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Data and problems

Multivariate distributional time series
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Figure 1: Observations of the age distributions across European union
countries over years 1995 to 2035 (projected).
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Figure 2: Observations of the age distributions across European union
countries over years 1995 to 2035 (projected).
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Data and problems

Age/100

Figure 3: Observations of the age distributions across European union
countries over years 1995 to 2035 (projected). On the right are the
observations (u;:): € P([0, 1]) along time recorded at i = France.
Lighter curves correspond to more recent years.

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 2/32



Data and problems

t o o Q=
o
o

0.016

0.014

0.012

0.010

Py
8
2

Relative frequency

o o

006

0.004

0.002

0.000

Age/100

Figure 3: Observations of the age distributions across European union
countries over years 1995 to 2035 (projected). On the right are the
observations (u;:): € P([0, 1]) along time recorded at i = France.
Lighter curves correspond to more recent years.

Objectives:
1. A model to describe the new time series type:

MHit € P(]R,),Z = 1N,t e Z.
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Figure 3: Observations of the age distributions across European union
countries over years 1995 to 2035 (projected). On the right are the
observations (u;:): € P([0, 1]) along time recorded at i = France.
Lighter curves correspond to more recent years.

Objectives:

1. A model to describe the new time series type:

MHit € P(]R,),Z = 1N,t e Z.

2. Represent the series dependencies by a graph.
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Model set up

Vector auto-regressive model (VAR)

c;\fk AN
N . AN

Lw A i = D‘—N/\\]L/‘\_J\_j\_

N scalar TS (data for VAR) N distributional TS (our data)
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Model set up

Vector auto-regressive model

Let xR, t€Z,i=1,..., N, a multivariate time series.
Assume Ex;; = u; exists and time invariant. The VAR model of
order 1 writes as

N
Tit — U = Z Aij(@ji—1 — uj) + €ir,
j=1

where €;; is a white noise,
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Model set up

Vector auto-regressive model

Let xR, t€Z,i=1,..., N, a multivariate time series.
Assume Ex;; = u; exists and time invariant. The VAR model of
order 1 writes as

N
Tit — U = Z Aij(@ji—1 — uj) + €ir,
j=1

. . . N .
where €t is a white noise, and > ;7 Ajj(xj—1 — u;) defines the
regressive dependencies.
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Extension : xi; € R — pi € Wa(RR).
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Backgrounds on statistics in W5(IR)

Wity = e POR)| [ aPaute) < .

endowed with the 2-Wasserstein distance

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 5/32



Backgrounds on statistics in W5(IR)

Wity = e POR)| [ aPaute) < .

endowed with the 2-Wasserstein distance

dw(p,v) = inf f (z1 — x9)%dm(z1, 20)
mell(p,v) JRxIR

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 5/32



Backgrounds on statistics in W5(IR)

Wity = e POR)| [ aPaute) < .

endowed with the 2-Wasserstein distance

dw(p,v) = inf f (z1 — x9)%dm(z1, 20)
mell(p,v) JRxIR

) 1
T - R ) au,

where F;l(u), E;

"L(u) are the quantile functions of x and v.
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Backgrounds on statistics in W5(IR)

Wy (IR) = {u e P(R)| f]Rxde:) < oo},

endowed with the 2-Wasserstein distance

dw(p,v) = inf f (z1 — x9)%dm(z1, 20)
mell(p,v) JRxIR

[ ) - B )

I
0

where F;l(u), F;Y(u) are the quantile functions of x and v.

Extension of VAR models: W5 := W5 (IR) is not linear.
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Enable again linear methods - Tangent space
Ambrosio et al. (2008); Bigot et al. (2017); Zemel and Panaretos

(2019) generalized basic concepts of Riemannian manifold to W,
e.g. Tangent space.

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 6 /32



Model set up

Enable again linear methods - Tangent space

Ambrosio et al. (2008); Bigot et al. (2017); Zemel and Panaretos
(2019) generalized basic concepts of Riemannian manifold to W,
e.g. Tangent space.

Let v € Wy be an atomless measure (it possesses a continuous cdf
F,), the tangent space at v is defined as

[:2
Tan, = {t(T4 —i) : peWa, t >0},

where T/ = Fljl o F, is the optimal transport map, that pushes
~ forward to pu.
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Enable again linear methods - Tangent space

Ambrosio et al. (2008); Bigot et al. (2017); Zemel and Panaretos
(2019) generalized basic concepts of Riemannian manifold to W,
e.g. Tangent space.

