

Homotopy algorithm for structured matrix-variate Lasso and its application in online graph inference from matrix-variate time series

Yiye JIANG

University of Grenoble Alpes, CNRS,
Inria, Grenoble INP, France

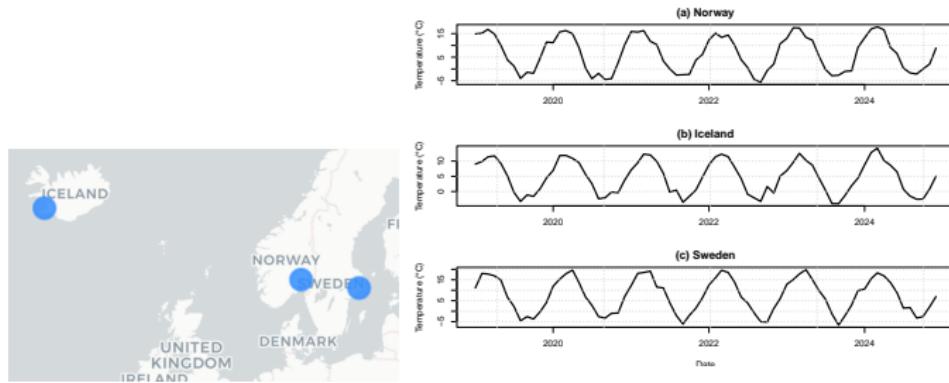
January 26, 2026

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

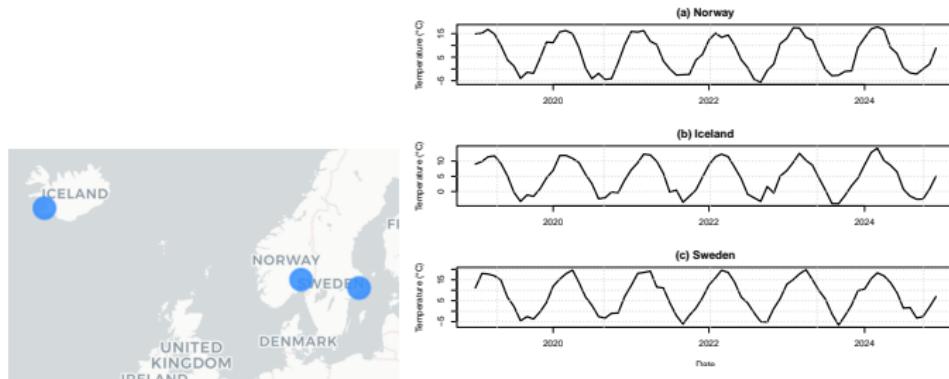
Graph learning in classical setting



- Let $x_t \in \mathbb{R}^3$, $t \in \mathbb{Z}$, denote the 3 temp at time t

$$\text{VAR}(1) : x_t = Ax_{t-1} + b + z_t.$$

Graph learning in classical setting

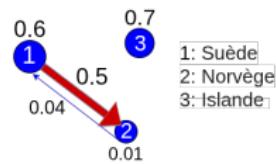


- Let $x_t \in \mathbb{R}^3$, $t \in \mathbb{Z}$, denote the 3 temp at time t

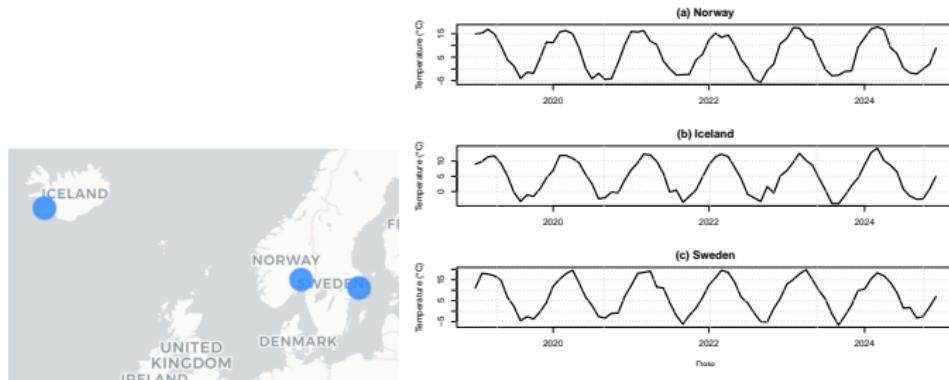
$$\text{VAR}(1) : x_t = Ax_{t-1} + b + z_t.$$

Numerical example:

$$\begin{pmatrix} x_{1t} \\ x_{2t} \\ x_{3t} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.04 & 0 \\ 0.5 & 0.01 & 0 \\ 0 & 0 & 0.7 \end{pmatrix} \begin{pmatrix} x_{1t-1} \\ x_{2t-1} \\ x_{3t-1} \end{pmatrix} + \begin{pmatrix} 15 \\ 12 \\ 10 \end{pmatrix} + z_t$$



Graph learning in classical setting

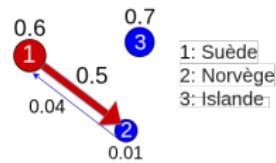


- Let $x_t \in \mathbb{R}^3$, $t \in \mathbb{Z}$, denote the 3 temp at time t

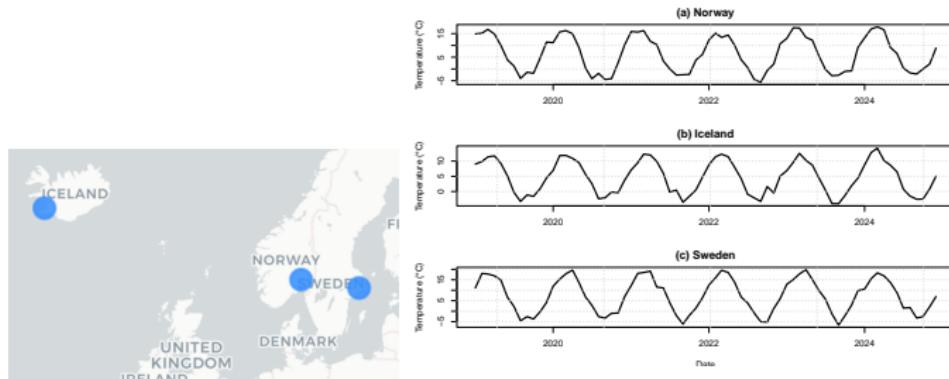
$$\text{VAR}(1) : x_t = Ax_{t-1} + b + z_t.$$

Numerical example:

$$\begin{pmatrix} x_{1t} \\ x_{2t} \\ x_{3t} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.04 & 0 \\ 0.5 & 0.01 & 0 \\ 0 & 0 & 0.7 \end{pmatrix} \begin{pmatrix} x_{1t-1} \\ x_{2t-1} \\ x_{3t-1} \end{pmatrix} + \begin{pmatrix} 15 \\ 12 \\ 10 \end{pmatrix} + z_t$$



