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Motivating statistical model

Graph learning in classical setting
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o Let x, € R3, t € Z, denote the 3 temp at time t
VAR(1) : xt = Axt—1 + b + z.
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Motivating statistical model

Graph learning in classical setting

o Let x, € R3, t € Z, denote the 3 temp at time t
VAR(1) : xt = Axt—1 + b + z.

Numerical example:
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Motivating statistical model

Matrix-valued time series

@ Norway g
i g
£ o ]

2020 A 202t
E
E
I - ©) Sweden £
H 2
£ #
NITEE

o Let X; e R3*?, t € Z, denote the temp and precip of 3
countries at time t

VAR(].) L Xy = AXt_]_ + b + Z. X — Xf? g(?))?

VORI N R (VTSR M SIS SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 6/34



Motivating statistical model

Novel matrix autoregressive (MAR) model
For simplicity, we assume EX; = 0,Vt, we propose
Xe = AnXe1 + Xe 1AL + Ze,

where X;, Z, e RV*F Ay e RV*N| Ap € RF*F, N is the nb of
sensors, and F is the nb of features.
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Motivating statistical model

Novel matrix autoregressive (MAR) model

For simplicity, we assume EX; = 0,Vt, we propose
X = ANXeo1 + Xeo1Af + Zt,

where X;, Z, e RV*F Ay e RV*N| Ap € RF*F, N is the nb of
sensors, and F is the nb of features.

Xjt = ANXjt—1 + Zjt,Vj = 1,..., F, xjs = j-th column of X;.

AN <= row/sensor dependence.
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Motivating statistical model

Novel matrix autoregressive (MAR) model

For simplicity, we assume EX; = 0,Vt, we propose
X = ANXe—1 + Xeo1Af + Zt,

where X;, Zy € RV*F, Ay e RV*N, Ap e RF*F | N is the nb of
sensors, and F is the nb of features.

Xjt = ANXjt—1 + zit, Vj = 1,..., F, xjt = j-th column of X;.
AN <= row/sensor dependence.
Xjt = X,'tflAi:\r + zi,Vi=1,..., N, x;z = i-th row of X;.

Ap <= column/feature dependence.
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Motivating statistical model

Novel matrix autoregressive (MAR) model

For simplicity, we assume EX; = 0,Vt, we propose
X = ANXe—1 + Xeo1Af + Zt,

where X;, Zy € RV*F, Ay e RV*N, Ap e RF*F | N is the nb of
sensors, and F is the nb of features.

Xjt = ANXjt—1 + zit, Vj = 1,..., F, xjt = j-th column of X;.
AN <= row/sensor dependence.
Xjt = X,'tflAi:\r + zi,Vi=1,..., N, x;z = i-th row of X;.
Ap <= column/feature dependence.

AN Is invariant to features, Ap is invariant to sensors.
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Inference: a new Lasso optimization type

Lasso in classical inference

Given the vectorial observations x., 7 = 0, ..., t, assumed follow
VAR(1) : (for simplicity, we assume that Ex; = 0)

Xt = Ath]_ + Zt.

Estimation - classical Lasso

“ R )
A=argmin — ' [x = Axaff, + A[A]L,
=1 penalty term

data term (encourage sparsity)
(minimize residuals)
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Inference: a new Lasso optimization type

Given matrix observations X, 7 =0, 1, ..., assumed follow
X = AnXo—1 + Xr1AE + Z..
Vectorial representation:
Xr = Ax,—1+ z-, where A= Ap® AN, x = vec(X;).

Recall Kronecker sum: Ap ® An = Ap ® I + Iy ® An
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Inference: a new Lasso optimization type

Vectorial representation:
Xt = Axt—1+ zt, where A=Ap @ AN, x: = vec(Xy).

Estimation

~ R
A:= arg min — 2 |xr — AXT—1H§2 + M Axllg,

A=Ar@Ay 4t
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Inference: a new Lasso optimization type

Vectorial representation:

Xt = Axe—1 + z:, where A= Ap @ AN, x¢ = vec(Xy).

