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Data and problems

Multivariate distributional time series

Figure 1: Observations of the age distributions across European union
countries over years 1995 to 2035 (projected). On the right are the
observations pµitqt P Ppr0, 1sq along time recorded at i “ France.
Lighter curves correspond to more recent years.
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Data and problems

Multivariate distributional time series

Figure 2: Observations of the age distributions across European union
countries over years 1995 to 2035 (projected). On the right are the
observations pµitqt P Ppr0, 1sq along time recorded at i “ France.
Lighter curves correspond to more recent years.
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Data and problems

2035

1995

Figure 3: Observations of the age distributions across European union
countries over years 1995 to 2035 (projected). On the right are the
observations pµitqt P Ppr0, 1sq along time recorded at i “ France.
Lighter curves correspond to more recent years.

Objectives:
1. A model to describe the new time series type:

µit P PpIRq, i “ 1...N, t P Z.

2. Represent the series dependencies by a graph.
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Model set up

Vector auto-regressive model (VAR)

N scalar TS (data for VAR) N distributional TS (our data)
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Model set up

Vector auto-regressive model

Let xit P IR, t P Z, i “ 1, . . . , N , a multivariate time series.
Assume Exit “ ui exists and time invariant. The VAR model of
order 1 writes as

xit ´ ui “

N
ÿ

j“1

Aijpxj,t´1 ´ ujq ` ϵit,

where ϵit is a white noise, and
řN

j“1Aijpxj,t´1 ´ ujq defines the
regressive dependencies.

A Ñ G

Extension : xit P IR ÝÑ µit P W2pIRq.
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Model set up

Backgrounds on statistics in W2pIRq

W2pIRq “

"

µ P PpIRq

ˇ

ˇ

ˇ

ż

IR
x2dµpxq ă 8

*

,

endowed with the 2-Wasserstein distance

dW pµ, νq “ inf
πPΠpµ,νq

ż

IRˆIR
px1 ´ x2q2dπpx1, x2q

}¨}2`IR
“

ż 1

0

`

F´1
µ puq ´ F´1

ν puq
˘2

du,

where F´1
µ puq, F´1

ν puq are the quantile functions of µ and ν.

Extension of VAR models: W2 :“ W2pIRq is not linear.
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Model set up

Enable again linear methods - Tangent space

Ambrosio et al. (2008); Bigot et al. (2017); Zemel and Panaretos
(2019) generalized basic concepts of Riemannian manifold to W2,
e.g. Tangent space.

Let γ P W2 be an atomless measure (it possesses a continuous cdf
Fγ), the tangent space at γ is defined as

Tanγ “ ttpTµ
γ ´ iq : µ P W2, t ą 0u

L2
γ
,

where Tµ
γ “ F´1

µ ˝ Fγ is the optimal transport map, that pushes
γ forward to µ. Tanγ is endowed with the inner product x¨, ¨yγ

defined by

xf, gyγ :“

ż

IR
fpxqgpxq dγpxq, f, g P L2

γpIRq,

and the induced norm } ¨ }γ .
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Model set up

Enable again linear methods - Tangent space

Tanγ “ ttpTµ
γ ´ iq : µ P W2, t ą 0u

L2
γ
,

where Tµ
γ “ F´1

µ ˝ Fγ is the optimal map, that pushes γ forward
to µ.

Definition
The logarithmic map Logγ : W2 Ñ Tanγ is defined as

Logγ µ “ Tµ
γ ´ i.