Graph learning in classical setting

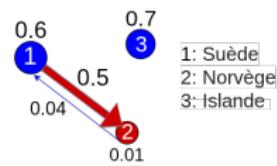


- Let $x_t \in \mathbb{R}^3$, $t \in \mathbb{Z}$, denote the 3 temp at time t

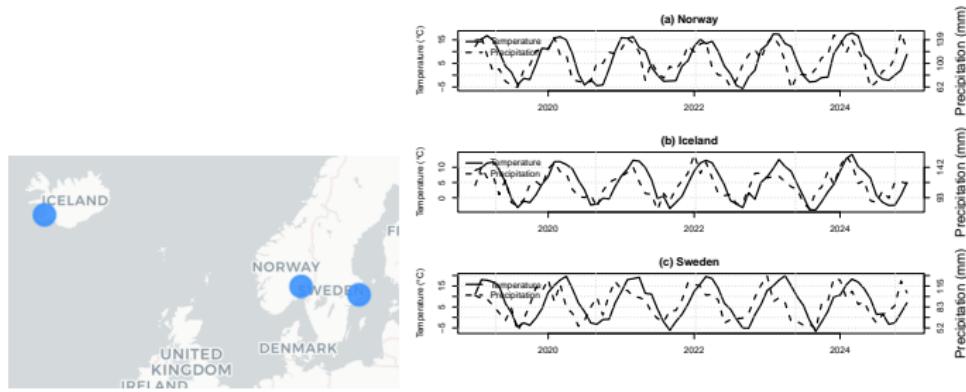
$$\text{VAR}(1) : x_t = Ax_{t-1} + b + z_t.$$

Numerical example:

$$\begin{pmatrix} x_{1t} \\ x_{2t} \\ x_{3t} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.04 & 0 \\ 0.5 & 0.01 & 0 \\ 0 & 0 & 0.7 \end{pmatrix} \begin{pmatrix} x_{1t-1} \\ x_{2t-1} \\ x_{3t-1} \end{pmatrix} + \begin{pmatrix} 15 \\ 12 \\ 10 \end{pmatrix} + z_t$$



Matrix-valued time series



- Let $X_t \in \mathbb{R}^{3 \times 2}$, $t \in \mathbb{Z}$, denote the temp and precip of 3 countries at time t

$$\text{VAR}(1) : x_t = Ax_{t-1} + b + z_t. \quad x_t \rightarrow X_t? \quad \mathcal{G}(3)?$$

Novel matrix autoregressive (MAR) model

For simplicity, we assume $\mathbb{E}X_t = 0, \forall t$, we propose

$$X_t = A_N X_{t-1} + X_{t-1} A_F^\top + Z_t,$$

where $X_t, Z_t \in \mathbb{R}^{N \times F}$, $A_N \in \mathbb{R}^{N \times N}$, $A_F \in \mathbb{R}^{F \times F}$, N is the nb of sensors, and F is the nb of features.

Novel matrix autoregressive (MAR) model

For simplicity, we assume $\mathbb{E}X_t = 0, \forall t$, we propose

$$X_t = A_N X_{t-1} + X_{t-1} A_F^\top + Z_t,$$

where $X_t, Z_t \in \mathbb{R}^{N \times F}$, $A_N \in \mathbb{R}^{N \times N}$, $A_F \in \mathbb{R}^{F \times F}$, N is the nb of sensors, and F is the nb of features.

$$x_{jt} = A_N x_{jt-1} + z_{jt}, \forall j = 1, \dots, F, x_{jt} = j\text{-th column of } X_t.$$

$A_N \iff$ row/sensor dependence.

Novel matrix autoregressive (MAR) model

For simplicity, we assume $\mathbb{E} X_t = 0, \forall t$, we propose

$$X_t = A_N X_{t-1} + X_{t-1} A_F^\top + Z_t,$$

where $X_t, Z_t \in \mathbb{R}^{N \times F}$, $A_N \in \mathbb{R}^{N \times N}$, $A_F \in \mathbb{R}^{F \times F}$, N is the nb of sensors, and F is the nb of features.

$$x_{jt} = A_N x_{jt-1} + z_{jt}, \forall j = 1, \dots, F, x_{jt} = j\text{-th column of } X_t.$$

$A_N \iff$ row/sensor dependence.

$$x_{it} = x_{it-1} A_F^\top + z_{it}, \forall i = 1, \dots, N, x_{it} = i\text{-th row of } X_t.$$

$A_F \iff$ column/feature dependence.

Novel matrix autoregressive (MAR) model

For simplicity, we assume $\mathbb{E} X_t = 0, \forall t$, we propose

$$X_t = A_N X_{t-1} + X_{t-1} A_F^\top + Z_t,$$

where $X_t, Z_t \in \mathbb{R}^{N \times F}$, $A_N \in \mathbb{R}^{N \times N}$, $A_F \in \mathbb{R}^{F \times F}$, N is the nb of sensors, and F is the nb of features.

$$x_{jt} = A_N x_{jt-1} + z_{jt}, \forall j = 1, \dots, F, x_{jt} = j\text{-th column of } X_t.$$

$A_N \iff$ row/sensor dependence.

$$x_{it} = x_{it-1} A_F^\top + z_{it}, \forall i = 1, \dots, N, x_{it} = i\text{-th row of } X_t.$$

$A_F \iff$ column/feature dependence.

A_N is invariant to features, A_F is invariant to sensors.

Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

Lasso in classical inference

Given the vectorial observations x_τ , $\tau = 0, \dots, t$, assumed follow VAR(1) : (for simplicity, we assume that $\mathbb{E}x_t = 0$)

$$x_t = Ax_{t-1} + z_t.$$

Estimation - classical Lasso

$$\hat{A} := \arg \min_A \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A\|_{\ell_1}$$

data term
(minimize residuals) penalty term
(encourage sparsity)

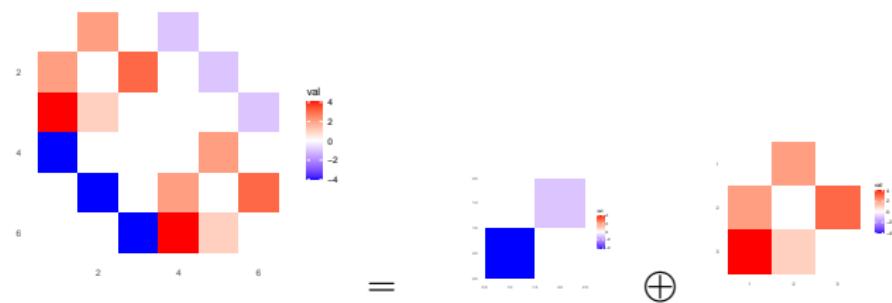
Given matrix observations $X_\tau, \tau = 0, 1, \dots$, assumed follow

$$X_\tau = A_N X_{\tau-1} + X_{\tau-1} A_F^\top + Z_\tau.$$

Vectorial representation:

$$x_\tau = Ax_{\tau-1} + z_\tau, \quad \text{where } A = A_F \oplus A_N, \quad x_\tau = \text{vec}(X_\tau).$$

Recall Kronecker sum: $A_F \oplus A_N = A_F \otimes I_F + I_N \otimes A_N$



Vectorial representation:

$$x_t = Ax_{t-1} + z_t, \quad \text{where } A = A_F \oplus A_N, \quad x_t = \text{vec}(X_t).$$

Estimation

$$\hat{A} := \underset{A=A_F \oplus A_N}{\arg \min} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1}$$

Vectorial representation:

$$x_t = Ax_{t-1} + z_t, \quad \text{where } A = A_F \oplus A_N, \quad x_t = \text{vec}(X_t).$$

