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Motivating statistical model

Graph learning in classical setting

2020 2022 2024

−
5

5
15

(a) Norway

Te
m

pe
ra

tu
re

 (
°C

)

2020 2022 2024

0
5

10

(b) Iceland

Te
m

pe
ra

tu
re

 (
°C

)

2020 2022 2024

−
5

5
15

(c) Sweden

Date

Te
m

pe
ra

tu
re

 (
°C

)

Let xt P IR3, t P Z, denote the 3 temp at time t

VARp1q : xt “ Axt´1 ` b ` zt .
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Motivating statistical model

Matrix-valued time series
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Let Xt P IR3ˆ2, t P Z, denote the temp and precip of 3
countries at time t

VARp1q : xt “ Axt´1 ` b ` zt . xt Ñ Xt? Gp3q?

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 6 / 34



Motivating statistical model

Novel matrix autoregressive (MAR) model

For simplicity, we assume EXt “ 0,@t, we propose

Xt “ ANXt´1 ` Xt´1A
J
F ` Zt ,

where Xt ,Zt P IRNˆF , AN P IRNˆN , AF P IRFˆF , N is the nb of
sensors, and F is the nb of features.

xjt “ ANxjt´1 ` zjt ,@j “ 1, ...,F , xjt “ j-th column of Xt .

AN ðñ row/sensor dependence.

xit “ xit´1A
J
F ` zit ,@i “ 1, ...,N, xit “ i-th row of Xt .

AF ðñ column/feature dependence.

AN is invariant to features, AF is invariant to sensors.
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Inference: a new Lasso optimization type

Lasso in classical inference

Given the vectorial observations xτ , τ “ 0, ..., t, assumed follow
VARp1q : (for simplicity, we assume that Ext “ 0)

xt “ Axt´1 ` zt .

Estimation - classical Lasso

pA :“ argmin
A

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

data term
(minimize residuals)

` λ }A}ℓ1
penalty term

(encourage sparsity)
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Inference: a new Lasso optimization type

Given matrix observations Xτ , τ “ 0, 1, ..., assumed follow

Xτ “ ANXτ´1 ` Xτ´1A
J
F ` Zτ .

Vectorial representation:

xτ “ Axτ´1 ` zτ , where A “ AF ‘ AN, xτ “ vecpXτ q.

Recall Kronecker sum: AF ‘ AN “ AF b IF ` IN b AN
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Inference: a new Lasso optimization type

Vectorial representation:

xt “ Axt´1 ` zt , where A “ AF ‘ AN, xt “ vecpXtq.

Estimation

pA :“ arg min
A“AF‘AN

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

` λ }AN}ℓ1
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Estimation

pA :“ arg min
APKG

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

` λ }AN}ℓ1 ,

where

KG “
␣

M P IRNFˆNF : M “ MF ‘ MN, MF P IRFˆF ,MN P IRNˆN
(

.
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xt “ Axt´1 ` zt , where A “ AF ‘ AN, xt “ vecpXtq.
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pA :“ arg min
APKG

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

` λ }AN}ℓ1 ,

where

KG “
␣

M P IRNFˆNF : DMF P IRFˆF ,MN P IRNˆN , such that,

offdpMq “ MF ‘ MN, with, diagpMFq “ 0, diagpMNq “ 0,

MF “ MJ
F , MN “ MJ

N

(

.

Our framework is independent of the specific structure !
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Inference: a new Lasso optimization type

Offline optimization

min
APKG

f pAq ` λ }AN}ℓ1 , where f pAq “
1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

Proximal gradient descent

Ak`1 “ proxpAk ´ ηk∇f pAkqq,

“ arg min
APKG

1

2ηk

›

›

›
A ´

´

Ak ´ ηk∇f pAkq

¯›

›

›

2

ℓ2
`

λ

F
}AN}ℓ1 .
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Inference: a new Lasso optimization type

Online optimization

Apt, λq :“ arg min
APKG

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

` λ }AN}ℓ1

Online inference:

regularization path : Apt, λ1q Ñ Apt, λ2q,

data path : Apt, λq Ñ Apt ` 1, λq.