The exponential map Expγ : Tanγ Ñ W2 is defined as

Expγ g “ pg ` idq#γ,

where T#µ is the measure pushforwarded by function T , defined
as rT#µspAq “ µptx : T pxq P Auq.
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Model set up

Tangent space and Geodesic
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Model set up

A geodesic in W is defined by a geodesic in Tan

The geodesic (McCann’s interpolant) between γ and µ

ExpγrαpTµ
γ ´ iqs, α : 0 Ñ 1,

“ rαpTµ
γ ´ iq ` ids#γ
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Model set up

Constant-speed Geodesic

dW pγ, γ 1
2
q “

1

2
dW pγ, µq
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Model set up

Constant-speed Geodesic

dW pγ, γαq “ αdW pγ, µq
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Model set up

Related work: Univariate Wasserstein AR model

Vector AR models with N “ 1:

xt ´ u “ αpxt´1 ´ uq ` ϵt,

ignore the noise
ðñ Ext|xt´1 “ u ` αpxt´1 ´ uq.

Equation above defines the regressive dependency, in other
words, the prediction of xt given xt´1.

Chen et al. (2021); Zhang et al. (2021); Zhu and Müller (2021)
extended the univariate AR model by interpreting the regressive
dependency from a geometric point of view.
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Model set up

Figure 4: Geometric interpretation of regressive dependency of AR
models.
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Model set up

Figure 5: Geometric interpretation of regressive dependency of AR
models.
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Model set up

Ext|xt´1 “ u`αpxt´1´uq ùñ E‘µt|µt´1 “ Expµ‘

␣

αpT t´1
‘ ´ iq

(

Let µ,γ be two random measures from pΩ,F ,Pq to W2,

E‘µ “ argmin
νPW2

E
“

d2W pµ, νq
‰

, E‘µ|γ :“ argmin
νPW2

E
“

d2W pµ, νq|γ
‰
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Model set up

Multivariate Wasserstein AR model

Extension of the univariate AR models:

Ext|xt´1 “ u`αpxt´1´uq ùñ E‘µt|µt´1 “ Expµ‘

`

αpT t´1
‘ ´ iq

˘

Multivariate AR models:

Exit|xj,t´1 “ ui`
N
ÿ

j“1

Aijpxj,t´1´ujq

ˆ!
ñ

$

’

’

&

’

’

%

T 1,t´1
1,‘ ´ i P Tanµ1,‘

T 2,t´1
2,‘ ´ i P Tanµ2,‘

...

Center: µit,E‘µit “ ui,‘ ÝÑ rµit,E‘µit ” c.

ùñ E‘rµit|rµj,t´1 “ Expc

˜

N
ÿ

j“1

Aijp rT
j,t´1
c ´ iq

¸

We proposed a centering for random measures so that the
centered measures always have U r0, 1s as population Fréchet
mean.
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Model set up

Multivariate Wasserstein AR model

For a multivariate distributional time series
µit, i “ 1, . . . , N, t P Z, we define the regressive dependency on
their centered versions µ̃it Ø F̃´1

it :“ F´1
it ˝ rF´1

i,‘s´1 as

E‘rµit|rµj,t´1 “ ExpLeb

˜

N
ÿ

j“1

Aijp rT
j,t´1
Leb ´ iq

¸

,

where rT j,t´1
Leb ´ i is the tangent vector of rµj,t´1.

Objectives obtained:
1. A new model for the new time series type:
xxxxxxxxxxxxxxxµit P PpIRq, i “ 1...N, t P Z.
2. Graph learning. A Ñ G.
3. Theoretically, we proved the stationarity under assumptions.
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Estimation

Constrained least-square estimation

Given the observations µit, t “ 0, ..., T, i “ 1, ..., N (thus the
centered observations rµit), we propose the estimator of A as

rA “ argmin
A satisfies the

model assumptions 1

1

T

T
ÿ

t“1

d2W p rµit, E‘rµit|rµj,t´1 q ,

rA is sparse and 0 ď rAij ď 1.

We proved that rA is consistent.

1The details see Jiang (2022).
Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 13 / 32



Estimation

Constrained least-square estimation

Given the observations µit, t “ 0, ..., T, i “ 1, ..., N (thus the
centered observations rµit), we propose the estimator of A as

rA “ argmin
A satisfies the

model assumptions 1

1

T

T
ÿ

t“1

d2W p rµit, E‘rµit|rµj,t´1 q ,

rA is sparse and 0 ď rAij ď 1.