Estimation

$$\hat{A} := \arg \min_{A \in \mathcal{K}_{\mathcal{G}}} \frac{1}{2t} \sum_{\tau=1}^t \|x_{\tau} - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

where

$$\mathcal{K}_{\mathcal{G}} = \{M \in \mathbb{R}^{NF \times NF} : M = M_F \oplus M_N, \quad M_F \in \mathbb{R}^{F \times F}, \quad M_N \in \mathbb{R}^{N \times N}\}.$$

Vectorial representation:

$$x_t = Ax_{t-1} + z_t, \quad \text{where } A = A_F \oplus A_N, \quad x_t = \text{vec}(X_t).$$

Estimation

$$\hat{A} := \arg \min_{A \in \mathcal{K}_G} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

where

$$\begin{aligned} \mathcal{K}_G &= \{M \in \mathbb{R}^{NF \times NF} : \exists M_F \in \mathbb{R}^{F \times F}, M_N \in \mathbb{R}^{N \times N}, \text{ such that,} \\ &\quad \text{offd}(M) = M_F \oplus M_N, \text{ with, } \text{diag}(M_F) = 0, \text{ diag}(M_N) = 0, \\ &\quad M_F = M_F^\top, M_N = M_N^\top\}. \end{aligned}$$

Our framework is independent of the specific structure !

Offline optimization

$$\min_{A \in \mathcal{K}_G} f(A) + \lambda \|A_N\|_{\ell_1}, \text{ where } f(A) = \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2$$

Proximal gradient descent

$$\begin{aligned} A^{k+1} &= \text{prox}(A^k - \eta^k \nabla f(A^k)), \\ &= \arg \min_{A \in \mathcal{K}_G} \frac{1}{2\eta^k} \|A - (A^k - \eta^k \nabla f(A^k))\|_{\ell_2}^2 + \frac{\lambda}{F} \|A_N\|_{\ell_1}. \end{aligned}$$

Online optimization

$$A(t, \lambda) := \arg \min_{A \in \mathcal{K}_{\mathcal{G}}} \frac{1}{2t} \sum_{\tau=1}^t \|x_{\tau} - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1}$$

Online inference:

regularization path : $A(t, \lambda_1) \rightarrow A(t, \lambda_2)$,

data path : $A(t, \lambda) \rightarrow A(t + 1, \lambda)$.

Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

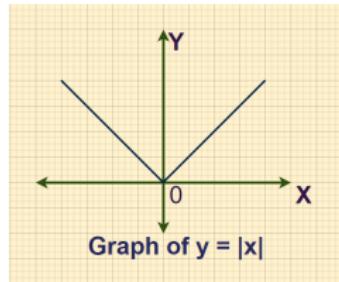
Algorithm for classical Lasso

Regularization path, $\theta(\lambda_1) \rightarrow \theta(\lambda_2)$:

$$\theta(\lambda) = \arg \min_{\theta \in \mathbb{R}^d} \frac{1}{2} \|y - X\theta\|_{\ell_2}^2 + \lambda \|\theta\|_{\ell_1},$$

Optimality condition:

$$0 \in X^\top (X\theta(\lambda) - y) + \partial \|\theta(\lambda)\|_{\ell_1}.$$



$$\partial \|\theta(\lambda)\|_{\ell_1} = \left\{ v \in \mathbb{R}^d : \begin{cases} v_i = \text{sgn}(\theta_i(\lambda)) & \text{if } \theta_i(\lambda) \neq 0, \\ v_i \in [-1, 1] & \text{if } \theta_i(\lambda) = 0. \end{cases} \right.$$

Algorithm for classical Lasso

Regularization path, $\theta(\lambda_1) \rightarrow \theta(\lambda_2)$:

$$\theta(\lambda) = \arg \min_{\theta \in \mathbb{R}^d} \frac{1}{2} \|y - X\theta\|_{\ell_2}^2 + \lambda \|\theta\|_{\ell_1},$$

Optimality condition:

$$\mathbf{0} \in X^\top (X\theta(\lambda) - y) + \partial \|\theta(\lambda)\|_{\ell_1}. \quad (5)$$

Suppose unique solution: $\theta(\lambda) = (\theta_1(\lambda), \mathbf{0})$ at λ , $X = (X_1, X_2)$:

$$(5) \iff \begin{cases} (X_1^\top X_1)^{-1} (X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Recall: $\partial \|\mathbf{0}\|_{\ell_1} = \begin{pmatrix} [-1, 1] \\ [-1, 1] \\ \dots \\ [-1, 1] \end{pmatrix}.$

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\theta\|_{\ell_1}. \end{cases}$$

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

Optimality condition:

$$\begin{cases} (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

Proof:

- $\theta_1(\lambda')$ is **linear** in λ' , by continuity, $\theta_1(\lambda') \approx \theta_1(\lambda)$. Thus $\theta_1(\lambda) \neq 0 \rightarrow \theta_1(\lambda') \neq 0$ et $\text{sgn}[\theta_1(\lambda')] = \text{sgn}[\theta_1(\lambda)]$.

Optimality condition:

$$\begin{cases} (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

Proof:

- $\theta_1(\lambda')$ is **linear** in λ' , by continuity, $\theta_1(\lambda') \approx \theta_1(\lambda)$. Thus $\theta_1(\lambda) \neq 0 \rightarrow \theta_1(\lambda') \neq 0$ et $\text{sgn}[\theta_1(\lambda')] = \text{sgn}[\theta_1(\lambda)]$.

$$\checkmark OC1 : (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda')]) = \theta_1(\lambda')$$

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

To prove: $v(\lambda') := \frac{1}{\lambda'} X_2^\top (y - X_1 \theta_1(\lambda')) \in \partial \|\mathbf{0}\|_{\ell_1} = \begin{pmatrix} [-1, 1] \\ [-1, 1] \\ \dots \\ [-1, 1] \end{pmatrix}$.

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

To prove: $v(\lambda') := \frac{1}{\lambda'} X_2^\top (y - X_1 \theta_1(\lambda')) \in \partial \|\mathbf{0}\|_{\ell_1} = \begin{pmatrix} [-1, 1] \\ [-1, 1] \\ \dots \\ [-1, 1] \end{pmatrix}$.

- $v_i(\lambda) \in [-1, 1]$.

$v(\lambda')$ is **smooth** in λ' , $v_i(\lambda') \approx v_i(\lambda)$. Done !

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

To prove: $v(\lambda') := \frac{1}{\lambda'} X_2^\top (y - X_1 \theta_1(\lambda')) \in \partial \|\mathbf{0}\|_{\ell_1} = \begin{pmatrix} [-1, 1] \\ [-1, 1] \\ \dots \\ [-1, 1] \end{pmatrix}$.

- $v_i(\lambda) \in [-1, 1]$.

$v(\lambda')$ is **smooth** in λ' , $v_i(\lambda') \approx v_i(\lambda)$. Done !?

$|v_i(\lambda)| = 1$, $v_i(\lambda') \notin [-1, 1]$.

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

To prove: $v(\lambda') := \frac{1}{\lambda'} X_2^\top (y - X_1 \theta_1(\lambda')) \in \partial \|\mathbf{0}\|_{\ell_1} = \begin{pmatrix} [-1, 1] \\ [-1, 1] \\ \dots \\ [-1, 1] \end{pmatrix}$.

