz/7WfPy8847j/3224+JEyeyYMEC+vTpw+rVq7n33nsZO3Ysr776Knl5ea3KWrGipc3yb3/7G/F4nOnTp7Pzzju3SvfFF1/kfD9k49DlLi5mNgo4FJgP/Clp9eVANTDBzMo6KCcGXAPUAKcmB+cAzrmGrtZXREREJBuffvop06ZNY8stt+QnP/lJq3V77703p5xyClVVVTz44IOAfxy8c46ioiJisbah1mabbdZmWUlJSZtlAwcOzNEeyMYmF33QDwzm05xz8cQVQZD9X6AU2LODcvYGtsJ3YVlpZt8ws0vM7AIz2ysH9RQRERHJ2htvvAHAvvvuS0FB2x/zDzzwwFbp+vXrx5FHHsmMGTPYZZdduPLKK3nuueeoqalpk3f8+PEA7LHHHpxzzjncd999fPrpp921K7KRyEUXl+2C+Ydp1n+Eb2HfFni2nXK+GsyXAbOBLyeuNLMXgBOcc593VCEza3u3hrd9R3lFRESkre7oNrKxWL16NQBDhw5NuT5cvmrVquZl9913H9dccw3/+Mc/mvuRFxcXc8IJJ/D73/+ewYMHA3Dcccfx+OOP84c//IHbbruNm2++GYCxY8fy61//mkMOOaS7dksiLBct6OXBfHWa9eHy/h2UMyiYnwOUAAcDfYGdgKnAfsD9na6liIiISCeUl/tQZ+nSpSnXL1mypFU68F1WJk+ezIcffsjChQu566672Geffbjrrrs44YQTWuX/xje+wX/+8x9WrlzJs88+y4UXXsi7777LN7/5Td57771u2iuJslzdJNoeC+aug3ThHRSGbyl/M3j/rpkdi2+h/5qZ7eWce7m9gpxzY1NWxLesj8ms2iIiIiKw6667AvDSSy/R2NhIfn7r8Om5554DYMyY1CHGiBEjGD9+PKeccgrbb789L730EitWrGjTF72srIwDDzyQAw88kAEDBvB///d/PPXUU+ywww7dsFcSZbloQQ9byMvTrO+XlC6dlcH8k4TgHADnXC2+FR388I0iIiIiG8Tw4cM55JBDmD9/Ptddd12rda+++ir/+Mc/GDBgAMceeywAn3/+Oa+++mqbcqqrq1m7di35+fkUFhYC8Oyzz1JbW9sm7bJlywAoLS3N8d7IxiAXLegfBPNt06zfJpin66OeXM6qNOvDAL7tbc4iIiIi3egvf/kL48aN48c//jHTpk1jt912ax4HPRaLcfvtt9O3b18APvvsM/bcc09Gjx7NmDFjGDFiBGvWrOHxxx9n6dKlnH/++c1pL774YubPn8/+++/f/ACkWbNm8Z///IeRI0dy8skn9+RuSw/JRYD+XDA/1MxiiSO5mFlfYBxQC7zSQTkvAI3ANmZW6JyrT1q/UzCf3/Uqi4iIiGRu1KhRzJw5k6uvvponn3yS6dOn069fPw477DB+9rOf8dWvfrU5bWVlJVdccQXTp0/nueee44svvqCiooLtttuO3/zmN62C7ssuu4yHHnqImTNn8swzzxCLxdhyyy257LLL+OEPf8iAAVk/kF02AeZcR13DMyjEbCp+pJZ0Dyq62Tl3TrCsANgaaHDO/S+pnLuA8cAvnXM/T1h+CL6Lyxqg0jm3qpP1nDVmzJgxqR7JKyIi0pvNnTsXgNGjR/dwTUSiLdNzZezYscyePXt2unsj25Orm0TPA2YA15vZQcBcYA/gAHzXlp8lpB0WrF8AVCaVc1GQ72dmth/wGjASOBZoAs7qbHAuIiIiIrIxyMVNogQt4bsBU/AB9sX4VvLrgb2ccyvS525VzvIg/7XACOB8/IOQngD2dc5pmEURERER2aTlbJhF59wi4IwM0s2nZejFVOur8C3pF+WqbiIiIiIiG4uctKCLiIiIiEhuKEAXEREREYkQBegiIiIiIhGiAF1EREREJEIUoIuIiIiIRIgCdBERERGRCFGALiIiIiISIQrQRUREREQiRAG6iIiIiEiEKEAXEREREYkQBegiIiIiIhGiAF1EREREJEIUoIuIiIiIRIgCdBERERGRCFGALiIiIpJgypQpHH/88YwaNYqSkhL69evHuHHjuOuuu1Kmr6qq4mc/+xk77bQTpaWllJeXs/POO/PTn/6U6urqTqWtrKyksrIy5fYmT56MmTF9+vRWy82M/fffn6VLl3LmmWcybNgw8vLymDJlCgAffvghP/3pT9ltt93YfPPNKSoqYuTIkZx99tl8+umnaT+PadOmceSRRzJo0CCKiooYMWIERx99NM888wwATz/9NGbGt7/97ZT56+rqGDhwIAMHDqSuri7tdqRFfk9XQERERCRKzj33XHbYYQf2228/hg4dyooVK3jyySeZMGECH3zwAVdddVVz2nnz5nHAAQewYMECxo4dy7nnnks8HufDDz/k2muv5ZxzzqGsrCzrtJ1VVVXFnnvuSZ8+fTjuuOOIxWIMHjwYgAcffJC//OUvHHDAAey9994UFhby7rvvcsstt/DYY48xc+ZMhg0b1qq8yy+/nCuvvJI+ffpwzDHHMGLECBYvXsyMGTO46667OPjgg/n617/O1ltvzX333ce1115LeXl5qzL+9a9/sWLFCi6++GKKioq6tH+9hQJ0ERER6djk8o7TRMXk1V3K/s4777D11lu3WlZfX8/hhx/Ob37zG84555zmQPa0005jwYIF/OpXv+LSSy9tleeLL76gT58+ze+zSdtZb7/9NhMmTOC2224jP791mDdhwgQuvPDCNkHytGnTOPzww7n66qv585//3Gr5lVdeyVZbbcWLL77YJngPW93NjHPOOYcf//jH/P3vf+f73/9+q3R//etfATj77LO7vH+9hbq4iIiIiCRIDs4BCgsL+d73vkdjYyPPPvssALNmzWLGjBnssssuXHLJJW3yDBw4kOLi4qzTdkVhYSG///3v2wTnAMOGDUvZgn3ooYey4447MnXq1FbLb7jhBgD+8Ic/tAnOAYYPH978+owzzqC4uJibb765VZoPPviA559/ngMOOIBtt922U/vUGylAFxEREUmwcOFCvve977H99ttTWlqKmWFmHH/88QB89tlnALzyyisAfP3rXycWaz+kyiZtV1RWVjJo0KCU65xzzd1SNt98c/Lz85v37e23327er8Q6mxmHHXZYh9vdbLPNOPHEE3nnnXeYMWNG8/Kw9fycc87pwl71PuriIiIiIh3rYreRjcUnn3zC7rvvzsqVK9l333059NBDKS8vJy8vj/nz53PHHXc03+i4atUqgJSty8mySdsVQ4YMSbvuoosu4rrrrmPo0KF8/etfZ9iwYZSUlAD+xtgFCxa0Sr9q1SoGDBjQnKYj5513HnfeeSc333wze++9N3V1ddxxxx0MGjSIY445ptP71BspQBcREREJ/PGPf2TFihXcfvvtTJo0qdW6e+65hzvuuKP5ff/+/QHatDynkk1agFgsRn19fcp1YbCfipmlXL58+XKuv/56dtppJ2bMmEHfvn1brb/nnntS1nnFihXU1tZmFKTvsccejBkzhn/+859cd911PPXUU6xYsYJLLrmEwsLCDvNLC3VxEREREQl8/PHHAM3dWRI9//zzrd7vueeeAEydOpV4PN5uudmkBRgwYADLli2joaGhzbqZM2d2mD/ZJ598Qjwe59BDD20TnH/66ad88sknKevsnOPpp5/OeDvnnnsu69ev58477+Svf/0rZsZZZ52VdX17OwXoIiIiIoFw7PHkMcanTp3KLbfc0mrZ2LFj2XvvvZkzZw7XXHNNm7JWrFjB+vXrs04LsPvuu9PY2Mjtt9/eKt2UKVP473//2+n9eumll2hqampevm7dOs466ywaGxvb5PnBD34AwMUXX5yy5T/VslNPPZXy8nJ++9vf8vzzz3PIIYekvOlW2qcuLiIiIiKB8847j9tvv51vfetbHH/88QwbNox33nmHp59+mhNPPJH77ruvVfq77rqL/fffn8suu4x//etf7L///jjn+Oijj5g2bRrvv/9+c3CcTdof/OAH3H777Zx77rk8++yzjBgxgjfffJMZM2bwzW9+k8cffzyr/RoyZAgnn3wy9957L7vssguHHnooq1ev5t///jfFxcXssssuzJkzp1WeQw89lF/84hdcddVVjB49unkc9GXLlvHSSy+x5557Nj8EKVRaWsrEiRO5/vrrAfjud7+bVT3FUwu6iIiISOArX/kKzz33HHvvvTdPPvkkf/7zn1mzZg0PPvhgypFIttpqK2bPns1PfvIT1q5dy4033sitt97KwoULufjii1uNqJJN2h122IFnnnmGcePG8dhjj/HXv/6VwsJCXn75ZcaOHdupfbv11lu57LLLqK2t5U9/+hNTp07lm9/8JjNmzGjzcKHQlVdeyRNPPMHee+/N448/zu9//3umTp3K6NGjOf3001PmCZ8oOnToUI466qhO1bW3M+dcT9dhgzGzWWPGjBkza9asnq6KiIhIpMydOxeA0aNH93BNZGM3ZcoUzjjjDH7+85+3eurqpiLTc2Xs2LHMnj17tnMu6ysqtaCLiIiISE40Njbyxz/+kfz8fHVv6QL1QRcRERGRLnnppZd4/vnnmT59Om+//Tbf//73Wz1pVLKjAF1EREREuuSZZ57hiiuuoKKigrPOOovf/va3PV2ljZoCdBERERHpksmTJzN58uSersYmQ33QRUREREQiRAG6iIiIiEiEKEAXEREREYkQBegiIiIiIhGiAF1EREREJEIUoIuIiIiIRIgCdBERERGRCFGALiIiIiISIQrQRUREREQiRAG6iIiIyAZUWVlJZWVlp/JOnz4dM9NTOzdxCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiKBl19+GTPjuOOOS5tm9OjRFBUVUVVVRX19PTfeeCNHHHEEI0eOpKioiIqKCg4++GCeeuqpDVhz+Oijjzj99NMZNmwYhYWFbLHFFpx++ul89NFHbdKuXbuWq666ip122ol+/frRt29ftt56a0466SRmzZrVKu2jjz7KQQcdxNChQykqKmKLLbbga1/7GjfddNOG2rVeJ7+nKyAiIiISFXvttRfbbbcdjz/+OCtWrGCzzTZrtf61117j/fff5/jjj6eiooKlS5dywQUXsPfee3PIIYew+eabs2TJEh577DGOOOII/va3v3HmmWd2e71ff/11Dj74YNauXctRRx3FDjvswPvvv8/dd9/NI488wrPPPstuu+0GgHOOww47jBkzZrDXXntx5plnkp+fz6JFi5g+fTr77rsvY8eOBeCvf/0r3/3udxkyZAhHHnkkAwcOZPny5bz11lvcfvvtnHfeed2+b72RAnQRERHp0Jfv+HJPVyFjb098u0v5J06cyGWXXcY999zD97///Vbr7rjjjuY0AAMGDGDBggUMHz68VbrVq1czbtw4fvKTnzB+/HhKSkq6VKf2OOc4/fTTWbNmDXfddRfjx49vXnffffdx8sknc9ppp/Hee+8Ri8V45513mDFjBscccwwPPfRQq7Li8TirV69ufn/zzTdTWFjIm2++yaBBg1ql/eKLL7ptn3o7dXERERERSTBhwgRisVhzMB6qr6/n3nvvZdCgQRx++OEAFBUVtQnOAcrLy/n2t7/NypUref3117u1vjNmzOD9999nr732ahWcA5x00knss88+fPDBB7z00kut1qW6aIjFYgwYMKDVsvz8fAoKCtqkHThwYA5qL6koQBcRERFJMHz4cA466CBmzpzJe++917z8scceo6qqivHjx5Of39IJ4d1332XSpEmMGjWKkpISzAwz4+KLLwbgs88+69b6zp49G4ADDzww5fpw+RtvvAHADjvswC677MI999zDuHHj+O1vf8uMGTOor69vk3f8+PHU1NSw4447cuGFF/Lwww/z+eefd9OeSEhdXERERKRDXe02srGZNGkS//73v7njjju45pprgLbdWwBeeeUVDjzwQBobGznooIM46qij6NevH7FYjDlz5vDII49QV1fXrXUNu6QMHTo05fpw+apVqwDIy8vjP//5D1deeSUPPPAAl1xyCQB9+/Zl4sSJ/PrXv6ZPnz4AXHTRRQwcOJCbbrqJ66+/nuuuuw4z42tf+xq/+93vmvu1S26pBV1EREQkybHHHku/fv246667aGpq4vPPP+epp55i5513Zuedd25Od/XVV1NbW8u0adN46qmnuO6667jyyiuZPHkye+yxxwapa3l5OQBLly5NuX7JkiWt0oHvO3/ttdeyaNEiPvroI2655Ra23357brzxRs4999xW+U8//XReeeUVVqxYwRNPPMF3vvMdXnjhBb7+9a+zfPnybtqr3k0BuoiIiEiSkpISTjzxRBYvXswzzzzD3XffTWNjY6vWc4CPP/6YiooK9t9//zZlPP/88xukrrvuuisA06dPT7k+XD5mzJiU67/0pS/xne98h+eff54+ffrwyCOPpEzXv3//5pFpJk2aRFVVFS+++GKX6y9tKUAXERERSWHSpEkA3Hnnndx5553k5+e3uQmzsrKSqqoq3nrrrVbLb731VqZOnbpB6jlu3Di22247XnrpJR544IFW6x544AFeeOEFtt12W/bZZx8A5s2bx7vvvtumnJUrV1JXV9fq5tGnn36axsbGNmnDlvPS0tJc7ooE1AddREREJIVx48bxpS99ifvvv5+GhgaOPPLINkMN/vCHP2Tq1Knss88+nHjiiZSXlzNz5kxeeuklTjjhhDYBc3cwM+644w4OOeQQTjrpJI4++mi23357PvjgAx5++GH69u3LnXfeSSzm22XffPNNjj32WMaOHctOO+3EFltsweeff84jjzxCQ0NDc590gJNPPpni4mL22WcfKisrcc7x4osv8vrrrzN27FgOPvjgbt+/3kgt6CIiIiJpTJw4kYaGhubXyQ477DAee+wxdthhB+677z5uvfVWioqKeO655/jGN76xweq5xx578Prrr3Pqqafy8ssv87vf/Y4ZM2Zwyimn8Prrr7fqD7/bbrtx6aWXUlRUxNNPP80f/vAHnnrqKcaOHcuTTz7JRRdd1Jz2N7/5DXvttRezZ8/mpptu4vbbb6ehoYFrrrmG5557LuXwi9J15pzr6TpsMGY2a8yYMWOSH2ErIiLS282dOxfwj7EXkfQyPVfGjh3L7NmzZzvnxma7DbWgi4iIiIhEiAJ0EREREZEI0U2iIiIiIj1kzpw5PPzwwxmlnTx5crfWRaJDAbqIiIhID5kzZw5XXHFFRmkVoPce6uIiIiIi0kMmTZqEcy6jSXoPBegiIiIiIhGiAF1EREREJEIUoIuIiIiIRIgCdBERERGRCFGALiIiIiISIQrQRUREREQiRAG6iIiIiEiEKEAXEREREYkQBegiIiIiIhGiAF1ERERkA6qsrKSysrKnqyERpgBdRERERCRCFKCLiIiIiERIzgJ0MxtuZreZ2WIzqzOz+WZ2nZkN6EKZE8zMBdOZuaqriIiIiEhU5SRAN7OtgVnAGcBrwLXAJ8AFwMtmtlknyhwB3ACsy0UdRURERDry8ssvY2Ycd9xxadOMHj2aoqIiqqqqqK+v58Ybb+SII45g5MiRFBUVUVFRwcEHH8xTTz2V8/p1dnuffvop559/Pttssw3FxcVUVFSw++67c9VVV3U6rZmx//77p9zepEmTMDPmz5/fvGz+/PmYGZMmTeLDDz/kpJNOYtCgQcRiMaZPnw7ArFmzuOCCC9h5552pqKiguLiYbbbZhosvvpiVK1em3b/77ruPgw46qDlPZWUlp5xyCjNnzgTgL3/5C2bGlVdemTL/0qVLKSgo4Mtf/nLabWxIuWpBvwkYBJzvnDvGOfdT59yB+EB9O+CX2RRmZgbcDqwA/pKjOoqIiIi0a6+99mK77bbj8ccfZ8WKFW3Wv/baa7z//vsceeSRVFRUUFVVxQUXXMDatWs55JBDuOiiizjqqKN44403OOKII7jllltyWr/ObG/mzJnsvPPO3HDDDWyxxRZccMEFjB8/nr59+zJ58uROp+2s//3vf+yxxx7Mnz+f8ePHc/bZZ9OvXz8A/va3v3Hvvfey3XbbccYZZ3DOOecwdOhQ/vjHPzJu3DjWrl3bqiznHJMmTeLkk0/mrbfe4rjjjuPCCy9k33335cUXX+Txxx8H4LTTTqNfv37ccsstNDU1tanTbbfdRmNjI9/97ndzso9dld/VAsxsFHAoMB/4U9Lqy4GzgQlmdrFzrjrDYs8HDgT2D+YiIiLSg+ZuP7qnq5Cx0e/P7VL+iRMnctlll3HPPffw/e9/v9W6O+64ozkNwIABA1iwYAHDhw9vlW716tWMGzeOn/zkJ4wfP56SkpIu1SmU7fbq6+v51re+RVVVFXfffTennnpqq3yLFi1qfp1N2q546aWXuPTSS/nVr37VZt2ll17Kn/70J/Ly8lotv/XWWznzzDO56aabuOSSS5qX/+1vf+OOO+7gq1/9Kv/+978pLy9vXtfU1MTy5csB6NOnDxMmTOBPf/oTTz31FN/85jeb