Let v € Wy be an atomless measure (it possesses a continuous cdf
F,), the tangent space at v is defined as

; L2
Tan, = {t(T4 —i) : peWa, t >0},
where T/ = Fljl o F, is the optimal transport map, that pushes

7 forward to . Tan, is endowed with the inner product (-, ),
defined by

(o = f]Rf(x)g(x) i), f.g€ L2(R),

and the induced norm | - |,.
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Model set up

Enable again linear methods - Tangent space

l:2
Tan, = {t(T% — i) : p€ Wa, t >0} 7,

where T} = Fljl o F, is the optimal map, that pushes ~y forward
to u.

Definition

The logarithmic map Log, : Wy — Tan, is defined as
Log, p =TI —1i.
The exponential map Exp,, : Tan, — W is defined as
Exp, g = (g + id)#7,

where T'#/. is the measure pushforwarded by function T, defined
as [T#u)(A) = u({z : T(2) € A}).
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Model set up

Tangent space and Geodesic
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Tangent space and Geodesic
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Model set up

A geodesic in W is defined by a geodesic in Tan
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Model set up

A geodesic in W is defined by a geodesic in Tan

/ T, -4
[0y vm To
/ el
T

/A.

‘[0}' mup

W, ur)

The geodesic (McCann's interpolant) between v and 1
Exp, [a(TY —i)], a:0—1,
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Model set up

Constant-speed Geodesic
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Model set up

Constant-speed Geodesic

]/‘“Q\Pa gt
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W, LR

1
dw (v,73) = 5w (v, 1)
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Model set up

Constant-speed Geodesic

f
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Model set up

Constant-speed Geodesic

d(T& )
%(T\- 1) T -
“364 Towng 7

; i WP&W\“\’;
/:;““\;
d.;a-: R
W, ur)

dw (7, 7a) = adw (7, 1)
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Model set up

Related work: Univariate Wasserstein AR model

Vector AR models with N = 1;

Tt —u=a(ri1 —u) + €,
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— Exi|xi1 = u+ a(xi—1 — u).
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Model set up

Related work: Univariate Wasserstein AR model

Vector AR models with N = 1;

Tt —u=a(ri1 —u) + €,

ignore the noise
— Exi|xi1 = u+ a(xi—1 — u).

Equation above defines the regressive dependency, in other
words, the prediction of x; given x; ;.

Chen et al. (2021); Zhang et al. (2021); Zhu and Miiller (2021)
extended the univariate AR model by interpreting the regressive
dependency from a geometric point of view.
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Model set up

Extlz: 1 =u+ a(zi — u)
Uu Ti1

Figure 4: Geometric interpretation of regressive dependency of AR
models.
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Extlz: 1 =u+ a(zi — u)
Uu Ti1

Figure 4: Geometric interpretation of regressive dependency of AR

models.
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Model set up

Extlz: 1 =u+ a(zi — u)
Uu Ti1

Figure 5: Geometric interpretation of regressive dependency of AR
models.
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Model set up

Exi|xi1 = uta(xi—1—u) = Egpi|pi—1 = Expu@ {oz(Té_l — z)}
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Model set up

Byl = uta(@1—u) = Egplpi—1 = Exp,, {a(Tg ' — i)}

Let p,~ be two random measures from (Q, F,P) to W,

Egp = argminE [dfy, (i, )], Egpuly := argminE [diy (i, v)|7]
V€W2 V€W2
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Multivariate Wasserstein AR model
Extension of the univariate AR models:
Exi|xi—1 = uta(xi—1—u) = Egpi|pi—1 = Exp, (a(ng1 - z))
Multivariate AR models:
N

Eap|aj—1 = ui+ ) | A1)
j=1

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 11/32



Model set up

Multivariate Wasserstein AR model

Extension of the univariate AR models:

Exi|xi—1 = uta(xi—1—u) = Egpi|pi—1 = Expu@ (a(ng1 — z))

Multivariate AR models:

Li—1 .

N | Tl,@ —1 € Tany, 4
x! 2,t—1 .

Ext|zji—1 = Ui+2 Aij(@j1—u;) = Ty —1 €Tany,g

j=1
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Model set up

Multivariate Wasserstein AR model

Extension of the univariate AR models:

Exi|xi—1 = uta(xi—1—u) = Egpi|pi—1 = Expu@ (a(Té;1 — z))

Multivariate AR models:

1,6—1 .
N | TL@ —1 € Tanm’@
X!