Estimation
~ 1 <
A= in — — Ax—1|2 + A |A
axg i ;3 oo — Axealf, + A Al
where

Kg = {Me RN M = Mp @ My, Mp e RFF, My e RVV}
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Inference: a new Lasso optimization type

Vectorial representation:
Xt = Axe—1 + zt, where A= Ap @ AN, x¢ = vec(X}).

Estimation

~

A= — A +A[A
al;qgellgéln 2t Z ”XT XT 1”[2 H NHfl

where

Kg = {MeR"PNF:3IMp e RF*F, My e RV*N) such that,
offd(M) = My @ My, with, diag(Mr) = 0, diag(Mx) =0,
Mp = M{, My = My}

Our framework is independent of the specific structure !
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Inference: a new Lasso optimization type

Offline optimization

: 1 ¢ )
Arre1’|cng f(A) + A Axl, , where f(A =5 Z:] Ixr — Axr -1,

Proximal gradient descent
AL — prox(AK — nkv £ (AK)),

1 2\
- in—|A— Ak—"fAk>H 2 Axl,
arg mmin 5 ¢ H ( n V£(A%) 42+FH Nllg,
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Inference: a new Lasso optimization type

Online optimization

A(t,A) := ar mln— X — Axr_ +A|A
(8.2) 1= ang min Zn 112, + A A,

Online inference:

regularization path : A(t, A1) — A(t, A\2),
data path : A(t,\) > A(t + 1, \).
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Classical homotopy algorithm: regularization path
Table of Contents

© Inference: a new Lasso optimization type
@ Classical homotopy algorithm: regularization path

VORI N R (VTSRS M ST SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 12 /34



Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Algorithm for classical Lasso

Regularization path, 8(\1) — 6(A2):

o1
6(A) = arg min 5y — X0(7, + A0y,
PR

Optimality condition:

0 XT(XO(X) = y) + 0N e,

B ~Jvi=sgn(;(N)) if 6;(X) #0,
A0, { R { CEa) ) 20

Graph of y = |x|
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Algorithm for classical Lasso
Regularization path, 8(\1) — 6(A2):
o1
0(A) = arg min Sy — X017, + A6,
9eR?
Optimality condition:
0 XT(XO(N) = y) + 2|0 ey ()
Suppose unique solution: §(A\) = (#1(A),0) at A\, X = (X1, Xz):
(5) — (1X1TTX1)71 (XlTy - )‘sgn[el()‘)]) = 01()‘)7
X2 (y = X161(A)) € 90|,
[*17 1]
Recall: ajof,, — | 70|
[_1’ 1]
Homotopy algorithm for structured matrix-var January 26, 2026
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Optimality condition:

(X! X)X y—Asgn[61(M\)]) = 61(N),
X (y — Xi01(N)) € 20|,
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Optimality condition:

{ (X! X0) "Xy —Asgn[01(A)]) = 61(N),
X (y — Xi01(N)) € 20|,

Solutions 6(\), [N — \| < e:

Define (') = (61(X\'),0), with

1(\) = (X X1)7H(X] y—N'sgn[61(N))).
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X! X0) "Xy —Asgn[01(A)]) = 61(N),
X (y — Xi01(N)) € 20|,

Solutions 6(\), [N — \| < e:

Define (') = (61(X\'),0), with

1(\) = (X X1)7H(X] y—N'sgn[61(N))).

Proof:

@ 01(N) is linear in X, by continuity, 61(\') ~ 61(A\). Thus
01(X) # 0 — 01(N) # 0 et sgn[f1(N)] = sgn[B1(N)].
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X! X0) "Xy —Asgn[01(A)]) = 61(N),
X (y — Xi01(N)) € 20|,

Solutions 6(\), [N — \| < e:

Define (') = (61(X\'),0), with

1(\) = (X X1)7H(X] y—N'sgn[61(N))).

Proof:

@ 01(N) is linear in X, by continuity, 61(\') ~ 61(A\). Thus
01(X) # 0 — 01(N) # 0 et sgn[f1(N)] = sgn[B1(N)].