- $v_i(\lambda) \in [-1, 1]$.

$v(\lambda')$ is **smooth** in λ' , $v_i(\lambda') \approx v_i(\lambda)$. Done !?

$|v_i(\lambda)| = 1$, $v_i(\lambda') \notin [-1, 1]$.

Assump.: $\forall i, v_i(\lambda) \in (-1, 1)$, namely, λ is not a critical point.

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

Piecewise constant support/sign pattern of Lasso solutions

- ① The support/sign pattern of Lasso solutions will stay unchanged over a small range of λ .

? ϵ , if $|\lambda_2 - \lambda| < \epsilon$, done !

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

Piecewise constant support/sign pattern of Lasso solutions

- ① The support/sign pattern of Lasso solutions will stay unchanged over a small range of λ .
- ② Knowing the support/sign pattern of \iff Knowing the complete solution.

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

Piecewise constant support/sign pattern of Lasso solutions

- ① The support/sign pattern of Lasso solutions will stay unchanged over a small range of λ .
- ② Knowing the support/sign pattern of \iff Knowing the complete solution.

? ϵ , if $|\lambda_2 - \lambda| < \epsilon$, done !

Optimality condition:

$$\begin{cases} (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda' \text{sgn}[\theta_1(\lambda)]).$$

- When $\lambda' = \lambda$, $\theta_1(\lambda') = \theta_1(\lambda)$.

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

- When $\lambda' = \lambda$, $\theta_1(\lambda') = \theta_1(\lambda)$.
- When λ' just leaves λ ,

$$\theta_1(\lambda') \approx \theta_1(\lambda), \text{sgn}[\theta_1(\lambda')] = \text{sgn}[\theta_1(\lambda)], \checkmark OC1.$$

- Until the critical value λ' , s.t. for some i , $\theta_{1,i}(\lambda') = 0$, then stays 0, or, changes sign.

Optimality condition:

$$\begin{cases} (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

Solutions $\theta(\lambda')$, $|\lambda' - \lambda| < \epsilon$:

Define $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

- When $\lambda' = \lambda$, $\theta_1(\lambda') = \theta_1(\lambda)$.
- When λ' just leaves λ ,

$$\theta_1(\lambda') \approx \theta_1(\lambda), \text{sgn}[\theta_1(\lambda')] = \text{sgn}[\theta_1(\lambda)], \checkmark OC1.$$

- Until the critical value λ' , s.t. for some i , $\theta_{1,i}(\lambda') = 0$, then stays 0, or, changes sign.

Critical values: $(\max_i \{\lambda' < \lambda : \theta_{1,i}(\lambda') = 0\}, \min_i \{\lambda' > \lambda : \theta_{1,i}(\lambda') = 0\})$

Optimality condition:

$$\begin{cases} (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

$\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

Validity interval of λ

Let $\lambda_i, i = 1, \dots, d$ be the solutions of following eqs:

$$\begin{cases} \theta_1(\lambda') = \mathbf{0}, \\ \frac{1}{\lambda'} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda')) = \mathbf{1}, \\ \frac{1}{\lambda'} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda')) = -\mathbf{1}. \end{cases}$$

$\theta_1(\lambda')$ is a Lasso solution, for $\forall \lambda' \in I_\lambda$, with

$$I_\lambda = (\max_i \{\lambda_i : \lambda_i < \lambda\}, \min_j \{\lambda_j : \lambda_j > \lambda\})$$

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

$\forall \lambda' \in I_\lambda$, $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !

Optimality condition:

$$\begin{cases} (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

$\forall \lambda' \in I_\lambda$, $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

$\forall \lambda' \in I_\lambda$, $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.
In $(\lambda_c, \lambda_c + \epsilon)$, only 1 entry changes **sparsity** wrt $\theta(\lambda)$!

Validity interval of λ

$$\begin{cases} \theta_1(\lambda') = \mathbf{0}, \theta_{j'} \rightarrow 0 \\ \frac{1}{\lambda'} X_2^\top (y - X_1 \theta_1(\lambda')) = \mathbf{1}, \\ \frac{1}{\lambda'} X_2^\top (y - X_1 \theta_1(\lambda')) = -\mathbf{1}. \end{cases}$$

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

$\forall \lambda' \in I_\lambda$, $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (X_1^\top X_1)^{-1}(X_1^\top y - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.
In $(\lambda_c, \lambda_c + \epsilon)$, only 1 entry changes **sparsity** wrt $\theta(\lambda)$!

Validity interval of λ

$$\begin{cases} \theta_1(\lambda') = \mathbf{0} \\ \frac{1}{\lambda'} X_2^\top (y - X_1 \theta_1(\lambda')) = \mathbf{1}, 0 \rightarrow \theta_{j'} > 0 \\ \frac{1}{\lambda'} X_2^\top (y - X_1 \theta_1(\lambda')) = -\mathbf{1}. \end{cases}$$

Optimality condition:

$$\begin{cases} (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

$\forall \lambda' \in I_\lambda$, $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.
In $(\lambda_c, \lambda_c + \epsilon)$, only 1 entry changes **sparsity** wrt $\theta(\lambda)$!

Validity interval of λ

$$\begin{cases} \theta_1(\lambda') = \mathbf{0} \\ \frac{1}{\lambda'} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda')) = \mathbf{1}, \\ \frac{1}{\lambda'} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda')) = -\mathbf{1}, 0 \rightarrow \theta_{j'} < 0. \end{cases}$$

Optimality condition:

$$\begin{cases} (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

$\forall \lambda' \in I_\lambda$, $\theta(\lambda') = (\theta_1(\lambda'), \mathbf{0})$, with

$$\theta_1(\lambda') = (\mathbf{X}_1^\top \mathbf{X}_1)^{-1} (\mathbf{X}_1^\top \mathbf{y} - \lambda' \text{sgn}[\theta_1(\lambda')]).$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.
In $(\lambda_c, \lambda_c + \epsilon)$, only 1 entry changes **sparsity** wrt $\theta(\lambda)$!

Validity interval of λ

$$\begin{cases} \theta_1(\lambda') = \mathbf{0} \\ \frac{1}{\lambda'} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda')) = \mathbf{1}, \\ \frac{1}{\lambda'} \mathbf{X}_2^\top (\mathbf{y} - \mathbf{X}_1 \theta_1(\lambda')) = -\mathbf{1}, 0 \rightarrow \theta_{j'} < 0. \end{cases}$$

j' is known !

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\theta_1(\lambda)\|_{\ell_1}. \end{cases}$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.

In $(\lambda_c, \lambda_c + \epsilon)$:

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\theta_1(\lambda)\|_{\ell_1}. \end{cases}$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.

In $(\lambda_c, \lambda_c + \epsilon)$: new support and sign pattern are both known

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\theta_1(\lambda)\|_{\ell_1}. \end{cases}$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.

In $(\lambda_c, \lambda_c + \epsilon)$: new support and sign pattern are both known \implies update the OC \implies new validity interval $(\lambda_c, ?)$ \implies until cover λ_2 .