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 12 / 34



Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Table of Contents

1 Motivating statistical model

2 Inference: a new Lasso optimization type
Classical homotopy algorithm: regularization path
New homotopy algorithm: regularization path
Homotopy algorithm: data path

3 Augmented model

4 Numerical studies
Simulations
Real data

5 Conclusions and perspectives

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 12 / 34



Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Algorithm for classical Lasso

Regularization path, θpλ1q Ñ θpλ2q:

θpλq “ arg min
θPIRd

1

2
}y ´ Xθ}2ℓ2 ` λ}θ}ℓ1 ,

Optimality condition:

0 P XJpXθpλq ´ yq ` B}θpλq}ℓ1 .

B}θpλq}ℓ1 “

#

v P Rd :

#

vi “ sgnpθi pλqq if θi pλq ‰ 0,

vi P r´1, 1s if θi pλq “ 0.

+

.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Algorithm for classical Lasso

Regularization path, θpλ1q Ñ θpλ2q:

θpλq “ arg min
θPIRd

1

2
}y ´ Xθ}2ℓ2 ` λ}θ}ℓ1 ,

Optimality condition:

0 P XJpXθpλq ´ yq ` B}θpλq}ℓ1 . (5)

Suppose unique solution: θpλq “ pθ1pλq, 0q at λ, X “ pX1,X2q:

(5) ðñ

#

pXJ
1 X1q´1

`

XJ
1 y ´ λ sgnrθ1pλqs

˘

“ θ1pλq,
1
λX

J
2 py ´ X1θ1pλqq P B}0}ℓ1 .

Recall: B}0}ℓ1 “

¨

˚

˚

˝

r´1, 1s

r´1, 1s

...
r´1, 1s

˛

‹

‹

‚

.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

#

pXJ
1 X1q´1pXJ

1 y´λsgnrθ1pλqsq “ θ1pλq,
1
λX

J
2 py ´ X1θ1pλqq P B}0}ℓ1 .

Solutions θpλ1q, |λ1 ´ λ| ă ϵ:

Define θpλ1q “ pθ1pλ1q, 0q, with

θ1pλ1q “ pXJ
1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

Proof:

θ1pλ1q is linear in λ1, by continuity, θ1pλ1q « θ1pλq. Thus
θ1pλq ‰ 0 Ñ θ1pλ1q ‰ 0 et sgnrθ1pλ1qs “ sgnrθ1pλqs.

✓OC1 : pXJ
1 X1q´1

`

XJ
1 y ´ λ sgnrθ1pλ1qs

˘

“ θ1pλ1q

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 15 / 34



Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

#

pXJ
1 X1q´1pXJ

1 y´λsgnrθ1pλqsq “ θ1pλq,
1
λX

J
2 py ´ X1θ1pλqq P B}0}ℓ1 .

Solutions θpλ1q, |λ1 ´ λ| ă ϵ:

Define θpλ1q “ pθ1pλ1q, 0q, with

θ1pλ1q “ pXJ
1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

Proof:

θ1pλ1q is linear in λ1, by continuity, θ1pλ1q « θ1pλq. Thus
θ1pλq ‰ 0 Ñ θ1pλ1q ‰ 0 et sgnrθ1pλ1qs “ sgnrθ1pλqs.

✓OC1 : pXJ
1 X1q´1

`

XJ
1 y ´ λ sgnrθ1pλ1qs

˘

“ θ1pλ1q

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 15 / 34



Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

#

pXJ
1 X1q´1pXJ

1 y´λsgnrθ1pλqsq “ θ1pλq,
1
λX

J
2 py ´ X1θ1pλqq P B}0}ℓ1 .

Solutions θpλ1q, |λ1 ´ λ| ă ϵ:

Define θpλ1q “ pθ1pλ1q, 0q, with

θ1pλ1q “ pXJ
1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

Proof:

θ1pλ1q is linear in λ1, by continuity, θ1pλ1q « θ1pλq. Thus
θ1pλq ‰ 0 Ñ θ1pλ1q ‰ 0 et sgnrθ1pλ1qs “ sgnrθ1pλqs.