VOCL: (X! X1) ™1 (X{y — Asgn[6:1(N)]) = 62(\)

VORI N R (VTSR M ST SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 15 /34



Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X! X0)"H(X] y—Asgn[61(N)]) = 01(N),
31X (y — X161(\)) € 00|,

Solutions 6(\), [N — Al < e:

Define O(X') = (61()\'),0), with

61(X) = (X)' X1) 1 (X{ y—N'sgn[61(N)]).
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X! X0)"H(X] y—Asgn[61(N)]) = 01(N),
31X (y — X161(\)) € 00|,

Solutions 6(\), [N — Al < e:

Define O(X') = (61()\'),0), with

61(X) = (X)' X1) 1 (X{ y—N'sgn[61(N)]).

To prove: v(X) := X3 (v — X161(X)) € 0|0]|¢, = [_7 ]
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X! X0)"H(X] y—Asgn[61(N)]) = 01(N),
31X (y — X161(\)) € 00|,

Solutions 6(\), [N — Al < e:

Define O(X') = (61()\'),0), with

61(X) = (X)' X1) 1 (X{ y—N'sgn[61(N)]).

To prove: v(X) := X3 (v — X161(X)) € 0|0]|¢, = [_7 ]

o vi(\) e [-1,1]. [-1,1]
v(\') is smooth in X', v;(\) ~ v;(\). Done !
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X! X0)"H(X] y—Asgn[61(N)]) = 01(N),
31X (y — X161(\)) € 00|,

Solutions 6(\), [N — Al < e:

Define O(X') = (61()\'),0), with

61(X) = (X)' X1) 1 (X{ y—N'sgn[61(N)]).

To prove: v(X) := X3 (v — X161(X)) € 0|0]|¢, = [_7 ]

° v;(A\) e [-1,1]. [-1,1]
( /) is smooth in \, V,(/\/) ()\) Done 1?
lviiV)] =1, v;(N) ¢ [-1,1].
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X! X0)"H(X] y—Asgn[61(N)]) = 01(N),
31X (y — X161(\)) € 00|,

Solutions 6(\), [N — Al < e:

Define O(X') = (61()\'),0), with

61(X) = (X)' X1) 1 (X{ y—N'sgn[61(N)]).

To prove: v(X) = 1X7 (y — X,00(X)) € 0], = | 11
o vi(\) e [-1,1]. [-1,1]
v(\') is smooth in X, v;(\) ~ v;(\). Done I?
vi(A)] =1, vi(\) ¢ [-1,1].
Assump.: Vi, v;(\) € (—1,1), namely, X is not a critical point.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X{ X1)"H(X] y—Asgn[61(N)]) = 61(N),
LX) (y — X161(\) € 20,

Solutions 4(\), [N — \| <e:
Define 8(X\') = (61(X\'),0), with

01(\) = (X, X1)TH(X] y—N'sgn[01(N))).

Piecewise constant support/sign pattern of Lasso solutions

@ The support/sign pattern of Lasso solutions will stay
unchanged over a small range of .

& J
? € if [A\a — Al <€, done !




Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X{ X1)"H(X] y—Asgn[61(N)]) = 61(N),
LX) (y — X161(\) € 20,

Solutions 6(\), [N — Al < e:
Define (') = (01(\),0), with

01(\) = (X, X1)TH(X] y—N'sgn[01(N))).

Piecewise constant support/sign pattern of Lasso solutions

@ The support/sign pattern of Lasso solutions will stay
unchanged over a small range of .

@ Knowing the support/sign pattern of <= Knowing the
complete solution.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X{ X1)"H(X] y—Asgn[61(N)]) = 61(N),
LX) (y — X161(\) € 20,

Solutions 6(\), [N — Al < e:
Define (') = (01(\),0), with

01(\) = (X, X1)TH(X] y—N'sgn[01(N))).

Piecewise constant support/sign pattern of Lasso solutions

@ The support/sign pattern of Lasso solutions will stay
unchanged over a small range of .

@ Knowing the support/sign pattern of <= Knowing the

complete solution.
= J

? € if [A\a — Al <€, done !
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X X0) "Xy —Asgn[01(A)]) = 61(N),
X (y — Xi01(N)) € 20|,

Solutions §(\), [N — Al <e:

Define O(X) = (61()\'),0), with

B1(X) = (X' X1)7H(X{ y—N'sgn[61(V)]).