2t—1 .
Exi|x;—1 = Ui+2 Aij(zji1—uj) = STy = —1 € Tany,g
i=1 -

Center: s, Egpir = uig — Mit, Egpit = c.

N
= Egfit|fj—1 = Exp, (Z Ay (TH1 — l))
j=1
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Model set up

Multivariate Wasserstein AR model

Extension of the univariate AR models:

Exi|xi—1 = uta(xi—1—u) = Egpi|pi—1 = Expu@ (a(Té;1 — z))

Multivariate AR models:

1,6—1 .
N TL@ —1 eTanm’@

x| 2,t—1 .
Ext|zji—1 = Ui+2 Aij(@j1—u;) = Ty —1 €Tany,g
i=1 -

Center: s, Egpir = uig — Mit, Egpit = c.

N
= Egfit|fj—1 = Exp, (Z Ay (Tt — z))
j=1
We proposed a centering for random measures so that the
centered measures always have U|[0, 1] as population Fréchet
mean.
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Model set up

Multivariate Wasserstein AR model

For a multivariate distributional time series
Wit, 1 =1,..., N,t € Z, we define the regressive dependency on
their centered versions fi;; <> F,' := F;'o [Fl_eal]*1 as

N

< i~ ~it—1
Eqpiit|fiji—1 = EXprep Z Aij(Tyo, =) )
j=1

~it—1 .. ~
where T","" — i is the tangent vector of f1;; 1.
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Model set up

Multivariate Wasserstein AR model

For a multivariate distributional time series
Wit, 1 =1,..., N,t € Z, we define the regressive dependency on
their centered versions fi;; <> F,' := F;'o [Fl_eal]*1 as

N
~ |~ ~it—1 .
Eghit|fji—1 = Expre, (Z Ay(Ty — 1)) ;
j=1
where fietb_l — 1 is the tangent vector of f1;_1.
Objectives obtained:

1. A new model for the new time series type:
it € P(IR,),Z = ].N,t € 7.
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Model set up

Multivariate Wasserstein AR model

For a multivariate distributional time series
Wit, 1 =1,..., N,t € Z, we define the regressive dependency on
their centered versions fi;; <> F,' := F;'o [Fl_eal]*1 as

N
~ ~ T 47 -1 y
Eqpiit|fiji—1 = EXprep (Z Ay (T, - 1)) ’
j=1

~it—1 .. ~
where T","" — i is the tangent vector of f1;; 1.

Objectives obtained:
1. A new model for the new time series type:

pit € P(R),i =1..N,te Z.
2. Graph learning. A — G.
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Model set up

Multivariate Wasserstein AR model

For a multivariate distributional time series
Wit, 1 =1,..., N,t € Z, we define the regressive dependency on
their centered versions fi;; <> F,' := F;'o [Fl_eal]*1 as

N
~ ~ T 47 -1 y
Eqpiit|fiji—1 = EXprep (Z Ay (T, - 1)) ’
j=1

~it—1 .. ~
where T","" — i is the tangent vector of f1;; 1.

Objectives obtained:
1. A new model for the new time series type:
pit € P(R),i =1..N,te Z.
2. Graph learning. A — G.
3. Theoretically, we proved the stationarity under assumptions.
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Constrained least-square estimation

Given the observations pj;,t = 0,...,T,i = 1,..., N (thus the
centered observations fi;;), we propose the estimator of A as

T
~ 1
. 2 ~ ~ |~
A= aigmin D By (it Bofarlitje1 ),
A satisfies the =1
model assumptions

'The details see Jiang (2022).
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Constrained least-square estimation

Given the observations pj;,t = 0,...,T,i = 1,..., N (thus the
centered observations fi;;), we propose the estimator of A as

T
~ 1
. 2 ~ ~ |~
A= aigmin Dy (i, Bl fiji-1)
A satisfies the =1
model assumptions

Ais sparse and 0 < ﬁij < 1.

We proved that A is consistent.