0znnuOWWWygtLWXChAk52ceuykULehhAT3POxRNXOOfWAv8FSoE9MynMzEYDvwH+n3PuhRzUT0RERCRjEyZMIBaLNQfjofr6eu69914GDRrE4YcfDkBRUVGbYBmgvLycb3/726xcuZLXX389Z3XLdnuPPfYY8+fP56ijjmoTcAOMGDGiU2m7YvDgwVx++eUp140cObJNcA7w7W9/m379+jF16tRWy2+44QYAbr755lbBOUBeXh5Dhw5tfn/uuec2p000bdo05s2bx0knndSmjJ6SiwB9u2D+YZr1HwXzbTsqyMzygb8DC4HLOlshM5uVagK272yZIiIi0jsMHz6cgw46iJkzZ/Lee+81L3/ssceoqqpi/Pjx5Oe3dEJ49913mTRpEqNGjaKkpAQzw8y4+OKLAfjss89yWr9stvfKK68ANF9QtCebtF2x8847U1RUlHJdQ0MDN954I/vssw8VFRXk5eVhZsRiMdasWdNq36qrq3nnnXcYPHgwu+66a4fb3XHHHdlvv/146qmnWv0a8Ne//hWAc845p4t7ljtd7uIChJcaq9OsD5f3z6Cs/wN2BfZxztV2sV4iIiKSI13tNrKxmTRpEv/+97+54447uOaaa4C23VvAB7UHHnggjY2NHHTQQRx11FH069ePWCzGnDlzeOSRR6irq8tZvbLd3qpVqwAYNmxYh2Vnk7YrhgwZknbdSSedxEMPPcSoUaM4+uijGTJkSHMwf91113V630LnnXceL7zwArfccgtXXHEFS5cu5dFHH2WXXXZh991379wOdYNcBOgdsWDu2k1ktju+1fwPzrmXu7JB59zYNNuYBYzpStkiIiKy6Tv22GPp168fd911F7/61a+oqqriqaeeYuedd2bnnXduTnf11VdTW1vLc88912ZEk1//+tc88sgjOa1Xttvr378/kFkrfjZpwY/i0tjYmHJdGDyny5fKzJkzeeihhzj44IN58sknKSgoaF4Xj8f57W9/26X6Ahx33HEMHjyYW2+9lf/7v/+L3M2hoVx0cQlbyNN12umXlK6NhK4tHwK/yEGdRERERDqtpKSEE088kcWLF/PMM89w991309jY2Kr1HODjjz+moqIi5XCDzz//fM7rle329tzT3wKYyZCP2aQFf8NqqhtHm5qamDNnTkZlJPr4448BOOqoo1oF5+BHz6mtbd25oqysjJ122olly5bxxhtvZLSNgoICzjzzTD777DMee+wxbrnlFvr06cP48eOzrm93ykWA/kEwT9fHfJtgnq6POkCfIP9oYH3Cw4kcfiQYgL8Fy67raoVFREREOjJp0iQA7rzzTu68807y8/PbBHKVlZVUVVXx1ltvtVp+6623trmhMRey3d6RRx5JZWUljz76KPfcc0+b9Ymtz9mkBdh9991ZuHAh06ZNa7X86quvZsGCBVntF/h9A5rHRA8tX76c733veynznH/++QB897vfZfXq1m3B8XicJUuWtMlz9tlnk5eXx/e//33mzZvHqaeeSt++fbOub3fKRReX54L5oWYWSxzJxcz6AuOAWuCVdsqoA25Ns24Mvl/6S/iLgS51fxERERHJxLhx4/jSl77E/fffT0NDA0ceeSSDBg1qleaHP/whU6dOZZ999uHEE0+kvLycmTNn8tJLL3HCCSfwwAMP5LRO2W6vsLCQ+++/n0MPPZRTTz2Vm2++mT333JP169czd+5cnn322eZuKtmkBfjRj37E1KlTOfrooznppJOoqKhgxowZzJs3j/33379NoN2Rr371q4wbN44HH3yQvffem3322Ydly5bx1FNPsd1227HFFlu0yXPmmWfy0ksvceedd7LNNttw9NFHs/nmm7N48WL+85//8O1vf7vN+O1bbrkl3/jGN3j00UcBIte9BfBjP3Z1Aqbi+5j/IGn5H4Plf0lYVoAfTWXrDMueHJRxZg7qOWvMmDFOREREWnvvvffce++919PViJyrrrrKBXGIe+CBB1Kmeeyxx9wee+zh+vTp48rLy90hhxzinn/+eXf77bc7wN1+++2t0o8cOdKNHDmy03XKdnvOObdgwQJ37rnnusrKSldQUOAqKirc7rvv7q6++uoupX3kkUfc2LFjXVFRkauoqHAnnXSSmz9/vps4caID3Lx585rTzps3zwFu4sSJafdtxYoV7txzz3UjR450RUVFbtSoUe7SSy911dXV7X5ud911l9tvv/1cv379XFFRkausrHSnnnqqmzVrVsr0Dz/8sAPcbrvtlrYu6WR6rowZM8YBs1wnYlZzrt17NzNiZlsDM/BPE30EmAvsARyA79qyt3NuRZC2EpgHLHDOVWZQ9mR8N5eznHNdehyXmc0aM2bMmFmzZnWlGBERkU3O3Ll+lJbRozeeBxKJdNbkyZO54ooruOWWW/jOd76TVd5Mz5WxY8cye/bs2S7N4CXtyUUfdJxz/wN2A6bgA/OLga2B64G9wuBcRERERKQnrV27lr/85S9UVFRwyimn9HR1UsrZMIvOuUXAGRmkm0/L0IuZlDsZ381FRERERKRTnnjiCWbPns1jjz3GsmXL+P3vf09paWlPVyulDTEOuoiIiIikMGfOHB5++OGM0ibf7CjZuf/++7njjjsYPHgwl156KRdeeGFPVyktBegiIiIiPWTOnDlcccUVGaVVgN41U6ZMYcqUKT1djYzkpA+6tK+xKd5xIhEREel1Jk2alM1odNJLKEDfAG587mO+cf2L3PXKAtaub+jp6oiIiIhIhClA72ZNccc/X1/Eu4vX8POH32H3Xz7LJQ+8xZxFq3Q1LCIiIrIR2VCxm/qgd7MPlq7li+r65ve1DU3cN3MR981cxOih/Th19xEcvesw+hUX9GAtRUSktzMznHPE43FiMbXfiaQSBuhmGQ9I2Ck6A7vZDlv047XLDuLyI3dg28F9Wq2bu2QNv3jkXfb45bP8+P43mb1wpVrVRUSkRxQVFQFQXV3dwzURia7w/AjPl+6iFvQNoH9pIWeM24pJe1cye+FK/vHqIh5/azF1jf7m0dqGJu6f9Sn3z/qU7Yf05ZTdt+SYXYdRXqJWdRER2TD69u3L+vXrWbp0KQBlZWWYWbe3FIpEXXiTbnV1dfP50bdv327dpvWmFlszmzVmzJgxs2bN6umqsLq2gUfmfMY/Xl3I+0vXtllfXBDjG1/eglP3GMGYLQfoD6SIiHSreDzOokWLqKmp6emqiERaaWkpI0aM6LAr2NixY5k9e/Zs59zYbLehFvQeUl5SwOl7VTJhz5HMWbSKe15byGNvLqG2oQmA9Q1x/jX7U/41+1O2HdyHU3bfkmN3HUb/0sIerrmIiGyKYrEYI0aMoKqqirVr11JXV6dulyIBM6OoqIi+fftSUVHR7fdpqAU9Qtasb+CROYv5x6sLmbtkTZv1hfkxvvHloZyy+5Z8tVKt6iIiIiJRpRb0TUS/4gIm7DmS0/bYkrc+Xc09ry3k0TcXU1PvW9XrG+M89MZnPPTGZ2y9eRmn7L4lx48ZzoAytaqLiIiIbCrUgh5xa9c38Oibi7nntYW881mKVvW8GId/eQin7L4le2xVoVZ1ERERkQhQC/omrG9xAeP3GMn4PUby9qeruef1hTzyxmdUh63qTXEembOYR+YsZtTAoFV97HAq1KouIiIislFSC/oGcNXLV7Fg7QJ2G7wbuw3eja9s/hUK8zofQFfXNfJY0Kr+5qer26wvzIvx9Z2GcMruI9hr1GZqVRcRERHZwNSCHmHOOV787EWWVC/h1SWvAlAYK+Qrm3+F3Yb4gH3nzXemOL844zLLivI5efctOXn3LXnns9Xc+/pCHn5jMevqGgHfqv7Ym4t57M3FVG5Wysm7b8kJY4czsE/3DqovIiIiIl2nFvRutmTdEg7916HtpimIFfDlgV9m7OCx7DZkN3bZfBdKC0qz2k5NfSOPv7mEf7y2kDmLVrXdRp7x1coKxmw5gDEj+7PriAG6uVRERESkm3SlBV0B+gawtHopry99nVnLZjFz2UwWrFnQbvp8y2eHgTs0d4nZddCu9Cnsk/H23lu8hntfX8hDsz9jbdCqnsqozcsYs+UAxo4cwJgtB7DNoD7EYuoOIyIiItJVCtAzFJVRXJbXLPfB+tKZvL7sdeatntdu+pjFGF0x2gfsQ3ZjzOAx9Cvs1+F2auubeOLtJdzz2kJmLVjZYfq+RfnssmX/oJV9ALuM6E95SUHG+yUiIiIingL0DEUlQE/2Re0XzQH7zGUz+XjVx+