@ When X =\, 6,(\) = 6:(N).
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X{ X1)"H(X] y—Asgn[61(N)]) = 61(N),
X (y — Xi01(N)) € 20|,

Solutions §(\), [N — Al <e:

Define O(X) = (61()\'),0), with

B1(X) = (X' X1)7H(X{ y—N'sgn[61(V)]).

@ When X =\, 6,(\) = 6:(N).
@ When ) just leaves ),

01(\') ~ 61(N), sgn[01(\)] = sgn[01(N\)], v OC1.

@ Until the critical value X, s.t. for some i, 61 ;(\') = 0, then
stays 0, or, changes sign.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

(X X)L (X y—Asgn[B1(V)]) = 61 (N),
X (y — Xi01(N)) € 20|,

Solutions §(\), [N — Al <e:

Define O(X) = (61()\'),0), with

B1(X) = (X' X1)7H(X{ y—N'sgn[61(V)]).

@ When X =\, 6,(\) = 6:(N).
@ When ) just leaves ),
01(\') ~ 61(N), sgn[01(\)] = sgn[01(N\)], v OC1.

@ Until the critical value X, s.t. for some i, 61 ;(\') = 0, then
stays 0, or, changes sign.

Critical values: (max{\" < X: 601 ;(\) =0}, min{\ > X:6;;(\)=0})
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:
{ (X! X1)H(X] y—Asgn[61(A)]) = 61 (N),
X (y — X161(N)) € 9]0,
O(N) = (61(\),0), with
01(X) = (X, X1) 1 (X{ y—Nsgn[01(V)]).

Validity interval of )

Let Aj,i =1, ..., d be the solutions of following egs:

01()‘/) = 07
£ X, (y — X161 (X)) =1,
LXT (y — X161 (\)) = —1.

61(N') is a Lasso solution, for YA € [y, with

/>\ = (m_ax{)\,- : )\,' < )\}, m_in{)\j : )\j > )\})
i J

- /
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X X0) 71X y—Asgn[01(N)]) = 61(N),
X (y — Xi01(N)) € 00|,

YN € Iy, O(N) = (61(\),0), with

O1(X) = (X{' X1)7H(X{ y—N'sgn[61(V)]).

@ Thus if the new A\, € [, done !
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

{ (X X0) 71X y—Asgn[01(N)]) = 61(N),
X (y — Xi01(N)) € 00|,

YN € Iy, O(N) = (61(\),0), with

61(\) = (X X1) 71X y—N'sgn[61(N))).
@ Thus if the new A\, € [, done !
o If not? e.g. Ao = Ac:=min;{}; : \j > A}
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:
(X X0) " H X y=Asgn[01(N)]) = 61()),
IXT (y — X101(N)) € 2]0],.
VX eIy, O(N) = (6:()\),0), with
O1(\) = (X{ X1)7H(X y—N'sgn[61(N)]).
@ Thus if the new A\, € [, done !

o If not? e.g. Ao = Ac:=min;{}; : \j > A}
In (Ac, Ac + €), only 1 entry changes sparsity wrt 0(\)!

Validity interval of )\

61(X) =0,6; — 0

X (y = X161 (X)) = 1,
£ X7 (y — X161(N)) = —1.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:
(X X0) " H X y=Asgn[01(N)]) = 61()),
IXT (y — X101(N)) € 2]0],.
VX eIy, O(N) = (6:()\),0), with
O1(\) = (X{ X1)7H(X y—N'sgn[61(N)]).
@ Thus if the new A\, € [, done !

o If not? e.g. Ao = Ac:=min;{); : \j > A}
In (Ac, Ac + €), only 1 entry changes sparsity wrt 0(\)!

Validity interval of )\

61(\) =0

X (y — X161(V)) = 1,0 > 67 > 0
£ X7 (y — X161(X)) = —1.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:
(X{ X1) (X, y—Asgn[61(N)]) = 61(N),
X5 (y — X161(X)) € 0]0] ;.
VX eIy, O(N) = (6:()),0), with
B1(N) = (X X1)"H(X[ y—Nsgn[61(M)]).
@ Thus if the new A\, € I, done !

o If not? e.g. Ao = Ac:=min;{); : \; > A}
In (Ac, Ac + €), only 1 entry changes sparsity wrt 0(\)!