'The details see Jiang (2022).
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Age distributions of countries

Figure 6: Visualization of A. /Lj are represented by the weighted
directed edges from node j to node i.
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Age distributions of countries

Figure 7: Visualization of A. /Lj are represented by the weighted
directed edges from node j to node 7. Thicker edges correspond to
larger values.
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Age distributions of countries

Figure 8: Visualization of A. /Lj are represented by the weighted
directed edges from node j to node i. Thicker edges correspond to
larger values. The blue circles around nodes represent A;;.
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Figure 9: Evolution of age structure from 1996 to 2036 (projected).
Estonia (top left), Latvia(top right), Sweden (bottom left) versus
Norway (bottom right).
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Age distributions of countries
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Figure 10: Evolution of age structure from 1996 to 2036 (projected) of
France (left) versus Italy (right).
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Thanks for your attention !
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Model set up
Center a random measure p, s.t. Egn = U(0, 1)
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Model set up
Center a random measure p, s.t. Egn = U(0, 1)

pe F! _ =1 clemwise gy

He < F3! ® :

After certain centralization
fo P

fig <> id = EF~!
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Model set up
Center a random measure p, s.t. Egn = U(0, 1)

[ 23 -F‘_1 _ Fil elem:.wise EF_l

e < Fg' ® '

After certain centralization
poFli=F1o[Fg'!

jig < id=EF ' =EF 'o[F5']"!
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Model set up
Center a random measure p, s.t. Egn = U(0, 1)

[ 23 -F‘_1 _ Fil elem:.wise EF_l

e < Fg' ® '

After certain centralization
poFli=F1o[Fg'!

jig < id=EF ' =EF 'o[F5']"!

Assumption

w is supported on [0, 1].

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 18 /32



Model set up
Center a random measure p, s.t. Egn = U(0, 1)

10 10
08 08
06 06
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00 00
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LU Model set up

Multivariate Wasserstein AR model

N
Eqfit| -1 = Expre, (Z Aij(Fip—1 — i))
j=1
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LU Model set up
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Eqfit| -1 = Expre, (Z Aij(Fip—1 — i))
j=1

: A — Eg |- . .

1. identifiable: , @u:t’“j’t U — Exp is not injective.
A" — Egflit|fij1—1

Exp, |Long is an isometric homeomorphism from Log, W5 to

W, with the inverse map LogV(Bigot et al., 2017).

Yiye JIANG (UGA, Inria Grenoble) Wasserstein multivariate AR 20 /32



LU Model set up

Multivariate Wasserstein AR model

N
Eqfit| -1 = Expre, (Z Aij(Fip—1 — i))
j=1

: A — Eg |- . .
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LU Model set up

Multivariate Wasserstein AR model

N
Egfit|ftj—1 = Exprep (Z Aij(Fip—1 — i))
j=1
A — Egpijt|fjt—1
A" — Egfuit|fij 1
Exp, |Long is an isometric homeomorphism from Log, W5 to
W, with the inverse map LogV(Bigot et al., 2017).

<= Exp is not injective.

1. identifiable: {

2. A not tractable in estimation.
Thus, 1 +2 —

N ~

Z Aj(Fip—1 — i) € Log, W,

7j=1
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LU Model set up

Multivariate Wasserstein AR model

N
Egfit|ftj—1 = Exprep (Z Aij(Fip—1 — i))
j=1
A — Eglit| fj—1
A" — Egfit|fij1—1
Exp, [Log, w is an isometric homeomorphism from Log, W5 to
W, with the inverse map LogV(Bigot et al., 2017).

<= Exp is not injective.

1. identifiable: {

2. A not tractable in estimation.
Thus, 1 +2 —

N
Z Aij(Fi—1 —1i) € Log, Wa
=1

Vg € Tan,, g € Log, W2 <= g +id is non-decreasing y-a.e,
(Bigot et al., 2017).
Wasserstein multivariate AR 20 /32



LU Model set up

Multivariate Wasserstein AR model

N
Pit = Expr.ep (Z F; 11— l))

Thus, 1 +2 —

N
Z Fii—1 —i) € Log, W

Vg € Tan,, g € Log, W2 <= g + id is non-decreasing v-a.e,
Bigot et al. (2017).

Assumption

Zj’vzlAij <land0< A <1
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LU Model set up

For wi, t € Z,i =1,..., N, we propose the Wasserstein
multivariate AR Model
N

flie = €u#t Exprey | Y Aij(Fip1—1) |,
j=1
where fi; <> F;' = F;'o [Ff@l]_1 are the centralizations, and
{€it}ir are i.i.d. random increasing functions, €;; is almost surely
independent of w1, 4,5 =1,...,N, forall t € Z, and

Elei(z)] =z, = € [0,1].

Assumption

Zj'vzlAij <1land0 < Aij <1.
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For wi, t € Z,i =1,..., N, we propose the Wasserstein
multivariate AR Model

N
flie = €u#t Exprey | Y Aij(Fip1—1) |,
j=1
where fi; <> F;' = F;' o [F,, @1]_1 are the centralizations, and

{€it}ir are iid. random increasing functions, €;; is almost surely
independent of w1, 4,5 =1,...,N, forall t € Z, and

Elei(z)] =z, = € [0,1].