✓OC1 : pXJ
1 X1q´1

`

XJ
1 y ´ λ sgnrθ1pλ1qs

˘

“ θ1pλ1q

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 15 / 34



Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

#

pXJ
1 X1q´1pXJ

1 y´λsgnrθ1pλqsq “ θ1pλq,
1
λX

J
2 py ´ X1θ1pλqq P B}0}ℓ1 .

Solutions θpλ1q, |λ1 ´ λ| ă ϵ:

Define θpλ1q “ pθ1pλ1q, 0q, with

θ1pλ1q “ pXJ
1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

Proof:

θ1pλ1q is linear in λ1, by continuity, θ1pλ1q « θ1pλq. Thus
θ1pλq ‰ 0 Ñ θ1pλ1q ‰ 0 et sgnrθ1pλ1qs “ sgnrθ1pλqs.

✓OC1 : pXJ
1 X1q´1

`

XJ
1 y ´ λ sgnrθ1pλ1qs

˘

“ θ1pλ1q

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 15 / 34



Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

#

pXJ
1 X1q´1pXJ

1 y´λsgnrθ1pλqsq “ θ1pλq,
1
λX

J
2 py ´ X1θ1pλqq P B}0}ℓ1 .

Solutions θpλ1q, |λ1 ´ λ| ă ϵ:

Define θpλ1q “ pθ1pλ1q, 0q, with

θ1pλ1q “ pXJ
1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

To prove: vpλ1q :“ 1
λ1 X

J
2 py ´ X1θ1pλ1qq P B}0}ℓ1 “

¨

˚

˚

˝

r´1, 1s

r´1, 1s

...
r´1, 1s

˛

‹

‹

‚

.

vi pλq P r´1, 1s.

vpλ1q is smooth in λ1, vi pλ
1q « vi pλq. Done !?

|vi pλq| “ 1, vi pλ
1q R r´1, 1s.

Assump.: @i , vi pλq P p´1, 1q, namely, λ is not a critical point.
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#

pXJ
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1
λX

J
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Solutions θpλ1q, |λ1 ´ λ| ă ϵ:
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vi pλq P r´1, 1s.

vpλ1q is smooth in λ1, vi pλ
1q « vi pλq. Done !?

|vi pλq| “ 1, vi pλ
1q R r´1, 1s.

Assump.: @i , vi pλq P p´1, 1q, namely, λ is not a critical point.
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1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

Piecewise constant support/sign pattern of Lasso solutions

1 The support/sign pattern of Lasso solutions will stay
unchanged over a small range of λ.

2 Knowing the support/sign pattern of ðñ Knowing the
complete solution.

? ϵ, if |λ2 ´ λ| ă ϵ, done !
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Define θpλ1q “ pθ1pλ1q, 0q, with

θ1pλ1q “ pXJ
1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

When λ1 “ λ, θ1pλ1q “ θ1pλq.

When λ1 just leaves λ,

θ1pλ1q « θ1pλq, sgnrθ1pλ1qs “ sgnrθ1pλqs,✓OC1.

Until the critical value λ1, s.t. for some i , θ1,i pλ
1q “ 0, then

stays 0, or, changes sign.

Critical values: pmax
i

tλ1 ă λ : θ1,i pλ
1q “ 0u,min

i
tλ1 ą λ : θ1,i pλ

1q “ 0uq
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λX
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θpλ1q “ pθ1pλ1q, 0q, with

θ1pλ1q “ pXJ
1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

Validity interval of λ

Let λi , i “ 1, ..., d be the solutions of following eqs:

$

’

&

’

%

θ1pλ1q “ 0,
1
λ1XJ

2 py ´ X1θ1pλ1qq “ 1,
1
λ1XJ

2 py ´ X1θ1pλ1qq “ ´1.

θ1pλ1q is a Lasso solution, for @λ1 P Iλ, with

Iλ “ pmax
i

tλi : λi ă λu, min
j

tλj : λj ą λuq
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1 X1q´1pXJ

1 y´λ1sgnrθ1pλqsq.

Thus if the new λ2 P Iλ, done !

If not? e.g. λ2 ě λc :“ minjtλj : λj ą λu.
In pλc , λc ` ϵq, only 1 entry changes sparsity wrt θpλq!