Validity interval of )\

61(N) =0
¥ X3 (v = X161 (V) = 1,
LXJ (y — X161(X)) = —1,0 — 6 < 0.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:
(X{ X1) (X, y—Asgn[61(N)]) = 61(N),
X5 (y — X161(X)) € 0]0] ;.
VX eIy, O(N) = (6:()),0), with
B1(N) = (X X1)"H(X[ y—Nsgn[61(M)]).
@ Thus if the new A\, € I, done !

o If not? e.g. Ao = Ac:=min;{); : \; > A}
In (Ac, Ac + €), only 1 entry changes sparsity wrt 0(\)!

Validity interval of )\

61(N) =0
¥ X3 (v = X161 (V) = 1,
LXJ (y — X161(X)) = —1,0 — 6 < 0.

J"is known !
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

(X X1)7H(X{ y=Asgn[01(N)]) = 61(N),
X5 (y — X161(X)) € 0]0] ;.

@ Thus if the new A € I, done !
o If not? e.g. Ao = Aci=min;{}; : \; > A}

In (Ac, Ac + €):
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X7 (y — X101(X)) € ] 0]l¢,.

@ Thus if the new A € I, done !
o If not? e.g. Ao = Aci=min;{}; : \; > A}

In (Ac, Ac + €): new support and sign pattern are both
known
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

(X X1)7H(X{ y=Asgn[01(N)]) = 61(N),
X7 (y — X101(X)) € ] 0]l¢,.

@ Thus if the new A € I, done !
o If not? e.g. Ao = Aci=min;{}; : \; > A}
In (Ac, Ac + €): new support and sign pattern are both

known = update the OC = new validity interval (\¢,?)
= until cover \,.
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Inference: a new Lasso optimization type Classical homotopy algorithm: regularization path

Optimality condition:

(X X1)7H(X{ y=Asgn[01(N)]) = 61(N),
X7 (y — X101(X)) € ] 0]l¢,.

@ Thus if the new A € I, done !

o If not? e.g. Ao = Aci=min;{}; : \; > A}
In (Ac, Ac + €): new support and sign pattern are both
known = update the OC = new validity interval (\¢,?)

= until cover \,.

Detail: The update of (X;' X1)~! is 1-rank, fast
calculation exists !
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Compute optimality condition wrt structure

~

A:= — A AJA
aggelg;mthnxT xo-al, + AlAxly,
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Compute optimality condition wrt structure

~

A:= — Axr— AJA
a;gelg;mthnxT xo-al, + AlAxly,

Key idea: Removing the explicit constraint using an orthonormal
basis of Kg.
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Compute optimality condition wrt structure

A= — A AA
al;gge}g;ln 2t Z ”XT XT 1”@2 + H NHZl

Key idea: Removing the explicit constraint using an orthonormal
basis of Kg. Kg is a linear space of dim = nb of unique values.

RN
L5 F i

Pl ],

VAe Kg,3A% e RNFXNF, g ¢, Projg(AO) = ZkeK<Uk7AO>F Uk.
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Compute optimality condition wrt structure

~

A= — A AJA
al;i]géln 2t Z ”XT Xr— 1”[2 + H NHZl

Key idea: Removing the explicit constraint using an orthonormal
basis of Kg. Kg is a linear space of dim = nb of unique values.

Shir S
A G

VA€ Kg, A% e RVME st Projg (A%) = 3k (Ui, A%)p Uk
Moreover, Ay = ck <Uk,A0>F : a unique corresponding Uy, known c.
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Compute optimality condition wrt structure

~

A= — A AJA
al;gge}g;ln 2t Z ”XT Xr— 1”@2 + H NHZl

Key idea: Removing the explicit constraint using an orthonormal
basis of Kg. K¢ is a linear space of dim = nb of unique values.