Assumption

Z;'VzlAij <1land0 < Aij <1.

Quantile function representation

Fl=eyo ZA”(JH )+7Ld, A G
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Appendices Existence, uniqueness, staionarity

lterated random function system: TS analysis in metric space

N
—eltoE i (Bt - )+z’d], (1)

Admissible as a TS model: existence, uniqueness and stationarity
of solutions F[tl,i =1,...N,teZ.

Wu and Shao (2004), IRF system in a complete, separable metric
space (X,d), and ¢ i.id. :

Xt = (Pet(Xt—l)u Xt € (X,d)
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Appendices Existence, uniqueness, staionarity

lterated random function system: TS analysis in metric space

N

3 s (- )ﬂ-d],

~

E =€t O

Admissible as a TS model: existence, uniqueness and stationarity
of solutions F[tl,i =1,...N,teZ.

Wu and Shao (2004), IRF system in a complete, separable metric
space (X,d), and ¢ i.id. :

Xt = Qet(Xt—l)u Xt € (X,d)

®., contractive at exp decay rate in expectation — stability

. add str , .
— existence —>  stationarity.
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Appendices Existence, uniqueness, staionarity

N

~ 1 ~ 9 . . .

it — €it© ZAij<j7t,1_'L>+2d , t=1,...,N
Jj=1

< Xt = (I)et (Xt—1)7 Xt S (X,d)
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Appendices Existence, uniqueness, staionarity

=1
Fr,
Fil -1
Xt = 2.t = F}J € (7—7 “ . HLeb)a
=1
Nt
where 7 = Log,;, +id is the space of all quantile functions of

Who.
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Appendices Existence, uniqueness, staionarity

Fyy
F! ~_1
Xi= |2 | =>F, (T, | L),
-1
Fy,
where 7 = Log,;, +id is the space of all quantile functions of
Wa.
®N
(X d):= (T, |- HLeb) :
forany X = (XN, Y = (Y)OX, e (T, | |ren)®
HX -Y; HLeb
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Appendices Existence, uniqueness, staionarity

Existence, uniqueness

~

Fi; =eyo0

N
D A (ﬁ’]jtl_l—z') +z’d], i=1,...,N. (1)
j=1

Contraction of system (at exp decay rate)
L. Efeii(2) — €i4(y)]* < L*(z —y)?, Yo,y e [0,1], t e
Zyi=1,...,N,
2. | A2 < 1.

Theorem

Under the assumptions above, the IRF system (1) almost surely

admits a solution Xy, t € Z, with X, 4 m, YVt € Z. Moreover, if
there exists another solution Sy, t € Z, then for all t € Z

X; 4 S;, almost surely.

i - = =
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b e
Stationarity
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b e
Stationarity

Definition: A random process {V.}; in a separable Hilbert space
(H,{-,-)) is said to be stationary if
@ E|V? <
@ The Hilbert mean U := E [V,] does not depend on t¢.
© The auto-covariance operators defined as
gt,t—h(v) = ]E<Vt - Uv V> (Vt—h - U) ) Ve H’

do not depend on ¢, that is G¢ 1 (V') = Go —n(V) for all ¢.
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b e
Stationarity

Definition: A random process {V.}; in a separable Hilbert space
(H,{-,-)) is said to be stationary if

@ E|V? <

@ The Hilbert mean U := E [V,] does not depend on t¢.

© The auto-covariance operators defined as

gt,t—h(v) = E<Vt - Uv V> (Vt—h - U) s Ve H’
do not depend on ¢, that is G¢ 1 (V') = Go —n(V) for all ¢.

N
d(X,Y) = \/Z | X — Yi”ieb is induced by the inner product:
i=1

N
<Xa Y> = Z<Xla }/i>Leb-
=1
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b e
Stationarity

Definition: A random process {V.}; in a separable Hilbert space
(H,{-,-)) is said to be stationary if

@ E|V? <

@ The Hilbert mean U := E [V,] does not depend on t¢.

© The auto-covariance operators defined as

gt,t—h(v) = E<Vt - Uv V> (Vt—h - U) s Ve H’
do not depend on ¢, that is G¢ 1 (V') = Go —n(V) for all ¢.