Optimality condition:

$$\begin{cases} (X_1^\top X_1)^{-1}(X_1^\top y - \lambda \text{sgn}[\theta_1(\lambda)]) = \theta_1(\lambda), \\ \frac{1}{\lambda} X_2^\top (y - X_1 \theta_1(\lambda)) \in \partial \|\mathbf{0}\|_{\ell_1}. \end{cases}$$

- Thus if the new $\lambda_2 \in I_\lambda$, done !
- If not? e.g. $\lambda_2 \geq \lambda_c := \min_j \{\lambda_j : \lambda_j > \lambda\}$.

In $(\lambda_c, \lambda_c + \epsilon)$: new support and sign pattern are both known \implies update the OC \implies new validity interval $(\lambda_c, ?)$ \implies until cover λ_2 .

Detail: The update of $(X_1^\top X_1)^{-1}$ is 1-rank, fast calculation exists !

Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - **New homotopy algorithm: regularization path**
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

Compute optimality condition wrt structure

$$\hat{A} := \arg \min_{A \in \mathcal{K}_{\mathcal{G}}} \frac{1}{2t} \sum_{\tau=1}^t \|x_{\tau} - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

Compute optimality condition wrt structure

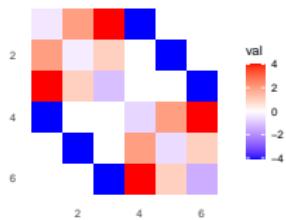
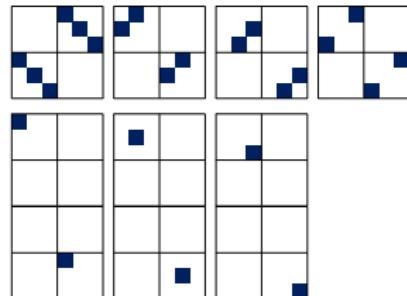
$$\hat{A} := \arg \min_{A \in \mathcal{K}_{\mathcal{G}}} \frac{1}{2t} \sum_{\tau=1}^t \|x_{\tau} - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

Key idea: Removing the explicit constraint using an orthonormal basis of $\mathcal{K}_{\mathcal{G}}$.

Compute optimality condition wrt structure

$$\hat{A} := \arg \min_{A \in \mathcal{K}_G} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

Key idea: Removing the explicit constraint using an orthonormal basis of \mathcal{K}_G . \mathcal{K}_G is a linear space of dim = nb of *unique values*.

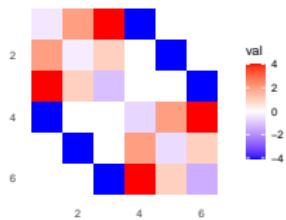
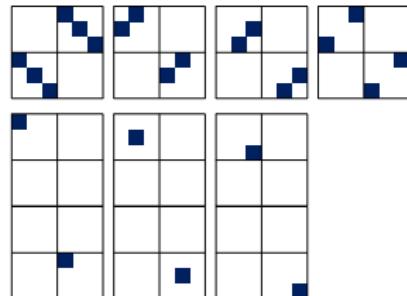


$$\forall A \in \mathcal{K}_G, \exists A^0 \in \mathbb{R}^{NF \times NF}, \text{ s.t. } \text{Proj}_G(A^0) = \sum_{k \in K} \langle U_k, A^0 \rangle_F U_k.$$

Compute optimality condition wrt structure

$$\hat{A} := \arg \min_{A \in \mathcal{K}_G} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

Key idea: Removing the explicit constraint using an orthonormal basis of \mathcal{K}_G . \mathcal{K}_G is a linear space of $\text{dim} = \text{nb of unique values}$.



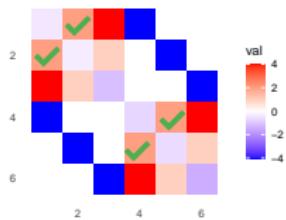
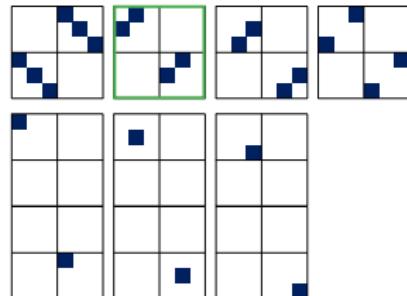
$\forall A \in \mathcal{K}_G, \exists A^0 \in \mathbb{R}^{NF \times NF}, \text{ s.t. } \text{Proj}_G(A^0) = \sum_{k \in K} \langle U_k, A^0 \rangle_F U_k$.

Moreover, $A_k = c_k \langle U_k, A^0 \rangle_F$: a unique corresponding U_k , known c .

Compute optimality condition wrt structure

$$\hat{A} := \arg \min_{A \in \mathcal{K}_G} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

Key idea: Removing the explicit constraint using an orthonormal basis of \mathcal{K}_G . \mathcal{K}_G is a linear space of dim = nb of *unique values*.



$\forall A \in \mathcal{K}_G, \exists A^0 \in \mathbb{R}^{NF \times NF}, \text{ s.t. } \text{Proj}_G(A^0) = \sum_{k \in K} \langle U_k, A^0 \rangle_F U_k.$

Moreover, $A_k = c_k \langle U_k, A^0 \rangle_F$: a unique corresponding U_k , known c_k .

Compute optimality condition wrt structure

$$\hat{A} := \arg \min_{A \in \mathcal{K}_G} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

Removed explicit constraint:

$$\begin{aligned} \hat{A}^0 := \arg \min_{A^0} & \frac{1}{2t} \sum_{\tau=1}^t \left\| x_\tau - \sum_{k \in K} \langle U_k, A^0 \rangle_F U_k x_{\tau-1} \right\|_{\ell_2}^2 \\ & + \lambda \sum_{k \in K_N} |\langle U_k, A^0 \rangle_F U_k|, \end{aligned}$$

where K_N corresponds to the values of A imposed penalty.

Compute optimality condition wrt structure

$$\hat{A} := \arg \min_{A \in \mathcal{K}_G} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1},$$

Removed explicit constraint:

$$\begin{aligned} \hat{A}^0 := \arg \min_{A^0} & \frac{1}{2t} \sum_{\tau=1}^t \left\| x_\tau - \sum_{k \in K} \langle U_k, A^0 \rangle_F U_k x_{\tau-1} \right\|_{\ell_2}^2 \\ & + \lambda \sum_{k \in K_N} |\langle U_k, A^0 \rangle_F U_k|, \end{aligned}$$

where K_N corresponds to the values of A imposed penalty.

$\hat{A} = \text{Proj}_{\mathcal{G}}(\hat{A}^0)$. $\frac{\partial L}{\partial A^0}$ is easy.

Optimality condition

$$0 \in \frac{\partial L}{\partial A^0} = \sum_{k, k' \in K} \langle U_k, U_{k'} \hat{\Gamma}_t(0) \rangle \langle U_{k'}, A^0 \rangle U_k - \sum_{k \in K} \langle U_k, \hat{\Gamma}_t(1) \rangle U_k + \lambda \sum_{k \in K_N} \partial |\langle U_k, A^0 \rangle| U_k,$$

where $\hat{\Gamma}_t(0) = \sum x_{\tau-1} x_{\tau-1}^\top$, $\hat{\Gamma}_t(1) = \sum x_{\tau-1} x_\tau^\top$.

Use $A_k = c_k \langle U_k, A^0 \rangle_F$!