SRl AN
N LEr

c e e r L] .
VA€ Kg,3A% e RVME st Projg (A%) = 3k (Ui, A%)p Uk
Moreover, Ax = ci <Uk,A0>F : a unique corresponding Uy, known c.
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Compute optimality condition wrt structure

A= arg mln— Z |xr — Axr— 1”@2 + A Ax],
AE/Cg

Removed explicit constraint:

2
A0 = arg mlnl Z Z <Uk A >F Urxr_1
a2t keK 0
+ A D [ Uk, A% Ui,
kEKN

where Ky corresponds to the values of A imposed penalty.
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Inference: a new Lasso optimization type New homotopy algorithm: regularization path

Compute optimality condition wrt structure

A= arg mln— Z |xr — Axr— 1”@2 + A Ax],
AE/Cg

Removed explicit constraint:

‘ 2
A0 = arg minl Z Xr — Z <Uk,AO>F Urxr—1
w2t i keK 0
+ A D [ Uk, A% Ui,
keKn

where Ky corresponds to the values of A imposed penalty.

A= PrOJg(AO). aAO is easy.
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becliepeerles il ietolal
Optimality condition

oL .
0c a5 = 2 (Ui U e(0) (Un, A7) Uy
k,k'eK
= W @) U+ A Y U A% U,
keK keKn

where T¢(0) = Y xr_1x1_, Te(1) = X xr_1x7
Use Ak = Ck<Uk,AO>F !
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becliepeerles il ietolal
Optimality condition

117 (3 = Aw) = af,
1
+ (20— oaf) € 201,

where
o aj = (A} /Ck, - A% /ck,): all scaled active entries of A%,
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Sl A T s
Optimality condition

({17 (0% = ww) = 3.
1
3 (0~ Toal) € 210,

where
o aj = (A} /Ck, - A% /ck,): all scaled active entries of A%,

o Matrix [, o := (Uk, U T¢(0)), vector [], 1= (U, Te(1)),
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Sl A T s
Optimality condition

{ (M7 (5f = Aw) = af,

1
~ (0 —Toa}) € 210]1,.

where
o aj = (A} /Ck, - A% /ck,): all scaled active entries of A%,
o Matrix [, o := (Uk, U T¢(0)), vector [], 1= (U, Te(1)),

>1l< = [r]Kl,Kw o = [r]Ko,Kl; 7? = [’Y]Kp’Yo = [/Y]KO'
o w = (Wk,..., Wg, ):

{wk, = sgn(Ail), ifAZ is from A% (Penalized param.),
0, o.w.
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Sl A T s
Optimality condition

{ (M7 (5f = Aw) = af,

~(00 — Toat) € 0],

where
o aj = (A} /Ck, - A% /ck,): all scaled active entries of A%,
o Matrix [[], 4 := (Uk, U T+(0)), vector [v], := (Uk, T+(1)),

>1k = [r]Kl,Kw o = [r]Ko,Kl; 7? = [V]Kp’}’o = [/Y]Ko'
o w = (Wk,..., Wg, ):

{wk, = sgn(Ail), ifAi/ is from A% (Penalized param.),
0, o.w.

The two LHS of the OC are smooth functions in .
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Sl A T s
Optimality condition

{ (M7 (5f = Aw) = af,

1
~ (0 —Toa}) € 210]1,.

where
o aj = (A} /Ck, - A% /ck,): all scaled active entries of A%,
o Matrix [, o := (Uk, U T¢(0)), vector [], 1= (U, Te(1)),

>1k = [r]Kl,Kw o = [r]Ko,Kl; 7? = [V]Kp’}’o = [/Y]Ko'
o w = (Wk,..., Wg, ):

{wk, = sgn(Ail), ifAi/ is from A% (Penalized param.),

0, o.w.

The two LHS of the OC are smooth functions in .

. -1 ..
Define a1 (X)) = [T5] " (75 — Mw). Same principle works !
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@ Homotopy algorithm: data path

VORI N R (VTSRS M ST SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 25/34



Inference: a new Lasso optimization type Homotopy algorithm: data path

Data path:
1 1
min =y — X0[7, + = (uyes1 — px10)% + (t+ 1)A[6]g,,
geRd 2 2

The two LHS of OC are piece-wise smooth functions of
w, v € [0, 1], see Garrigues and Ghaoui (2008). Same principle !

il A t+1A[A
Argkng Z ”X‘r XT 1“62 ( + ) H NHﬂl

NF

1
+ 5 le pi (Xes1,i — Ai,:xt)2

Always smooth in p; !