2mN4ztK7Zv7hIzdtBY+hf3bzfP4lW1zFqwktkLVzJ74Sre/Ww1jfH2v3sz+NLmfZpb2MeM7M+ogWplFxEREemIAvQMRTVAT7Zy/UpmL5vNzGU+YP+g6gMc7X9P2wzYprlLzNjBY9msZLN2069vaOLtz1Yze8HKIHBfxRfr6jqsW3lJAbuGrexbDmCXLfvTp0j3GouIiIgkUoCeoY0lQE+2um41byx/o7mFfW7VXOIu3m6eUeWjmrvE7DZ4NzYv3bzd9M45Pl1Zy+yFK5tb2ucuWUtTB63sMYNtB/dlzMgBjA26xlRuVqqhHUVERKRXU4CeoY01QE+2rn6dD9iXzWTm0pm8u+JdmlxTu3lG9hvJDhU7sFX/rRhVPopR5aMY2W9ku+Ox19Q38uai1cxeuJI3gq4xVdX1HdavoqyQXUf0Z0zQNWbnEeWUFqqVXURERHoPBegZ2lQC9GQ1DTXMWT6nuUvM21+8TWM8/egtoTzLY3jf4WxV3hK0jyofxaj+oygrKGuT3jnH/BU1zA5a2GctWMmHy9bSQSM7eTFj+yF92W5IX0ZWlDFys1K23KyUkRWlVJQVqrVdRERENjkK0DO0qQboyWoba3nr87eaW9jf+vwt6uMdt3wnGlQ6qE3QPqp8FBXFFa0C6nV1jby5aFVzt5g3Fq5idW1DxtvpU5TPlhWlPmivCAN3H8QPLS8mPy+WVb1FREREokBPEpVWSvJL2GPoHuwxdA8A6prqmLtiLp+s/oRPVn3i56s/YfG6xWlvPl1es5zlNct5ZckrrZaXF5U3B+3NLe9DRrHX1lsTsxjxuOOTL6qbW9lnL1zJh8vWpa3rurpG3luyhveWrGmzLj9mDB9QwpablTEyIYgfuVkZW1aUUlKY14VPSURERCSaFKD3AkV5RewyaBd2GbRLq+W1jbXMXz2/OWCft3oen6z6hAVrF6TtIhPesPrG8jdaLS/JL6GyX2VL0D5oFGdtM4ot+46mph7e+Ww181dUs3BFDQtW1LCgqoaFK6qprk/fd74x7rvUzF9Rk3L9oL5FbVrd1XVGRERENnYK0HuxkvwSRm82mtGbjW61vCHewKdrP20VtIevaxpTB8u1jbXMrZrL3Kq5rZbnWz7D+w5nVPkohvUdxhYjB7Pr6MEMKh3EoNKtyHP9WbyygYVV1SxYUcPCFTUsrPIB/Odr2x/2cfnaOpavrWNmiocwteo6EwTwwwaUMKRfMUPKi+lXnK8AXkRERCJJAbq0URArYKvyrdiqfKtWy51zLKtZ1qqbTBi4V62vSllWo2tk/pr5zF8zP+32KoorGFzqg/bBWw5mu+0HMbhsMOUFA2lq6Ed1TRnLVxkLwiC+qobPVta2+6Cl9rrOAJQW5jGkvJih5cUM6VfCkPIihpSXMDQI4IeWF6sVXkRERHqEAnTJmJkxpGwIQ8qGsPewvVutW7V+Vaug/ZPVnzBv1TwWVy/usNyq9VVUra9q0/qeqKygzAfwIwazz3aD2LxkEMVWQVNDP9av78PqtaUsq8pn4cr1HXadAaipb+KTz6v55PPqtGkK82IMLi9iaL+SlmC+vLi5FX5oeQmb9y0iT09WFRERkRxSgC450b+4P2OKxzBm8JhWy2saapi/Zj7zVs9jWc0yllUvY3nNcv+6Zhlf1H7R4UOXAKobqpm3eh7zVs9LmyY/ls+gYYMYu81gyosGUsQArKmcuvV9WVddxup1xaxYU8CyVVDb0PE265viLKqqZVFVbdo0eTFjUN8iBvdrCeD9vCRonS9mUL8iivJ1Q6uIiIhkRgG6dKvSglJ22GwHdthsh5TrG+ONrKhdwbKa1oF7GMiHy+qa2u+PHpa1uHpx+lb7QmAglAwqYIuiCsryyymK9SPf9cU1ldFYX0ZtXQnrqoupWlvAuppiXFMfiBcCqVvJm+KOJavXs2T1euYsSl+3gX0K2aysiP6lBfQvLWBAaSH9SwsZ0Py6oPl9/+B9gYaYFBER6ZUUoEuPyo/lM7hsMIPLBqdN45xjTf0allYvbQ7YUwXza+pT9zdP1hBvYHntMmBZ25UxoK+f+oR1tAJK8/tTSF9iri/xxlLq6kqpqSlmXa0P4l1jWfMc1zag/2JdPV+sy24s+r5F+ZQnBPADkgL41ssLKS8t0M2vIiIimwAF6BJ5ZkZ5UTnlReVsV7Fd2nS1jbU+cK9e1hy8h++X1yxv7uu+vml9VttvdA2safgc+LxlYZGfSga0TZ9HIfn0haY+NDaUsr6uBNfYB9dUgosX4eJF0FSMixf7903FELzGFTSXs7aukbV1jXy6Mn0Xmzbbjhn9S1q30vvXBfQtLqC0MI+yonw/L8yntMjPy4ryKCnMp6wwj9LCfArz1XovIiLSUxSgyyajJL+Ekf1GMrLfyHbT1TTUsLJuJVW1VaysW8mK2hWsrFvJyvUrm4P4qvVVze8z6V6TqIl6mlgBeSsgDwqKs8js8iFeRLwpDN6LcPEggE98HQT2Ll4UrPOv4/FiVlQXs6K6Hkh/A2xHCvKM0jBgL2oJ3MuKkubB+tLCvA7TF+fnEdMNtSIiIh1SgC69TmlBKaUFpQzrM6zDtM45ahtr2wTtrV7XVTUH+1W1VdTHs+vK0oo1Ql4jsbzOB9cALp7vg/kw0I8XQbwIFy/AuUKIF+DiheCCebwQ5wr8PF5A3BWyNl7A2tpCXE24vNBfQND51vWSgjxKC/MoKQzmBeHrfD9vXh8G/Ylp85vfh+U05yvMU599ERHZZChAF2mHmTUH9MP7Du8wvXOOmsaaVkH8yvUrWbF+Bevq17GuwU/V9dWsbVhLdUN1y/L6dTS61E9wzbresUYstg7y1+WkvEQuXoCLF4DzwXxycO+XBxcBzRcDfnlDvIDVroBV9QVQFy5vO8flke7G3HQK8iwI3PNbB/aF+ZQUxJqD+ZKClguDTOalhXkUF+RRlB9T/34REdkgFKCL5JCZUVZQRllBGSP6jsgqr3OOuqY6H8AnBu5B8B7OqxuqWy2rbgiC/YSgP5OhKzvLYg1YrAFI/VTZXHDOUgfu8fRBvXMFrI8XUBsvYEVjAa4+eX2+D/xdDFwezuUFFwJ+mV8fC5bFSL5AiBnNgXtxQevgPbwYSFxeUpBHcUKQX5TvW/kL82MU5BmF+TEKm9/HUr4vyDMK83RhICLS2yhAF4kIM6M4v5ji/GIGlgzsdDlht5zk1vraxlrWN65vNQ+n9U3rU65b39R6Wbb98TvLzIHVY7EudBfqIpcqmHcxasmjpvl9HsRjuNo8qPHBfmLa5rwklxULluXhwouC4MKgTX7yyLc88i2f/Lx8CmIF5Fs+hXkF5Mf8vCDPzwvzCijKL6AwFszz8ikqyKMwzwf7ebFwbhTkxciPtbz2cyM/FiM/mIfLEtO3XhemNfLD9YmvE9KKiEjmFKCLbGISu+UMYlBOy467eEsg37Se2oaWIL45qG9sCfZrm4LlDT64Dy8E6prqfLqm9dQ1tl2eq64+XWHWBNYENGTZ2ab7xIG6YGr3LoU4EFzbuJrEi4PwwiD5YqHlIqFtmhR5iKUto/UFiL/gMPLIszxilkd+zL/Oj+WRF/Nzf/Hh5wUx/7oglkdBXr5flp9PYSyPglh+cDGST2FeHoX5/uKkKM+nLczPa77IKMjzFxDhRURBnhEzvy4WgzzzFxCtlgUXGMnL8mLm06dYlhcz/cIhIjmnAF1EMhazWHPw350a443UNdU1t9q3CuaD180BffC6o+C/Id5AQ7yBxngjjfHGdl83uaZu3b8NKWoXGg5oDKaMMzRkmNTFEi4WLPgFInhNyzp/0WEJaf37lvzWch+EiyWUkdeqLBesN4LJYsTIa/U6ZgnrLI8Yfpvh8ljzuhgWpI+R+N58PgteB2nyYi3p8yyPWMxvLy/cjsXIS1jXclEUoyCY58fy/C8msXwK8vyFU/hrSvKUn/Q6lnSBky5t4sWMGcSCuZkRMzD8nHAdBPtswbLWaRPLCNOH5YlsShSgi0jk5MfyyY/lU1ZQ1iPbj7s4TfGmzIJ6F7xvaqDRNbabJ3FqiDc05005OV+mL6+R+qYGGppaymtIkb4p3kiTC6cmHN13L0IUmcXBWu9zT4VtDmgKpm7fkINcftUtFzBB5JxwQeOwhHWxpPXWfNECSXmb8wAYLpgnLqPVsnTL0+e3IK1hPmpPXubMX2w11ycoq3l7Ldt2rfY/YX2YPjFdUJZLSusS85u/SPEXTv4CJBbLI9+MWMz8xVQsFlx8hb/O5Pm04