Optimality condition

$$\begin{cases} [\Gamma_1^*]^{-1} (\gamma_1^* - \lambda w) = a_1^*, \\ \frac{1}{\lambda} (\gamma_0 - \Gamma_0 a_1^*) \in \partial \|\mathbf{0}\|_{\ell_1}, \end{cases}$$

where

- $a_1^* = (A_{k_1}^* / c_{k_1}, \dots, A_{k_L}^* / c_{k_L})$: all scaled **active** entries of A^* ,

Optimality condition

$$\begin{cases} [\Gamma_1^*]^{-1} (\gamma_1^* - \lambda w) = a_1^*, \\ \frac{1}{\lambda} (\gamma_0 - \Gamma_0 a_1^*) \in \partial \|\mathbf{0}\|_{\ell_1}, \end{cases}$$

where

- $a_1^* = (A_{k_1}^* / c_{k_1}, \dots, A_{k_L}^* / c_{k_L})$: all scaled **active** entries of A^* ,
- Matrix $[\Gamma]_{k,k'} := \langle U_k, U_{k'} \hat{\Gamma}_t(0) \rangle$, vector $[\gamma]_k := \langle U_k, \hat{\Gamma}_t(1) \rangle$,

Optimality condition

$$\begin{cases} [\Gamma_1^*]^{-1} (\gamma_1^* - \lambda w) = a_1^*, \\ \frac{1}{\lambda} (\gamma_0 - \Gamma_0 a_1^*) \in \partial \|\mathbf{0}\|_{\ell_1}, \end{cases}$$

where

- $a_1^* = (A_{k_1}^*/c_{k_1}, \dots, A_{k_L}^*/c_{k_L})$: all scaled **active** entries of A^* ,
- Matrix $[\Gamma]_{k,k'} := \langle U_k, U_{k'} \hat{\Gamma}_t(0) \rangle$, vector $[\gamma]_k := \langle U_k, \hat{\Gamma}_t(1) \rangle$, $\Gamma_1^* = [\Gamma]_{K_1, K_1}$, $\Gamma_0 = [\Gamma]_{K_0, K_1}$; $\gamma_1^* = [\gamma]_{K_1}$, $\gamma_0 = [\gamma]_{K_0}$,
- $w = (w_{k_1}, \dots, w_{k_L})$:

$$\begin{cases} w_{k_l} = \text{sgn}(A_{k_l}^*), & \text{if } A_{k_l}^* \text{ is from } A_N^* \text{ (Penalized param.)}, \\ 0, & \text{o.w.} \end{cases}$$

Optimality condition

$$\begin{cases} [\Gamma_1^*]^{-1} (\gamma_1^* - \lambda w) = a_1^*, \\ \frac{1}{\lambda} (\gamma_0 - \Gamma_0 a_1^*) \in \partial \|\mathbf{0}\|_{\ell_1}, \end{cases}$$

where

- $a_1^* = (A_{k_1}^*/c_{k_1}, \dots, A_{k_L}^*/c_{k_L})$: all scaled **active** entries of A^* ,
- Matrix $[\Gamma]_{k,k'} := \langle U_k, U_{k'} \hat{\Gamma}_t(0) \rangle$, vector $[\gamma]_k := \langle U_k, \hat{\Gamma}_t(1) \rangle$, $\Gamma_1^* = [\Gamma]_{K_1, K_1}$, $\Gamma_0 = [\Gamma]_{K_0, K_1}$; $\gamma_1^* = [\gamma]_{K_1}$, $\gamma_0 = [\gamma]_{K_0}$,
- $w = (w_{k_1}, \dots, w_{k_L})$:

$$\begin{cases} w_{k_l} = \text{sgn}(A_{k_l}^*), & \text{if } A_{k_l}^* \text{ is from } A_N^* \text{ (Penalized param.)}, \\ 0, & \text{o.w.} \end{cases}$$

The two LHS of the OC are **smooth** functions in λ .

Optimality condition

$$\begin{cases} [\Gamma_1^*]^{-1} (\gamma_1^* - \lambda w) = a_1^*, \\ \frac{1}{\lambda} (\gamma_0 - \Gamma_0 a_1^*) \in \partial \|\mathbf{0}\|_{\ell_1}, \end{cases}$$

where

- $a_1^* = (A_{k_1}^*/c_{k_1}, \dots, A_{k_L}^*/c_{k_L})$: all scaled **active** entries of A^* ,
- Matrix $[\Gamma]_{k,k'} := \langle U_k, U_{k'} \hat{\Gamma}_t(0) \rangle$, vector $[\gamma]_k := \langle U_k, \hat{\Gamma}_t(1) \rangle$, $\Gamma_1^* = [\Gamma]_{K_1, K_1}$, $\Gamma_0 = [\Gamma]_{K_0, K_1}$; $\gamma_1^* = [\gamma]_{K_1}$, $\gamma_0 = [\gamma]_{K_0}$,
- $w = (w_{k_1}, \dots, w_{k_L})$:

$$\begin{cases} w_{k_l} = \text{sgn}(A_{k_l}^*), & \text{if } A_{k_l}^* \text{ is from } A_N^* \text{ (Penalized param.)}, \\ 0, & \text{o.w.} \end{cases}$$

The two LHS of the OC are **smooth** functions in λ .

Define $a_1(\lambda') = [\Gamma_1^*]^{-1} (\gamma_1^* - \lambda' w)$. Same principle works !

Table of Contents

1 Motivating statistical model

2 Inference: a new Lasso optimization type

- Classical homotopy algorithm: regularization path
- New homotopy algorithm: regularization path
- Homotopy algorithm: data path

3 Augmented model

4 Numerical studies

- Simulations
- Real data

5 Conclusions and perspectives

Data path:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{2} \|y - X\theta\|_{\ell_2}^2 + \frac{1}{2} (\mu y_{t+1} - \mu x_{t+1}^\top \theta)^2 + (t+1)\lambda \|\theta\|_{\ell_1},$$

The two LHS of OC are piece-wise **smooth** functions of $\mu, \mu \in [0, 1]$, see Garrigues and Ghaoui (2008). Same principle !

$$\begin{aligned} \min_{A \in \mathcal{K}_G} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + (t+1)\lambda \|A_N\|_{\ell_1} \\ + \frac{1}{2} \sum_{i=1}^{NF} \mu_i (x_{t+1,i} - A_{i,:}x_t)^2 \end{aligned}$$

Always smooth in μ_i !

Data path:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{2} \|y - X\theta\|_{\ell_2}^2 + \frac{1}{2} (\mu y_{t+1} - \mu x_{t+1}^\top \theta)^2 + (t+1)\lambda \|\theta\|_{\ell_1},$$

The two LHS of OC are piece-wise **smooth** functions of $\mu, \mu \in [0, 1]$, see Garrigues and Ghaoui (2008). Same principle !

$$\begin{aligned} \min_{A \in \mathcal{K}_G} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + (t+1)\lambda \|A_N\|_{\ell_1} \\ + \frac{1}{2} \sum_{i=1}^{NF} \mu_i (x_{t+1,i} - A_{i,:}x_t)^2 \end{aligned}$$

Always smooth in μ_i !

Details: if only one μ is used, the update of old OC is NF-rank, no fast calculation !

Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

Augmented model

Matrix autoregressive model, $\mathbb{E}x_t = 0$:

$$x_t = Ax_{t-1} + z_t, \text{ with } A \in \mathcal{K}_{\mathcal{G}}, x_t = \text{vec}(X_t),$$

Augmented model

Matrix autoregressive model, $\mathbb{E}x_t = 0$:

$$x_t = Ax_{t-1} + z_t, \text{ with } A \in \mathcal{K}_{\mathcal{G}}, x_t = \text{vec}(X_t),$$

Matrix autoregressive model:

$$x_t = b_t + Ax_{t-1} + z_t, \text{ with } A \in \mathcal{K}_{\mathcal{G}}, b_t \text{ periodic, e.g. 12(month).}$$

Augmented model

Matrix autoregressive model, $\mathbb{E}x_t = 0$:

$$x_t = Ax_{t-1} + z_t, \text{ with } A \in \mathcal{K}_{\mathcal{G}}, x_t = \text{vec}(X_t),$$

Matrix autoregressive model:

$$x_t = b_t + Ax_{t-1} + z_t, \text{ with } A \in \mathcal{K}_{\mathcal{G}}, b_t \text{ periodic, e.g. 12(month).}$$

Estimation:

$$\hat{A}, \hat{b}_\tau := \arg \min_{A \in \mathcal{K}_{\mathcal{G}}, b_\tau} \frac{1}{2t} \sum_{\tau=1}^t \|x_\tau - b_\tau - Ax_{\tau-1}\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1}$$

Adapted algorithms !

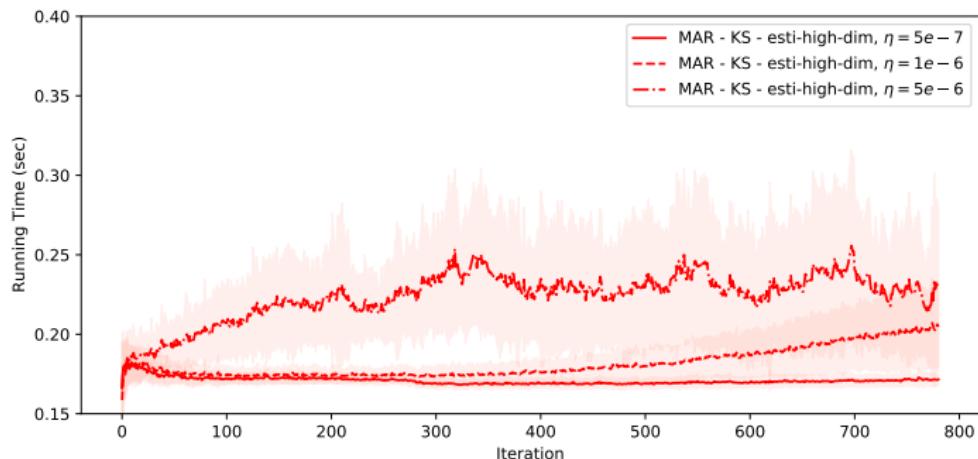
Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

Running time



$N = 20$, $F = 5$, $M = 12$, number of model parameters = 1500. The accelerated proximal gradient descent needs more than **3 secs**.

Other simulation results

	Existing MAR	Proposed MAR
Prediction performance		✓ (KS-based formula)
Availability for small dataset		✓ (Lasso penalty)
Applicable in graph learning		✓ (KS + Lasso penalty)
Online inference		✓ (Homotopy algorithms)

Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

California weather TS

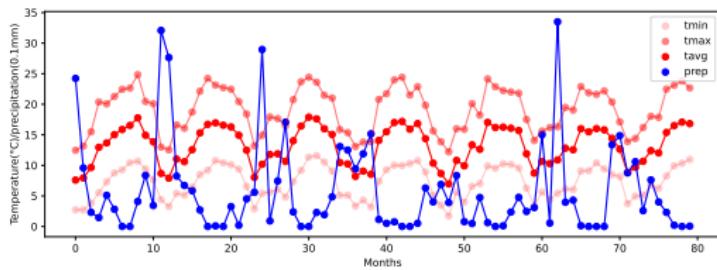


Figure 1: $N = 27$ (stations), $F = 4$ (weather metrics), $M = 12$ (months), $T = 1523$ (months).

Proposed model:

$$x_t = b_t + Ax_{t-1} + z_t, \text{ with } A \in \mathcal{K}_G(\mathbf{A}_N, \mathbf{A}_F), \text{ } b_t \text{ periodic in } t,$$

where $x_t = \text{vec}(X_t)$, with X_t : matrix of 27×4 .

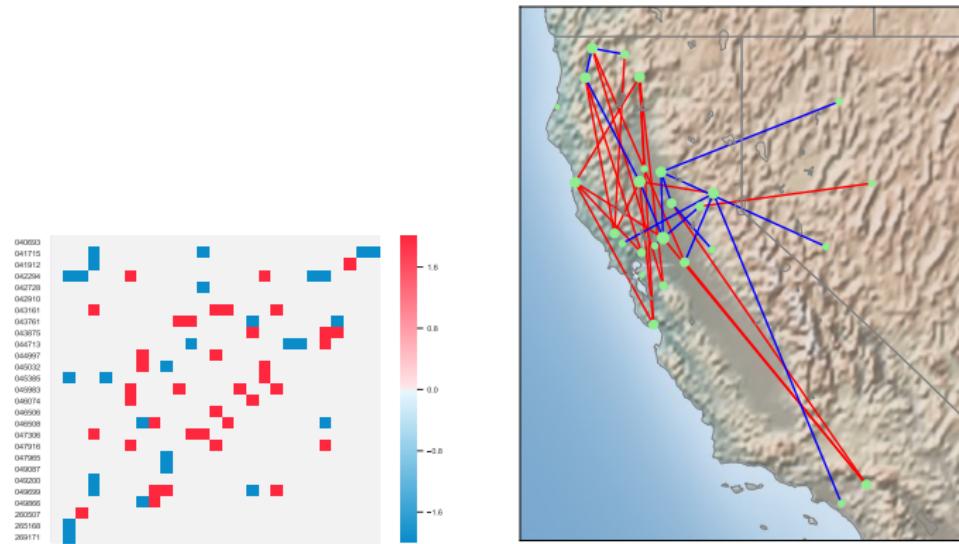
Learned graph A_N 

Figure 2: Dependency between stations. Estimation of A_N (left) using all $T = 1523$ (months), retrieved graph overlapped on the map (right).

Learned graph A_F

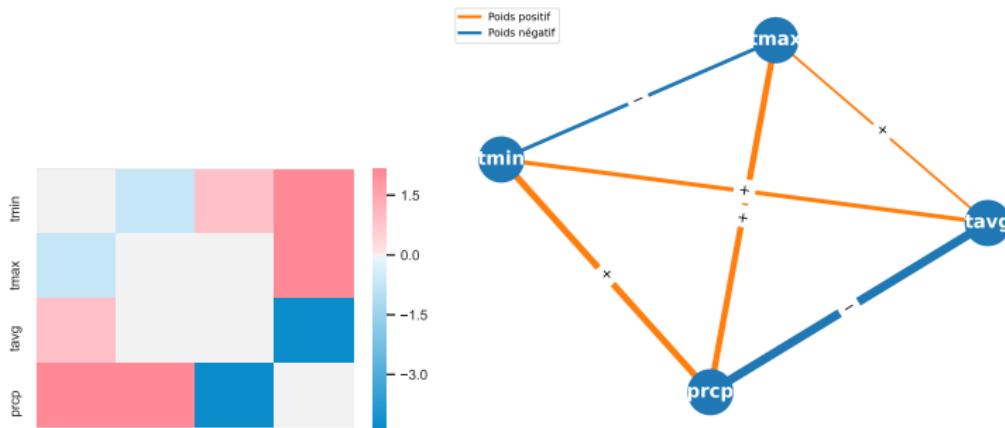


Figure 3: Dependency between weather metrics. Estimation of A_F (left) using all $T = 1523$ (months), retrieved graph overlapped on the map (right).