VORI N R (VTSR M ST SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 26 /34



Inference: a new Lasso optimization type Homotopy algorithm: data path
Data path:

1 1
min >y — X0/7, + > (uyer1 — px10)* + (t + DA6]g,,
R 2 2
The two LHS of OC are piece-wise smooth functions of
w, v € [0, 1], see Garrigues and Ghaoui (2008). Same principle !

il A t+1A[A
Arg;cng Z ”X‘r XT 1“62 ( + ) H NHfl

NF

+35 Z/l Xe+1,i — Ai Xt)
i=1
Always smooth in p; !

Details: if only one i is used, the update of old OC is NF-rank
no fast calculation !
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Augmented model

Augmented model

Matrix autoregressive model, Ex; = 0,:

xt = Axe—1 + z¢, with Ae Kg, x; = vec(X}),
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Augmented model

Augmented model

Matrix autoregressive model, Ex; = 0,:
xt = Axe—1 + z¢, with Ae Kg, x; = vec(X}),
Matrix autoregressive model:

x¢ = bt + Ax¢—1 + z, with A€ Kg, b; periodic, e.g. 12(month).
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Augmented model

Augmented model

Matrix autoregressive model, Ex; = 0,:
xt = Axe—1 + z¢, with Ae Kg, x; = vec(X}),
Matrix autoregressive model:

x¢ = bt + Ax¢—1 + z, with A€ Kg, b; periodic, e.g. 12(month).

Estimation:

~ o~ R
A, b, ;= arg min — Z |xr — by — AXT—1||§2 + A HANHzl

AeKg,b. 2 =

Adapted algorithms !

VORI N R (VTSRS M ST SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 27 /34



Table of Contents

@ Numerical studies
@ Simulations
@ Real data

VORI N R (VTSRS M ST SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 27 /34



Simulations
Table of Contents

@ Numerical studies
@ Simulations

VORI N R (VTSRS M ST SWAN [ Homotopy algorithm for structured matrix-var

January 26, 2026

27 /34



NITGSIEIISIC I  Simulations

Running time

0.40
—— MAR - KS - esti-high-dim, n=5e -7
—== MAR - KS - esti-high-dim, n=1e - 6
0.354 —-= MAR - KS - esti-high-dim, n=5e -6
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Iteration

N =20, F =5, M = 12, number of model parameters = 1500. The
accelerated proximal gradient descent needs more than 3 secs.
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Numerical studies EEIITIENIHS

Other simulation results

Existing MAR Proposed MAR

Prediction
performance

v (KS-based formula)

Availability for
small dataset

v (Lasso penalty)

Applicable in

graph learning v (KS + Lasso penalty)
Online
inference v (Homotopy algorithms)
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Real data
California weather TS

Temperature(“C)/precipitation(0. 1mm)

Figure 1: N = 27 (stations), F= 4 (weather metrics), M = 12
(months), T = 1523 (months).

Proposed model:
Xt = by + Ax¢—1 + z, with A€ Kg(An, Ar), by periodic in t,

where x; = vec(X;), with X; : matrix of 27 x 4.
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Numerical studies Real data

Learned graph Ay

g
Figure 2. Dependency between stations. Estimation of Ay (left) using
all T = 1523 (months), retrieved graph overlapped on the map (right).
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Numerical studies Real data

Learned graph Ag

—— Poids positif
—— Poids négatif

tmin

tmax

prep tavg
|
| |
& A
o @«
\

Figure 3: Dependency between weather metrics. Estimation of Ap
(left) using all T = 1523 (months), retrieved graph overlapped on the
map (right).

VORI N R (VTSR M SIS SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 32/34



Table of Contents

© Conclusions and perspectives

VORI N R (VTSRS M ST SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 32/34



Conclusions and perspectives

Contribution:

@ A new MAR model and the estimation methods
(offline/online).

Y Jiang and J.Bigot, Wasserstein auto-regressive models for modeling
multivariate distributional time series, to appear, Journal of time series
analysis.
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@ A new MAR model and the estimation methods
(offline/online).