Validity interval of λ
$

’

&
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1
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Thus if the new λ2 P Iλ, done !

If not? e.g. λ2 ě λc :“ minjtλj : λj ą λu.

In pλc , λc ` ϵq:

new support and sign pattern are both
known ùñ update the OC ùñ new validity interval pλc , ?q

ùñ until cover λ2.

Detail: The update of pXJ
1 X1q´1 is 1-rank, fast

calculation exists !
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Compute optimality condition wrt structure

pA :“ arg min
APKG

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

` λ }AN}ℓ1 ,

Key idea: Removing the explicit constraint using an orthonormal
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path
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where KN corresponds to the values of A imposed penalty.

pA “ ProjGp pA0q. BL
BA0 is easy.
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Optimality condition

0 P
BL

BA0
“

ÿ

k,k 1PK

xUk ,Uk 1pΓtp0qy xUk 1 ,A0 yUk

´
ÿ
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xUk ,pΓtp1qyUk ` λ
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ˇ

ˇxUk ,A
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ˇ

ˇ Uk ,

where pΓtp0q “
ř

xτ´1x
J
τ´1,

pΓtp1q “
ř

xτ´1x
J
τ .

Use Ak “ ck
@

Uk ,A
0
D

F
!
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Optimality condition

#

rΓ˚
1s

´1
pγ˚

1 ´ λwq “ a˚
1 ,

1

λ
pγ0 ´ Γ0a

˚
1q P B}0}ℓ1 ,

where

a˚
1 “ pA˚

k1
{ck1 , ...,A

˚
kL

{ckLq: all scaled active entries of A˚,

Matrix rΓsk,k 1 :“ xUk ,Uk 1pΓtp0qy, vector rγsk :“ xUk ,pΓtp1qy,
Γ˚
1 “ rΓsK1,K1 , Γ0 “ rΓsK0,K1 ; γ

˚
1 “ rγsK1 , γ0 “ rγsK0 ,

w “ pwk1 , ...,wkLq:
#

wkl “ sgnpA˚
kl

q, if A˚
kl
is from A˚

N (Penalized param.),

0, o.w .

The two LHS of the OC are smooth functions in λ.

Define a1pλ1q “ rΓ˚
1s

´1
pγ˚

1 ´ λ1wq. Same principle works !

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 25 / 34



Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Optimality condition

#

rΓ˚
1s

´1
pγ˚

1 ´ λwq “ a˚
1 ,

1

λ
pγ0 ´ Γ0a

˚
1q P B}0}ℓ1 ,

where

a˚
1 “ pA˚

k1
{ck1 , ...,A

˚
kL

{ckLq: all scaled active entries of A˚,

Matrix rΓsk,k 1 :“ xUk ,Uk 1pΓtp0qy, vector rγsk :“ xUk ,pΓtp1qy,

Γ˚
1 “ rΓsK1,K1 , Γ0 “ rΓsK0,K1 ; γ

˚
1 “ rγsK1 , γ0 “ rγsK0 ,

w “ pwk1 , ...,wkLq:
#

wkl “ sgnpA˚
kl

q, if A˚
kl
is from A˚

N (Penalized param.),

0, o.w .

The two LHS of the OC are smooth functions in λ.

Define a1pλ1q “ rΓ˚
1s

´1
pγ˚

1 ´ λ1wq. Same principle works !

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 25 / 34



Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Optimality condition

#

rΓ˚
1s

´1
pγ˚

1 ´ λwq “ a˚
1 ,

1

λ
pγ0 ´ Γ0a

˚
1q P B}0}ℓ1 ,

where

a˚
1 “ pA˚

k1
{ck1 , ...,A

˚
kL

{ckLq: all scaled active entries of A˚,

Matrix rΓsk,k 1 :“ xUk ,Uk 1pΓtp0qy, vector rγsk :“ xUk ,pΓtp1qy,
Γ˚
1 “ rΓsK1,K1 , Γ0 “ rΓsK0,K1 ; γ

˚
1 “ rγsK1 , γ0 “ rγsK0 ,

w “ pwk1 , ...,wkLq:
#

wkl “ sgnpA˚
kl

q, if A˚
kl
is from A˚

N (Penalized param.),

0, o.w .