QWQxYJfcXx3tfwgT37w3r/2F2b5eeYvyvLMp8vzF3j54QVcwjaaL+aCMvxFXlCm5TUva9mG3w//a1ji8jzyY4YF6/x2w3rmtVx4BV9d83djCd9ywkVXy3dJ2nQty1vKIil/+DoW/OK1sVCALiKSJGYxYnkxCvIKOk4cYXEXb3Oh0OSa2gT2ie+bXFObi4rEPOEvDKkuKFLlaYg30NgUXlA0Nc9bpjBt8DreRJNrmfzFUmPz6zhNxIPXjpa5C0I26ToLL3JSxDIbT3iTWlTqHw+mrDvzhRk3Uq0uWmh7IZjRBWC6i8BU6xPKKS8Ywitn37jhd7qTFKCLiGyiYhajMK+QwrzCnq5Kt4u7eEJA30SjayQejzdfOCSvD1+H6VpdELimVmnapE9Y1hRcaLS68Gjy75tcnIam8AKkdTkt2/DLW9UvcR6PE6f1MufiNLl484VKPHxNHJf03l/AJM8dzjUF8+C9LnJkAzALfvIxSPX7UndeQNU35X7Y4e6kAF1ERDZ6saAfNwB5PVuXjVlLwN968hcGLug65WiKB/NWFwnpp/C+Dn9R4FLP21kX1i0xrf8X1MlB3LnmNE3BPN48+Wbn8CLGOUecOODXhxcrLRcwceLN248HacIyfRpfZpjPNS+LB+laLn4cjfEmX494nKagTk3x8PNxCcuaEursggs0Rzzu6xuPx5vXNW8vfO9a3oefXdwl7EvC/rT+zIP9CFMFafz3Fa4LljV/Hy3zMG/za2tZ3jxZFJr9o/L7SWYUoIuIiAiQdKEjkkPNFxB0fEEXXgSFF4DNF4cuYRmtl4XlN78OL2iC7ZXmd+/gBrmmAF1EREREupWZv3E1Tz9xZUSXySIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEZKzAN3MhpvZbWa22MzqzGy+mV1nZgMyzL+ZmZ1pZg+Z2cdmVmtmq83sJTP7jpnpYkJERERENnn5uSjEzLYGZgCDgEeA94HdgQuAw8xsnHNuRQfFfAv4M7AEeA5YCAwGjgNuAQ43s28551wu6iwiIiIiEkU5CdCBm/DB+fnOuRvChWb2R+BC4JfAOR2U8SFwFPCEcy6eUMZlwGvA8fhg/V85qrOIiIiISOR0uduImY0CDgXmA39KWn05UA1MMLOy9spxzv3HOfdYYnAeLF8K/CV4u39X6ysiIiIiEmW56Nd9YDCfliK4Xgv8FygF9uzCNhqCeWMXyhARERERibxcdHHZLph/mGb9R/gW9m2BZ7Mt3MzygdODt09nmGdWmlXbZ7t9EREREZENKRct6OXBfHWa9eHy/p0s/zfATsCTzrmpnSxDRERERGSjkKubRNtjwTzr0VfM7HzgYvyoMBMyzeecG5umvFnAmGzrISIiIiKyoeSiBT1sIS9Ps75fUrqMmNn3gP8HvAcc4Jyr6lz1REREREQ2HrkI0D8I5tumWb9NME/XR70NM/shcCPwDj44X9rp2omIiIiIbERyEaA/F8wPTX7ap5n1BcYBtcArmRRmZpcA1wJz8MH58hzUUURERERko9DlAN059z9gGlAJfC9p9RVAGXCnc64awMwKzGz74OmjrZjZL/A3hc4CDnLOfdHV+omIiIiIbExydZPoecAM4HozOwiYC+wBHIDv2vKzhLTDgvUL8EE9AGY2EbgSaAJeBM43M5LMd85NyVGdRUREREQiJycBunPuf2a2Gz7APgw4AlgCXA9ckeENnlsF8zzgh2nSPA9M6VJlRUREREQiLGfDLDrnFgFnZJBuPi1DLyYunwxMzlV9REREREQ2Rrm4SVRERERERHJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhCtBFRERERCJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAJ0EREREZEIUYAuIiIiIhIhOQvQzWy4md1mZovNrM7M5pvZdWY2oCfKERERERHZGOXnohAz2xqYAQwCHgHeB3YHLgAOM7NxzrkVG6ocEREREZGNVa5a0G/CB9XnO+eOcc791Dl3IHAtsB3wyw1cjoiIiIjIRqnLAbqZjQIOBeYDf0pafTlQDUwws7INUY6IiIiIyMYsFy3oBwbzac65eOIK59xa4L9AKbDnBipHRERERGSjlYs+6NsF8w/TrP8I3zK+LfDsBigHM5uVZtXOc+fOZezYse1lFxERERHpkrlz5wJUdiZvLgL08mC+Os36cHn/DVROe5pqa2tXz549e34Xyuis7YP5+z2w7U2BPr+u0efXNfr8ukafX9fo8+safX5do8+v8yqBNZ3JmJNRXDpgwdxtqHKcc5FrIg9b9aNYt42BPr+u0efXNfr8ukafX9fo8+safX5do8+vZ+SiD3rYsl2eZn2/pHTdXY6IiIiIyEYrFwH6B8F82zTrtwnm6fqW57ocEREREZGNVi4C9OeC+aFm1qo8M+sLjANqgVc2UDkiIiIiIhutLgfozrn/AdPwHeG/l7T6CqAMuNM5Vw1gZgVmtn3w1NBOlyMiIiIisinK1U2i5wEzgOvN7CBgLrAHcAC+S8rPEtIOC9YvoO3QM9mUIyIiIiKyyTHnujq4SlCQ2QjgSuAwYDNgCfAwcIVzriohXSUwD1jgnKvsbDkiIiIiIpuinAXoIiIiIiLSdbm4SVRERERERHJEAbqIiIiISIQoQBcRERERiRAF6CIiIiIiEaIAXUREREQkQhSgi4iIiIhEiAL0TjKz4WZ2m5ktNrM6M5tvZteZ2YCeKGdjYWabmdmZZvaQmX1sZrVmttrMXjKz75hZxsdk8Fm5NNPS7tyPnpTL/e5txx+AmU1q5/MLp6YMy9pkj0EzO8HMbjCzF81sTbBPd3WQZ28ze9LMqsysxszeMrMfmlleJ7afs7J6Qjafn5ltY2aXmNl/zGyRmdWb2TIze8TMDshyu5UdHNv35mYPu1eWn1/O97mXHX9TMvib+GyG290kjr8oyNWTRHsVM9sa/8TTQcAjwPvA7sAFwGFmNs45t2JDlbOR+RbwZ/wDqJ4DFgKDgeOAW4DDzexbLvMB+lcD16VYvq7rVY20Lu93Lz3+AOYAV6RZty9wIPBUFuVtqsfgz4Gd8fvxKbB9e4nN7GjgX8B64D6gCjgSuBYYhz/3M5LLsnpQNp/fVcBJwHvAk/j93Q44CjjKzC5wzl2f5fbfxD/kL9k7WZbTU7I6/gI52edeePw9DMxPs24CMIrs/ibCxn/89TznnKYsJ2Aq4IAfJC3/Y7D8LxuynI1pwgc/RwKxpOVD8MG6A47PsKz5wPye3qce+Axzst+98fjL4DN5Odj3ozbkdxHFCTgA2AYwYP/gc7krTdp+wHKgDtgtYXkx/iLQASdnuN2clbURfX6TgF1TLP8aUB98FkMz3G5lsK0pPf0ZbMDPL2f73BuPv3bK6A/UBJ/FwAzzbBLHXxQmdXHJkpmNAg7F/8f8p6TVlwPVwAQzK9sQ5WxsnHP/cc495pyLJy1fCvwleLv/Bq9YL9Nbj7/2mNlOwJ7AZ8ATPVydHuece84595EL/tftwAnA5sC9zrmZCWWsx7fkAZyb4aZzWVaPyebzc85Ncc69kWL588B0oBDYO/e1jK4sj79c6nXHXzsmACXAg865L3JUNcmQurhk78BgPi1FkLnWzP6LD3z2BNrrs5WrcjYlDcG8MYs8RWZ2GrAlPqh8C3jBOZdRH+KNWFf3W8dfW98N5rdmefz01mMwUXg8PZ1i3Qv4Vri9zazIOVe3AcvaFHTm7yLAFmb2XWAzYAXwsnPurZzWLHpysc86/lqcFcz/2om8vfH4yykF6NnbLph/mGb9R/jAZlvaD2xyVc4mwczygdODt6n+MKYzBPh70rJ5ZnZG0Pq0qerqfuv4S2BmJcBpQBx/L0Q2eusxmCjt8eScazSzecCO+L6sczdgWRs1MxsJHIQPCl/IMvshwZRY3nRgonNuYU4qGD252Gcdf4CZ7QV8GfjQOfdcJ4rojcdfTqmLS/bKg/nqNOvD5f03UDmbit8AOwFPOuemZpjndvx/XkOAMvwfk5vxfeCeMrOdu6GeUZCL/dbx19qJ+H19yjm3KIt8vfUYTJbL40nHJmBmRcDdQBEw2Tm3MsOsNfibTscCA4Lpa/ib8vcHnt0Eu67lcp91/HlnB/O/ZZmvNx5/3UIBeu5ZMO9qv7lclRN5ZnY+cDF+FJEJmeZzzl0R9Glf5pyrcc6945w