We proved that rA is consistent.

1The details see Jiang (2022).
Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 13 / 32



Estimation

Constrained least-square estimation

Given the observations µit, t “ 0, ..., T, i “ 1, ..., N (thus the
centered observations rµit), we propose the estimator of A as

rA “ argmin
A satisfies the

model assumptions 1

1

T

T
ÿ

t“1

d2W p rµit, E‘rµit|rµj,t´1 q ,

rA is sparse and 0 ď rAij ď 1.

We proved that rA is consistent.

1The details see Jiang (2022).
Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 13 / 32



Experiments

Age distributions of countries

Figure 6: Visualization of rA. rAij are represented by the weighted
directed edges from node j to node i. Thicker edges correspond to
larger values. The blue circles around nodes represent rAii.
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Experiments

Age distributions of countries

Figure 7: Visualization of rA. rAij are represented by the weighted
directed edges from node j to node i. Thicker edges correspond to
larger values. The blue circles around nodes represent rAii.
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Experiments

Age distributions of countries

Figure 8: Visualization of rA. rAij are represented by the weighted
directed edges from node j to node i. Thicker edges correspond to
larger values. The blue circles around nodes represent rAii.
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Figure 9: Evolution of age structure from 1996 to 2036 (projected).
Estonia (top left), Latvia(top right), Sweden (bottom left) versus
Norway (bottom right).
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Figure 10: Evolution of age structure from 1996 to 2036 (projected) of
France (left) versus Italy (right).
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Experiments

Thanks for your attention !
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Appendices Model set up

Center a random measure µ, s.t. E‘µ̃ “ Up0, 1q

µ Ø F´1

µ‘ Ø F´1
‘

ñ F´1
‘

elem.wise
“ EF´1.

After certain centralization

µ̃ Ø F̃´1:“ F´1 ˝ rF´1
‘ s´1

µ̃‘ Ø id “ EF̃´1“ EF´1 ˝ rF´1
‘ s´1
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Center a random measure µ, s.t. E‘µ̃ “ Up0, 1q

Á

=
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Appendices Model set up

Multivariate Wasserstein AR model

E‘rµit|rµj,t´1 “ ExpLeb

˜

N
ÿ

j“1

Aijp rFi,t´1 ´ iq

¸

1. identifiable:

#

A Ñ E‘rµit|rµj,t´1

A1 Ñ E‘rµit|rµj,t´1

ðù Exp is not injective.

Expγ |Logγ W is an isometric homeomorphism from Logγ W2 to
W2, with the inverse map Logγ(Bigot et al., 2017).

2. A not tractable in estimation.
Thus, 1 ` 2 Ñ

N
ÿ

j“1

Aijp rFi,t´1 ´ iq P Logγ W2

@g P Tanγ , g P Logγ W2 ðñ g ` id is non-decreasing γ-a.e,
(Bigot et al., 2017).
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Appendices Model set up

Multivariate Wasserstein AR model

rµit “ ExpLeb

˜

N
ÿ

j“1

Aijp rFi,t´1 ´ iq

¸

Thus, 1 ` 2 Ñ

N
ÿ

j“1

Aijp rFi,t´1 ´ iq P Logγ W2

@g P Tanγ , g P Logγ W2 ðñ g ` id is non-decreasing γ-a.e,
Bigot et al. (2017).

Assumption
řN

j“1Aij ď 1 and 0 ď Aij ď 1.
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Appendices Model set up

For µit, t P Z, i “ 1, . . . , N , we propose the Wasserstein
multivariate AR Model

rµit “ ϵit#ExpLeb

˜

N
ÿ

j“1

Aijp rFi,t´1 ´ iq

¸

,

where µ̃it Ø F̃´1
it :“ F´1

it ˝ rF´1
i,‘s´1 are the centralizations, and

tϵitui,t are i.i.d. random increasing functions, ϵit is almost surely
independent of µj,t´1, i, j “ 1, . . . , N, for all t P Z, and

E rϵitpxqs “ x, x P r0, 1s.