The two LHS of the OC are smooth functions in λ.

Define a1pλ1q “ rΓ˚
1s

´1
pγ˚

1 ´ λ1wq. Same principle works !

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 25 / 34



Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Optimality condition

#

rΓ˚
1s

´1
pγ˚

1 ´ λwq “ a˚
1 ,

1

λ
pγ0 ´ Γ0a

˚
1q P B}0}ℓ1 ,

where

a˚
1 “ pA˚

k1
{ck1 , ...,A

˚
kL

{ckLq: all scaled active entries of A˚,

Matrix rΓsk,k 1 :“ xUk ,Uk 1pΓtp0qy, vector rγsk :“ xUk ,pΓtp1qy,
Γ˚
1 “ rΓsK1,K1 , Γ0 “ rΓsK0,K1 ; γ

˚
1 “ rγsK1 , γ0 “ rγsK0 ,

w “ pwk1 , ...,wkLq:
#

wkl “ sgnpA˚
kl

q, if A˚
kl
is from A˚

N (Penalized param.),

0, o.w .

The two LHS of the OC are smooth functions in λ.

Define a1pλ1q “ rΓ˚
1s

´1
pγ˚

1 ´ λ1wq. Same principle works !

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 25 / 34



Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Optimality condition

#

rΓ˚
1s

´1
pγ˚

1 ´ λwq “ a˚
1 ,

1

λ
pγ0 ´ Γ0a

˚
1q P B}0}ℓ1 ,

where

a˚
1 “ pA˚

k1
{ck1 , ...,A

˚
kL

{ckLq: all scaled active entries of A˚,

Matrix rΓsk,k 1 :“ xUk ,Uk 1pΓtp0qy, vector rγsk :“ xUk ,pΓtp1qy,
Γ˚
1 “ rΓsK1,K1 , Γ0 “ rΓsK0,K1 ; γ

˚
1 “ rγsK1 , γ0 “ rγsK0 ,

w “ pwk1 , ...,wkLq:
#

wkl “ sgnpA˚
kl

q, if A˚
kl
is from A˚

N (Penalized param.),

0, o.w .

The two LHS of the OC are smooth functions in λ.

Define a1pλ1q “ rΓ˚
1s

´1
pγ˚

1 ´ λ1wq. Same principle works !
Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 25 / 34



Inference: a new Lasso optimization type Homotopy algorithm: data path

Table of Contents

1 Motivating statistical model

2 Inference: a new Lasso optimization type
Classical homotopy algorithm: regularization path
New homotopy algorithm: regularization path
Homotopy algorithm: data path

3 Augmented model

4 Numerical studies
Simulations
Real data

5 Conclusions and perspectives

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 25 / 34



Inference: a new Lasso optimization type Homotopy algorithm: data path

Data path:

min
θPIRd

1

2
}y ´ Xθ}2ℓ2 `

1

2
pµyt`1 ´ µxJ

t`1θq2 ` pt ` 1qλ}θ}ℓ1 ,

The two LHS of OC are piece-wise smooth functions of
µ, µ P r0, 1s, see Garrigues and Ghaoui (2008). Same principle !

min
APKG

1

2t

t
ÿ

τ“1

}xτ ´ Axτ´1}
2
ℓ2

` pt ` 1qλ }AN}ℓ1

`
1

2

NF
ÿ

i“1

µi pxt`1,i ´ Ai ,:xtq
2

Always smooth in µi !

Details: if only one µ is used, the update of old OC is NF-rank,
no fast calculation !
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Augmented model

Augmented model

Matrix autoregressive model, Ext “ 0,:

xt “ Axt´1 ` zt , with A P KG , xt “ vecpXtq,

Matrix autoregressive model :

xt “ bt `Axt´1 ` zt , with A P KG , bt periodic, e.g. 12(month).