7B3+TYwkwuVsq3MM20H73muMvEP5ndHM2mXrrMdgJuTyeNvljMxjK7+/4EUPuA36faV7n3HLn3P8552Y751YF0wv4X8ReBb4EnNkd9e4pG3ife8PxV45vtKgHpmSTtzcef91FAXr2wqvn8jTr+yWl6+5yNmpm9j3g/+GHFzvAOVeVg2LDm033y0FZG5Ns9lvHX8DMdsDfgPcpfoi7XOhtx2Auj6defWwGwfld+KH8/gmclosbJZ1zjbR03+oVx2Un97lXH3+B04BScnhzaG88/rpKAXr2Pgjm26ZZv00wT9e3N9flbLTM7IfAjfhxUQ8IRnLJheXBvLf9jJbNfvf64y9BZ28ObU9vOwbTHk/B/SVb4W9y/GQDl7VRCfbvHuBk4B/AqUFgkyufB/PeclxC9vvca4+/BOHNoVn9opiB3nj8dZoC9OyFN0scaklPvTSzvvifJGuBVzZQORslM7sE/9CHOfjgfHn7ObKyVzDflP+AppLNfvfq4y9kZsX4blVx4NYcFt3bjsH/BPPDUqzbD98aNyPDUS9yWdZGw8wKgQfwLed3AhO6YSSgPYN5bzkuIft97pXHX8jM9sA/4OhD59z0HBffG4+/TlOAniXn3P+AafibwL6XtPoK/JXhnc65agAzKzCz7YOnNna6nE2Jmf0Cf1PoLOCg9n5CS/f5mdmOZlaRIv1IfKs8+J+JNynZ7reOvw59C38T05Ppbg7VMZiRB4AvgJPNbLdwYXABdHXw9s+JGcysPPhch3a1rI1dcEPoQ8DR+AvFM5KHP02RJ+XnZ2Z7BMF+cvoDgQuDt5vUcdmZfdbxl1Z4P067Qyvq+Ot+tuGfAbDxS/GI9LnAHvgnd30I7O2CR6SbWSUwD1jgnKvsbDmbCjObiL/ppAm4gdT9+OY756YE6StJ8fmZ2WTgp/iW4HnAWmBr4Bv4J749CRzrnKvvlh3pIdnut46/9pnZi8A++CeHPpYmTSW98Bg0s2OAY4K3Q4Cv41u+XgyWfeGc+1FS+gfwj0e/F/949KPww9Y9AJyY2JfazCbhR8G5wzk3KcW2My4rirL5/MzsdvzTRL8AbiL1DYjTE1s0031+wVB2O+IfcPRpsPgrtIzv/QvnXBhoRlaWn990stxnHX+tz98gTz9gMVAADOug8WwSm/DxFwkuAo8z3RgnYAT+4FyCv9N5Af5mx4qkdJX4P7bzu1LOpjLhR7VwHUzTO/r88MM23YMf+WUV/mEenwP/xo+nbj29r930+WW13zr+2v0sRwefzSIgr510vfIYzOBcbXNM4btGPQmsxHeRehvfatbm88UHpGkfCZ5NWVGcsvn88MFMR38XJ2fy+QHfAR7HPyV4Hf4x7Qvxo8Hs29OfSzd9flnvs46/lOfvucG6ezIof5M+/qIwqQVdRERERCRC1AddRERERCRCFKCLiIiIiESIAnQRERERkQhRgC4iIiIiEiEK0EVEREREIkQBuoiIiIhIhChAFxERERGJEAXoIiIiIiIRogBdRERERCRCFKCLiIiIiESIAnQRERERkQhRgC4iIiIiEiEK0EVEREREIkQBuoiIiIhIhChAFxERERGJEAXoIiIiIiIRogBdRERERCRC/j93UfN8IJxXyQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"image/png": {
"height": 277,
"width": 372
},
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Descente de gradient stochastique pour l'estimation des paramètres\n",
"# 75 % des données sont gardées pour la phase d'entrainement\n",
"# 25 % des données sont gardées pour la phase de test\n",
"#help(model.fit)\n",
"history = model.fit(x=X, y=y, batch_size= 30, verbose=0, epochs=20, validation_split=0.25)\n",
"\n",
"import pandas as pd\n",
"\n",
"# Définition d'une fonction de représentation graphique\n",
"def plot_loss_accuracy(history):\n",
" historydf = pd.DataFrame(history.history, index=history.epoch)\n",
" plt.figure(figsize=(8, 6))\n",
" historydf.plot(ylim=(0, max(1, historydf.values.max())))\n",
" loss = history.history['loss'][-1]\n",
" acc = history.history['accuracy'][-1]\n",
" val_loss = history.history['val_loss'][-1]\n",
" val_acc = history.history['val_accuracy'][-1]\n",
" plt.title('Loss: %.3f, Accuracy: %.3f, \\n Val_loss: %.3f, Val_accuracy: %.3f' % (loss, acc, val_loss, val_acc))\n",
" \n",
"plot_loss_accuracy(history)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Apres l'entrainement, on peut avoir accès à la valeur du paramètre $\\hat{\\theta}$ calculée par l'algorithme ``ADAM``à l'aide du code ci-dessous. "
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[, ]\n",
"[[ 0.8800773]\n",
" [-2.5845459]]\n",
"[-0.8808409]\n",
"LR coefficients: [[ 1.32865076 -2.86107543]]\n",
"LR intercept: [-1.57121087]\n"
]
}
],
"source": [
"print(model.weights)\n",
"\n",
"weights = model.get_weights()\n",
"\n",
"print(weights[0]) # theta_1 et theta2\n",
"print(weights[1]) # theta_0 (Intercept ou terme de biais)\n",
"\n",
"# Résultats de la procédure de régression logistique\n",
"print('LR coefficients:', lr.coef_)\n",
"print('LR intercept:', lr.intercept_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Tracez la frontière obtenue et comparez la avec celle de la régression logistique"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# TODO"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Travail pour le rapport "
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## 1 Implémentation de trois algorithmes stochastiques pour des données simulées\n",
"\n",
"Dans cette partie, on vous demande d'implémenter les trois algorithmes stochastiques décrits dans l'introduction du projet et de comparer les résultats obtenus avec ceux de la section précédente sur des données simulées en dimension $d=2$."
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [],
"source": [
"from pylab import *\n",
"import os "
]
},
{