N
d(X,Y) = \/Z | X — Yi”ieb is induced by the inner product:
i=1

N
(X,Y) = Y(X;,Yiyrep. —> Oursystem € (X,{,))
=1
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b e
Stationarity

Theorem

The unique solution given in Theorem 2 is stationary as a random
process in (X, {-,-)) in the sense of Definition above.
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b e
Stationarity

Theorem

The unique solution given in Theorem 2 is stationary as a random
process in (X, {-,-)) in the sense of Definition above.

The model we propose is justified, thus it is a valid TS model.
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Appendices Estimation

Constrained least-square estimation

For auto-regressive model

N

Fi¢ =€t O Z (M 1= )+id ,

Given the centered observations Ft_l, t=20,1,...,T, we propose
T N 2
X o1 -1
A;. =arg min — Z it~ Z Ajj (ijtfl z) —1 ,
AiweBi T =1 j=1 Leb

where B is the constraint set of N-simplex.
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Appendices Estimation

Constrained least-square estimation

Given the centered observations ﬁt_l, t=20,1,...,T, we propose
1z N 2
e . ~—1 ~—1 . .
A;. =arg min T Z FLt - Z Ajj (Fj,t_1 - z) —1 ,
AiweBy 7 =1 j=1 Leb

where B! is the constraint set of N-simplex.
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Appendices Estimation

Constrained least-square estimation

Given the centered observations ﬁt_l, t=20,1,...,T, we propose

1 N 2

~ ) ~ ~ , ,

A;. =arg min T Z FLt - Z Ajj (Fj,t_1 - z) —1 ,
Ai.€By t=1 j=1 Leb

where B! is the constraint set of N-simplex.

1 ~1 —1\—1
Fpo=Fyo(Fg),

where the population Fréchet mean ;g is also an unknown
parameter so is Ff@l, we estimate by the empirical Fréchet mean
T T
1 1 1

e : 2 . . -1 _
;= afjgévr@lnfédw(um,y), with F; = ftzl FMN
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Appendices Estimation

Constrained least-square estimation

. —1
In practice, we center p;; by Fy,

Fl=F ' o[F "
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Appendices Estimation

Constrained least-square estimation

. —1
In practice, we center p;; by Fy,

F'=F ' o[F; "

2,t i
1 X N 2
~ _ ~ ~ )
A;. = arg mlnf Z Fi,t — Z Ajj (FJt 1 z) —1 ,
A;.eBl t=1 i1
+ J Leb
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Appendices Estimation

Constrained least-square estimation

. —1
In practice, we center p;; by Fy,

ﬁ;}l — F;;l o [F‘L_L:l]fl.

T
~ 1 ~ A . )
A;. = argmin T Z Fi,t1 — Z Ajj (Fﬂl_l — z) —1

A,L';EB_I'_ t=1
The optimization problem (1) can be solved by the accelerated
projected gradient descent (Parikh and Boyd, 2014, Chapter 4.3).

The projection onto Bl is given in Thai et al. (2015).

Leb
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Appendices Estimation

Constrained least-square estimation

. —1
In practice, we center p;; by Fy,

ﬁ;;l — F;;l o [F‘L_L:l]fl.

~

—1 S—-1 . .
F, - E Aij (Fj,t—l - Z) -1
Leb

The optimization problem (1) can be solved by the accelerated
projected gradient descent (Parikh and Boyd, 2014, Chapter 4.3).
The projection onto Bl is given in Thai et al. (2015).

T

~ 1
A;. = argmin T Z
A,L';EB_I'_ t=1

Note that the N-simplex constraint promotes the sparsity in A.
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Appendices Estimation

Constrained least-square estimation

Theorem

Assume® the transformed sequence f}*l, t=0,1,...,T checks

Model (1) with Assumption N -simplex true. Suppose additionally
F;t L 7 with 7 the stationary distribution defined in Theorem 2.
Given Assumption contraction of regression operation holds true.

Then given the true coefficient A satisfies Assumption N -simplex,
we have

A—A5o.

“The complete assumption sees Jiang (2022).

Yiye JIANG (UGA, Inria Grenoble)
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Appendices Estimation

Related work: Univariate Wasserstein AR model
Describe this regressive dependencyship with
AR model of optimal transport (Zhu and Miiller, 2021):
Tiv1=€o(a(Ty—i)+id), 0<a<l
AR model of tangent vector (Zhang et al., 2021):
Tiv1—i=a(Ti—i) + €&, 0<|a <1,
Tangent vector with regression operator (Chen et al., 2021)
Troi—i=T(Ti— i)+ e, T Logue(W) — Logue (W)

the model in tangent space than is the ordinary AR model for
functional TS in Hilbert space, expect the log image issue
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