Assumption
řN

j“1Aij ď 1 and 0 ď Aij ď 1.

Quantile function representation

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ i

¯

` id

ff

, A ðñ G
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Appendices Existence, uniqueness, staionarity

Iterated random function system: TS analysis in metric space

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ i

¯

` id

ff

, (1)

Admissible as a TS model: existence, uniqueness and stationarity
of solutions rF´1

i,t , i “ 1, . . . N, t P Z.

Wu and Shao (2004), IRF system in a complete, separable metric
space pX , dq, and ϵt i.i.d. :

Xt “ ΦϵtpXt´1q, Xt P pX , dq

Φϵt contractive at exp decay rate in expectation Ñ stability

Ñ existence
add str

ÝÑ stationarity.

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 23 / 32



Appendices Existence, uniqueness, staionarity

Iterated random function system: TS analysis in metric space

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ i

¯

` id

ff

,

Admissible as a TS model: existence, uniqueness and stationarity
of solutions rF´1

i,t , i “ 1, . . . N, t P Z.

Wu and Shao (2004), IRF system in a complete, separable metric
space pX , dq, and ϵt i.i.d. :

Xt “ ΦϵtpXt´1q, Xt P pX , dq

Φϵt contractive at exp decay rate in expectation Ñ stability

Ñ existence
add str

ÝÑ stationarity.

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 23 / 32



Appendices Existence, uniqueness, staionarity

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ i

¯

` id

ff

, i “ 1, . . . , N

ðñ Xt “ ΦϵtpXt´1q, Xt P pX , dq

Xt “

¨

˚

˚

˚

˝

rF´1
1,t
rF´1
2,t

. . .
rF´1
N,t

˛

‹

‹

‹

‚

ñ rF´1
j,t P pT , } ¨ }Lebq ,

where T “ LogLeb `id is the space of all quantile functions of
W2.

ñ pX , dq :“ pT , } ¨ }Lebq
bN ,

for any X “ pXiq
N
i“1,Y “ pYiq

N
i“1 P pT , } ¨ }Lebq

bN

dpX,Yq :“

g

f

f

e

N
ÿ

i“1

}Xi ´ Yi}
2
Leb.
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ðñ Xt “ ΦϵtpXt´1q, Xt P pX , dq

Xt “

¨

˚

˚

˚

˝

rF´1
1,t
rF´1
2,t

. . .
rF´1
N,t

˛

‹

‹

‹

‚

ñ rF´1
j,t P pT , } ¨ }Lebq ,

where T “ LogLeb `id is the space of all quantile functions of
W2.

ñ pX , dq :“ pT , } ¨ }Lebq
bN ,

for any X “ pXiq
N
i“1,Y “ pYiq

N
i“1 P pT , } ¨ }Lebq

bN

dpX,Yq :“

g

f

f

e

N
ÿ

i“1

}Xi ´ Yi}
2
Leb.
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Existence, uniqueness

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ i

¯

` id

ff

, i “ 1, . . . , N. p1q

Contraction of system (at exp decay rate)
1. E rϵi,tpxq ´ ϵi,tpyqs

2
ď L2px ´ yq2, @x, y P r0, 1s, t P

Z, i “ 1, . . . , N ,
2. }A}2 ă 1

L .

Theorem

Under the assumptions above, the IRF system (1) almost surely
admits a solution Xt, t P Z, with Xt

d
“ π, @ t P Z. Moreover, if

there exists another solution St, t P Z, then for all t P Z

Xt
d
“ St, almost surely.
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Appendices Existence, uniqueness, staionarity

Stationarity

Definition: A random process tVtut in a separable Hilbert space
pH, x¨, ¨yq is said to be stationary if