"cell_type": "code",
"execution_count": 123,
"metadata": {},
"outputs": [],
"source": [
"# Nombre de données\n",
"n = len(y)\n",
"\n",
"# Ajout d'une colonne de 1 à la matrice X\n",
"X1 = np.c_[np.ones((n,1)),X]\n",
"y1 = y"
]
},
{
"cell_type": "code",
"execution_count": 124,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(750, 3)\n",
"(250, 3)\n",
"(750,)\n",
"(250,)\n"
]
}
],
"source": [
"# Partage des données en un ensemble d'apprentissage et un ensemble de test\n",
"from sklearn import model_selection\n",
"\n",
"X1_train, X1_test, y1_train, y1_test, = model_selection.train_test_split(X1,y1, test_size=.25)\n",
"\n",
"print(X1_train.shape)\n",
"print(X1_test.shape)\n",
"print(y1_train.shape)\n",
"print(y1_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.1 Algorithme de descente de gradient stochastique\n",
"\n",
"$$\n",
"\\mathcal{L}_{n}(\\theta) = \\frac{1}{n} \\sum_{i=1}^{n} f(\\underbrace{X_i,Y_i}_{Z_i},\\theta),\n",
"$$\n",
"où $f(X_i, Y_i,\\theta) = - \\left[ Y_i \\langle \\theta , X_i \\rangle - \\log(1+\\exp(\\langle \\theta , X_i \\rangle)) \\right]$ est la cross-entropy binaire entre la classe de l'observation $i$ et celle de sa prévision. \n",
"\n",
"Sa version population:\n",
"$$\n",
"\\mathcal{L}(\\theta) = \\mathbb{E} \\left[f(X, Y,\\theta) \\right],\n",
"$$\n",
"Si l'on suppose que le modèle logistique est le vrai modèle pour les données avec la constante $\\theta^*$, i.e. $\\mathbb{P}(Y = 1 | X) = \\langle \\theta^*, X\\rangle$. Alors, $\\theta^*$ minimise l'esperance $\\mathcal{L}(\\theta)$. Etant donné les observations $(X_i, Y_i)_{i = 1}^n$, la meilleure estimation$^1$ de $\\theta^*$ est le minimiseur de $\\mathcal{L}_{n}(\\theta)$. \n",
"\n",
"*$^1$ dans le sens de la minimisation de la vraisemblance.*\n",
"\n",
"Mais quand $n$ est grand, il coût cher d'utiliser les algorithmes **Batch**, ctd chaque iteration demande le calcul de gradient sur tous les observations, $\\frac{1}{n} \\sum_{i = 1}^n \\nabla_{\\theta} f(Z_{i},\\theta)$. \n",
"\n",
"- Coût du temp; \n",
"- La presence de l'ensemble d'aprentissage dans une espace, e.g. coût du stockage, calcul impossiple en temps réel.\n",
"\n",
"Les algorithmes stochastiques sont proposés pour ce scénario de l'estimation du $\\theta^*$. Dans un premier temps, on utilise la descente de gradient stochastique (SGD) et sa variant mini-batch gradient descent. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**SGD (une epoch):** \n",
"\n",
"*Initialisation* : choix de $\\hat{\\theta}^{(0)} \\in \\mathbb{R}^{d+1}$\n",
"\n",
"*Répéter pour $1 \\leq k \\leq n$*\n",
"\n",
"$$\n",
"\\hat{\\theta}^{(k)} = \\hat{\\theta}^{(k-1)} - \\gamma_k \\nabla f(X_k,Y_k,\\hat{\\theta}^{(k-1)})\n",
"$$\n",
"\n",
"où pour un couple de données $(X,Y) \\in \\mathbb{R}^{d+1} \\times \\{0,1\\}$, on définit\n",
"\n",
"$$\n",
"\\nabla f(X,Y,\\theta) = - Y X + \\frac{\\exp(\\langle \\theta , X \\rangle)}{1+\\exp(\\langle \\theta , X \\rangle)}X\n",
"$$\n",
"\n",
"et $(\\gamma_k)_{k \\geq 1}$ est une suite de pas décroissants qui sont généralement choisis de la forme\n",
"\n",
"$$\n",
"\\gamma_k = c k^{-\\alpha},\n",
"$$\n",
"\n",
"avec $1/2 < \\alpha \\leq 1$ et $c > 0$ une constante à calibrer de façon judicieuse.\n",
"\n",
"\n",
"**Mini-batch GD (une epoch)**\n",
"\n",
"Il est également possible de partionner les données en une suite de mini-batch à $M$ échantillons, dans le but d'avoir une meilleure estimation (en terme de variance) du gradient de $\\mathcal{L}$ à chaque itération. \n",
"\n",
"*Initialisation* : choix de $\\hat{\\theta}^{(0)} \\in \\mathbb{R}^{d+1}$, de taille du batch $M$\n",
"\n",
"$$\n",
"\\underbrace{Z_1,\\ldots,Z_{M}}_{B_1 = \\{1,\\ldots,M\\}}, \\quad \\underbrace{Z_{M+1},\\ldots,Z_{2M}}_{B_2 = \\{M,\\ldots,2M\\}}, \\quad\\underbrace{Z_{2M+1},\\ldots,Z_{3M}}_{B_3 = \\{2M+1,\\ldots,3M\\}}, \\quad \\ldots\n",
"$$\n",
"\n",
"*Répéter pour $1 \\leq k \\leq \\frac{n}{M}$*\n",
"\n",
"$$\n",
"\\hat{\\theta}^{(k)} = \\hat{\\theta}^{(k-1)} - \\gamma_k \\left( \\frac{1}{M} \\sum_{i \\in B_{l}} \\nabla f(X_{i},Y_{i},\\hat{\\theta}^{(k-1)}) \\right)\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"----\n",