Estimation:

pA, pbτ :“ arg min
APKG ,bτ

1

2t

t
ÿ

τ“1

}xτ ´ bτ ´ Axτ´1}
2
ℓ2

` λ }AN}ℓ1

Adapted algorithms !
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Numerical studies Simulations

Running time
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N “ 20, F “ 5, M “ 12, number of model parameters = 1500. The
accelerated proximal gradient descent needs more than 3 secs.
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Numerical studies Simulations

Other simulation results

Existing MAR Proposed MAR

Prediction
performance ✓ (KS-based formula)

Availability for
small dataset ✓ (Lasso penalty)

Applicable in
graph learning ✓ (KS + Lasso penalty)

Online
inference ✓ (Homotopy algorithms)
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Numerical studies Real data

California weather TS
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Figure 1: N = 27 (stations), F= 4 (weather metrics), M = 12
(months), T = 1523 (months).

Proposed model:

xt “ bt ` Axt´1 ` zt , with A P KGpAN,AFq, bt periodic in t,

where xt “ vecpXtq, with Xt : matrix of 27 ˆ 4.
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Learned graph AN
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Figure 2: Dependency between stations. Estimation of AN (left) using
all T = 1523 (months), retrieved graph overlapped on the map (right).

Yiye JIANG (University of Grenoble Alpes, CNRS, Inria, Grenoble INP, France)Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time seriesJanuary 26, 2026 31 / 34



Numerical studies Real data

Learned graph AF
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Figure 3: Dependency between weather metrics. Estimation of AF

(left) using all T = 1523 (months), retrieved graph overlapped on the
map (right).
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Conclusions and perspectives

Contribution:

A new MAR model and the estimation methods
(offline/online).

Online graph learning (GL) from matrix-variate TS, which
is a data type not yet considered in the GL.

New homotopy algorithms. Online inference:

regularization path : Apt, λ1q Ñ Apt, λ2q,

data path : Apt, λq Ñ Apt ` 1, λq,

automatic tuning : λt Ñ λt`1,

Perspectives:

GL from TS of other data natures, e.g. TS of probability
measures1, mixed types.

1Y.Jiang and J.Bigot, Wasserstein auto-regressive models for modeling
multivariate distributional time series, to appear, Journal of time series
analysis.
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Thank your for your attention !

Jiang Yiye, Jérémie Bigot, and Sofian Maabout. ”Online graph
topology learning from matrix-valued time series.” Computational
Statistics & Data Analysis 202 (2025): 108065.
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Offline optimization

Ak`1 “ proxpAk ´ ηk∇f pAkqq,

“ arg min
APKG

1

2ηk
›

›A ´
`

Ak ´ ηk∇f pAkq
˘
›

›

2

ℓ2
` λ }AN}ℓ1

“ arg min
APKG

1

2ηk
›

›A ´ ProjG
`

Ak ´ ηk∇f pAkq
˘
›

›

2

ℓ2
` λ }AN}ℓ1

ðñ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Ak`1
N “ arg min

AN

›

›AN ´ ProjGN

`

Ak ´ ηk∇f pAkq
˘›

›

2

ℓ2

`2ηk λ
F }AN}ℓ1 ,

Ak`1
F “ ProjGF

`

Ak ´ ηk∇f pAkq
˘

,

diagpAk`1q “
`

Ak ´ ηk∇f pAkq
˘

,
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Adaptive tuning of λ

Introduce the empirical objective function (Monti et al., 2018):

ft`1pλq “
1

2
}xt`1 ´ Apt, λqxt}

2
ℓ2 .

Updating rule:

λt`1 “ λt ´ η
dft`1pλq

dλ

ˇ

ˇ

ˇ

λ“λt

,

where η is the step size.
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Conclusions and perspectives

Comparison with other AR models

The existing MAR models are all bi-multiplication / Kronecker
product based, with the first model proposed in Chen et al.
2021 1:

Xt “ ANXt´1A
J
F ` Zt

ðñ vecpXtq “ pAF b ANqvecpXt´1q ` vecpZtq p1q

Competitors: 3 estimators in Chen et al. 2021, VAR(1) with LS
estimator.

Online procedure

for us, apply directly on the TS as previously.
for VAR and MAR in (1), offline detrending + resolving
batch pb at each time step

1Chen, Rong, Han Xiao, and Dan Yang. ”Autoregressive models for
matrix-valued time series.” Journal of Econometrics 222.1 (2021): 539-560.
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