1 E }Vt}
2

ă 8

2 The Hilbert mean U :“ E rVts does not depend on t.
3 The auto-covariance operators defined as

Gt,t´hpV q :“ E xVt ´ U, V y pVt´h ´ Uq , V P H,

do not depend on t, that is Gt,t´hpV q “ G0,´hpV q for all t.

dpX,Y q “

d

N
ř

i“1
}Xi ´ Yi}

2
Leb is induced by the inner product:

xX,Y y “

N
ÿ

i“1

xXi, YiyLeb. ÝÑ Our system P pX , x¨, ¨yq
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Appendices Existence, uniqueness, staionarity

Stationarity

Theorem

The unique solution given in Theorem 2 is stationary as a random
process in pX , x¨, ¨yq in the sense of Definition above.

The model we propose is justified, thus it is a valid TS model.
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Appendices Estimation

Constrained least-square estimation

For auto-regressive model

rF´1
i,t “ ϵi,t ˝

«

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ i

¯

` id

ff

,

Given the centered observations rF´1
t , t “ 0, 1, . . . , T , we propose

rAi: “ argmin
Ai:PB1

`

1

T

T
ÿ

t“1

›

›

›

›

›

rF´1
i,t ´

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ i

¯

´ i

›

›

›

›

›

2

Leb

,

where B1
` is the constraint set of N -simplex.
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Constrained least-square estimation
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`

1

T

T
ÿ

t“1

›

›

›

›

›

rF´1
i,t ´

N
ÿ

j“1

Aij

´

rF´1
j,t´1 ´ i

¯

´ i

›

›

›

›

›

2

Leb

,

where B1
` is the constraint set of N -simplex.

rF´1
i,t :“ F´1

i,t ˝ pF´1
i,‘q´1,

where the population Fréchet mean µi,‘ is also an unknown
parameter so is F´1

i,‘ , we estimate by the empirical Fréchet mean

µ̄i :“ argmin
νPW2

1

T

T
ÿ

t“1

d2W pµi,t, νq, with F´1
µ̄i

“
1

T

T
ÿ

t“1

F´1
µi,t
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Appendices Estimation

Constrained least-square estimation

In practice, we center µi,t by F´1
µ̄i

pF´1
i,t :“ F´1

i,t ˝ rF´1
µ̄i

s´1.

pAi: “ argmin
Ai:PB1

`

1

T

T
ÿ

t“1

›

›

›

›

›

pF´1
i,t ´

N
ÿ

j“1

Aij

´

pF´1
j,t´1 ´ i

¯

´ i

›

›

›

›

›

2

Leb

, (1)

The optimization problem (1) can be solved by the accelerated
projected gradient descent (Parikh and Boyd, 2014, Chapter 4.3).
The projection onto B1

` is given in Thai et al. (2015).

Note that the N -simplex constraint promotes the sparsity in pA.
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Appendices Estimation

Constrained least-square estimation

Theorem

Assumea the transformed sequence rF´1
t , t “ 0, 1, . . . , T checks

Model (1) with Assumption N -simplex true. Suppose additionally
rF´1
0

d
“ π with π the stationary distribution defined in Theorem 2.

Given Assumption contraction of regression operation holds true.
Then given the true coefficient A satisfies Assumption N -simplex,
we have

pA ´ A
p

Ñ 0.

aThe complete assumption sees Jiang (2022).
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Appendices Estimation

Related work: Univariate Wasserstein AR model

Describe this regressive dependencyship with
AR model of optimal transport (Zhu and Müller, 2021):

Tt`1 “ ϵt ˝ pαpTt ´ iq ` idq, 0 ă α ă 1

AR model of tangent vector (Zhang et al., 2021):

Tt`1 ´ i “ αpTt ´ iq ` ϵt, 0 ă |α| ă 1,

Tangent vector with regression operator (Chen et al., 2021)

Tt`1 ´ i “ ΓpTt ´ iq ` ϵt, Γ : Logµ‘
pWq Ñ Logµ‘

pWq

the model in tangent space than is the ordinary AR model for
functional TS in Hilbert space, expect the log image issue
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