"Niveau théorique, pour montrer la convergence d'algo, on suppose qu'on a des observations infinies, donc on répète pas d'échantillon. Mais, en pratique, c'est une autre histoire, les données sont toujours limitées, donc on peut traverser le jeu des données plusieurs fois. Maintenant, on transfère les algos ici à la version multi-epochs.\n",
"\n",
"----"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"**SGD:** \n",
"\n",
"*Initialisation* : choix de $\\hat{\\theta}^{(0)} \\in \\mathbb{R}^{d+1}$ et **du nombre d'epochs à effectuer $n\\_ epoch$**\n",
"\n",
"***Répéter pour $1 \\leq t \\leq n\\_ epoch$***\n",
"\n",
"*Permutation au harsard de l'ensemble d'apprentissage, dont nouveau ordre noté par $(X_{t_1}, Y_{t_1}), ..., (X_{t_n}, Y_{t_n})$*\n",
"\n",
"*Répéter pour $1 \\leq i \\leq n$*\n",
"\n",
"**$k = (t-1)*n + i$**\n",
"\n",
"$$\n",
"\\hat{\\theta}^{(k)} = \\hat{\\theta}^{(k-1)} - \\gamma_k \\nabla f(X_{t_i},Y_{t_i},\\hat{\\theta}^{(k-1)})\n",
"$$\n",
"\n",
"où pour un couple de données $(X,Y) \\in \\mathbb{R}^{d+1} \\times \\{0,1\\}$, on définit\n",
"\n",
"$$\n",
"\\nabla f(X,Y,\\theta) = - Y X + \\frac{\\exp(\\langle \\theta , X \\rangle)}{1+\\exp(\\langle \\theta , X \\rangle)}X\n",
"$$\n",
"\n",
"et $(\\gamma_k)_{k \\geq 1}$ est une suite de pas décroissants qui sont généralement choisis de la forme\n",
"\n",
"$$\n",
"\\gamma_k = c k^{-\\alpha},\n",
"$$\n",
"\n",
"avec $1/2 < \\alpha \\leq 1$ et $c > 0$ une constante à calibrer de façon judicieuse.\n",
"\n",
"**Mini-batch GD**\n",
"\n",
"*Initialisation* : choix de $\\hat{\\theta}^{(0)} \\in \\mathbb{R}^{d+1}$, de taille du batch $M$ et **du nombre d'epochs à effectuer $n\\_ epoch$**\n",
"\n",
"***Répéter pour $1 \\leq t \\leq n\\_ epoch$***\n",
"\n",
"**Permutation au harsard de l'ensemble d'apprentissage, dont nouveau ordre noté par $\\underbrace{(X_{t_1}, Y_{t_1})}_{Z_{t_1}}, \\ldots, \\underbrace{(X_{t_n}, Y_{t_n})}_{Z_{t_n}}$**\n",
"\n",
"**Former les mini-batchs de nouveau**\n",
"$$\n",
"\\underbrace{Z_{t_1},\\ldots,Z_{t_M}}_{B_1 = \\{t_1,\\ldots,t_M\\}}, \\quad \\underbrace{Z_{t_{M+1}},\\ldots,Z_{t_{2M}}}_{B_2 = \\{t_M,\\ldots,t_{2M}\\}}, \\quad\\underbrace{Z_{t_{2M+1}},\\ldots,Z_{t_{3M}}}_{B_3 = \\{t_{2M+1},\\ldots,t_{3M}\\}}, \\quad \\ldots\n",
"$$\n",
"\n",
"*Répéter pour $1 \\leq l \\leq \\frac{n}{M}$*\n",
"\n",
"**$k = (t-1)*\\frac{n}{M} + l$**\n",
"\n",
"$$\n",
"\\hat{\\theta}^{(k)} = \\hat{\\theta}^{(k-1)} - \\gamma_k \\left(\\frac{1}{M} \\sum_{i \\in B_{l}} \\nabla f(X_{i}, Y_{i}, \\hat{\\theta}^{(k-1)}) \\right)\n",
"$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Travail à réaliser\n",
"\n",
"Implémentez le mini-batch GD sur l'ensemble d'appretissage et faites varier les hyper-paramètres, e.g. $\\mbox{n_epoch} = 20, \\mbox{batch_size} = 10, \\alpha = 0.5, c = 10$\n",
"\n",
"Pour le meilleur combinaison de hyperparamètres que vous avez trouvée, ctd laquelle qui donne le plus petit erreur de prévision sur l'ensemble de test:\n",
"\n",
"**Evaluation**\n",
"\n",
"1. tracez la fontière obtenue de classification avec tous les données et comparez-la avec la fontière de la régression logistique\n",
"\n",
"2. tracez les indicateurs de performance, plus exactement\n",
"\n",
" - relevez le temps d'exécution de chaque itération\n",
" \n",
" A la fin de chaque itération $k$, avec le dernier $\\hat{\\theta}^{(k)}$\n",
" - prédisez les classes des tous echantillons dans l'ensemble d'appretissage et culculez le taux d'erreur train\n",
" - prédisez les classes des tous echantillons dans l'ensemble test et culculez le taux d'erreur test \n",
" - calculez la loss i.e. l'opposé de log-vraisemblance train (utiliser tous les echantillons dans l'ensemble d'appretissage)\n",
" - calculez la loss i.e. l'opposé de log-vraisemblance test (utiliser tous les echantillons dans l'ensemble test)\n",
"\n",
" tracez ainsi: \n",
" - l'évolution du taux d'erreur train / test en fonction des itérations\n",
" - l'évolution du taux d'erreur train / test en fonction des temps\n",
" - l'évolution de la vraisemblance train / test en fonction des itérations \n",
" - l'évolution de la vraisemblance train / test en fonction des temps"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"toc": {
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"toc_cell": false,
"toc_position": {},
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}