Table of Contents

- 1 Motivating statistical model
- 2 Inference: a new Lasso optimization type
 - Classical homotopy algorithm: regularization path
 - New homotopy algorithm: regularization path
 - Homotopy algorithm: data path
- 3 Augmented model
- 4 Numerical studies
 - Simulations
 - Real data
- 5 Conclusions and perspectives

Contribution:

- A new MAR model and the estimation methods (offline/online).

¹Y.Jiang and J.Bigot, Wasserstein auto-regressive models for modeling multivariate distributional time series, *to appear, Journal of time series analysis.*

Contribution:

- A new MAR model and the estimation methods (offline/online).
- Online graph learning (GL) from matrix-variate TS, which is a data type not yet considered in the GL.

¹Y.Jiang and J.Bigot, Wasserstein auto-regressive models for modeling multivariate distributional time series, *to appear, Journal of time series analysis.*

Contribution:

- A new MAR model and the estimation methods (offline/online).
- Online graph learning (GL) from matrix-variate TS, which is a data type not yet considered in the GL.
- New homotopy algorithms. **Online inference:**

regularization path : $A(t, \lambda_1) \rightarrow A(t, \lambda_2)$,

data path : $A(t, \lambda) \rightarrow A(t + 1, \lambda)$,

automatic tuning : $\lambda_t \rightarrow \lambda_{t+1}$,

¹Y.Jiang and J.Bigot, Wasserstein auto-regressive models for modeling multivariate distributional time series, *to appear, Journal of time series analysis.*

Contribution:

- A new MAR model and the estimation methods (offline/online).
- Online graph learning (GL) from matrix-variate TS, which is a data type not yet considered in the GL.
- New homotopy algorithms. **Online inference:**

regularization path : $A(t, \lambda_1) \rightarrow A(t, \lambda_2)$,

data path : $A(t, \lambda) \rightarrow A(t + 1, \lambda)$,

automatic tuning : $\lambda_t \rightarrow \lambda_{t+1}$,

Perspectives:

GL from TS of other data natures, e.g. TS of probability measures¹, mixed types.

¹Y.Jiang and J.Bigot, Wasserstein auto-regressive models for modeling multivariate distributional time series, *to appear, Journal of time series analysis*.

Thank you for your attention !

Jiang Yiye, Jérémie Bigot, and Sofian Maabout. "Online graph topology learning from matrix-valued time series." Computational Statistics & Data Analysis 202 (2025): 108065.

Offline optimization

$$\begin{aligned}
 A^{k+1} &= \text{prox}(A^k - \eta^k \nabla f(A^k)), \\
 &= \arg \min_{A \in \mathcal{K}_G} \frac{1}{2\eta^k} \|A - (A^k - \eta^k \nabla f(A^k))\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1} \\
 &= \arg \min_{A \in \mathcal{K}_G} \frac{1}{2\eta^k} \|A - \text{Proj}_{\mathcal{G}}(A^k - \eta^k \nabla f(A^k))\|_{\ell_2}^2 + \lambda \|A_N\|_{\ell_1} \\
 &\iff \begin{cases} A_N^{k+1} = \arg \min_{A_N} \|A_N - \text{Proj}_{\mathcal{G}_N}(A^k - \eta^k \nabla f(A^k))\|_{\ell_2}^2 \\ \quad + 2\eta^k \frac{\lambda}{F} \|A_N\|_{\ell_1}, \\ A_F^{k+1} = \text{Proj}_{\mathcal{G}_F}(A^k - \eta^k \nabla f(A^k)), \\ \text{diag}(A^{k+1}) = (A^k - \eta^k \nabla f(A^k)), \end{cases}
 \end{aligned}$$

Adaptive tuning of λ

Introduce the empirical objective function (Monti et al., 2018):

$$f_{t+1}(\lambda) = \frac{1}{2} \|x_{t+1} - A(t, \lambda)x_t\|_{\ell_2}^2.$$

Updating rule:

$$\lambda_{t+1} = \lambda_t - \eta \frac{df_{t+1}(\lambda)}{d\lambda} \Big|_{\lambda=\lambda_t},$$

where η is the step size.

Comparison with other AR models

The existing MAR models are all bi-multiplication / Kronecker product based, with the first model proposed in Chen et al. 2021¹:

$$X_t = A_N X_{t-1} A_F^\top + Z_t$$
$$\iff \text{vec}(X_t) = (A_F \otimes A_N) \text{vec}(X_{t-1}) + \text{vec}(Z_t) \quad (1)$$

¹Chen, Rong, Han Xiao, and Dan Yang. "Autoregressive models for matrix-valued time series." *Journal of Econometrics* 222.1 (2021): 539-560.

Comparison with other AR models

The existing MAR models are all bi-multiplication / Kronecker product based, with the first model proposed in Chen et al. 2021¹:

$$X_t = A_N X_{t-1} A_F^\top + Z_t$$
$$\iff \text{vec}(X_t) = (A_F \otimes A_N) \text{vec}(X_{t-1}) + \text{vec}(Z_t) \quad (1)$$

Competitors: 3 estimators in Chen et al. 2021, VAR(1) with LS estimator.

¹Chen, Rong, Han Xiao, and Dan Yang. "Autoregressive models for matrix-valued time series." *Journal of Econometrics* 222.1 (2021): 539-560.

Comparison with other AR models

The existing MAR models are all bi-multiplication / Kronecker product based, with the first model proposed in Chen et al. 2021¹:

$$X_t = A_N X_{t-1} A_F^\top + Z_t$$

$$\iff \text{vec}(X_t) = (A_F \otimes A_N) \text{vec}(X_{t-1}) + \text{vec}(Z_t) \quad (1)$$

Competitors: 3 estimators in Chen et al. 2021, VAR(1) with LS estimator.

- Online procedure
 - for us, apply directly on the TS as previously.
 - for VAR and MAR in (1), offline detrending + resolving batch pb at each time step

¹Chen, Rong, Han Xiao, and Dan Yang. "Autoregressive models for matrix-valued time series." *Journal of Econometrics* 222.1 (2021): 539-560.

Pierre Garrigues and Laurent Ghaoui. An homotopy algorithm for the lasso with online observations. *Advances in neural information processing systems*, 21:489–496, 2008.

Ricardo P Monti, Christoforos Anagnostopoulos, and Giovanni Montana. Adaptive regularization for lasso models in the context of nonstationary data streams. *Statistical Analysis and Data Mining: The ASA Data Science Journal*, 11(5):237–247, 2018.