@ Online graph learning (GL) from matrix-variate TS, which
is a data type not yet considered in the GL.

o New homotopy algorithms. Online inference:

regularization path : A(t, A1) — A(t, A2),
data path : A(t,\) — A(t + 1, ),

automatic tuning : A\ — Agy1,

Y Jiang and J.Bigot, Wasserstein auto-regressive models for modeling
multivariate distributional time series, to appear, Journal of time series
analysis.
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Conclusions and perspectives

Contribution:
@ A new MAR model and the estimation methods
(offline/online).
@ Online graph learning (GL) from matrix-variate TS, which
is a data type not yet considered in the GL.

o New homotopy algorithms. Online inference:

regularization path : A(t, A1) — A(t, A2),
data path : A(t,\) — A(t + 1, ),

automatic tuning : A\ — Agy1,

Perspectives:

GL from TS of other data natures, e.g. TS of probability

measures!, mixed types.

Y Jiang and J.Bigot, Wasserstein auto-regressive models for modeling
multivariate distributional time series, to appear, Journal of time series
analysis.

VORI N R (VTSR M SIS SWAN [ Homotopy algorithm for structured matrix-var January 26, 2026 33/34



Conclusions and perspectives

Thank your for your attention !
Jiang Yiye, Jérémie Bigot, and Sofian Maabout. "Online graph

topology learning from matrix-valued time series.” Computational
Statistics & Data Analysis 202 (2025): 108065.
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Conclusions and perspectives

Offline optimization

AL — prox(AK — n*Vf(AK)),

1

= arg min—kHA— ( ka Ak )He +)\HAN”51

AEK:g
= arg min o HA Projg (AX — n*Vf(A¥) )H@ + AAx],,

AeKg

AI’iI“ = arg min HAN — Projg,, ( — nkV(AF) )Hz
AN

— +2nk 2 F HANHe1 )

At = Projg, (AK — ¥V (A9)),
diag(AF+1) = (Ak — nkVF(AK)),
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Adaptive tuning of A

Introduce the empirical objective function (Monti et al., 2018):

1
fes1(N) = Slxers — At A)xel,-

Updating rule:

dfer1(N)

>\t+1=)\t—7] d\ N

where 7 is the step size.
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Conclusions and perspectives

Comparison with other AR models

The existing MAR models are all bi-multiplication / Kronecker
product based, with the first model proposed in Chen et al.
2021 *:
X = ANXe_1AR + Z;
«— vec(X¢) = (Ar ® An)vec(Xi_1) + vec(Zy) (1)

1Chen, Rong, Han Xiao, and Dan Yang. " Autoregressive models for
matrix-valued time series.” Journal of Econometrics 222.1 (2021): 539-560.
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product based, with the first model proposed in Chen et al.
2021 *:
X = ANXe_1AR + Z;
«— vec(X¢) = (Ar ® An)vec(Xi_1) + vec(Zy) (1)

Competitors: 3 estimators in Chen et al. 2021, VAR(1) with LS
estimator.

1Chen, Rong, Han Xiao, and Dan Yang. " Autoregressive models for
matrix-valued time series.” Journal of Econometrics 222.1 (2021): 539-560.
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Comparison with other AR models

The existing MAR models are all bi-multiplication / Kronecker
product based, with the first model proposed in Chen et al.
2021 1

X = ANXe_1AR + Z;
«— vec(X¢) = (Ar ® An)vec(Xi_1) + vec(Zy) (1)

Competitors: 3 estimators in Chen et al. 2021, VAR(1) with LS
estimator.
@ Online procedure

o for us, apply directly on the TS as previously.
o for VAR and MAR in (1), offline detrending + resolving
batch pb at each time step

1Chen, Rong, Han Xiao, and Dan Yang. " Autoregressive models for
matrix-valued time series.” Journal of Econometrics 222.1 (2021): 539-560.
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Conclusions and perspectives

Pierre Garrigues and Laurent Ghaoui. An homotopy algorithm
for the lasso with online observations. Advances in neural
information processing systems, 21:489-496, 2008.

Ricardo P Monti, Christoforos Anagnostopoulos, and Giovanni
Montana. Adaptive regularization for lasso models in the
context of nonstationary data streams. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 11(5):
237-247, 2018.
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